A CHARACTERIZATION OF LOCALLY MACAULAY COMPLETIONS

CRAIG HUNEKE

The purpose of this note is to prove the following theorem.

THEOREM 1.1. Let (R, m) be a Noetherian local ring of dimension $d \ge 1$ and depth d-1. By \hat{R} denote the completion of R in the *m*-adic topology. Then the following are equivalent:

(1) \hat{R} is equidimensional and satisfies Serre's property S_{d-1}

(2) $H_m^{d-1}(R)$ has finite length

(3) There exists an N > 0 such that if x_1, \dots, x_d is a sequence of elements R with $\operatorname{ht}(x_{i_1}, \dots, x_{i_j}) = j$ for all *j*-elements subsets of $\{1, \dots, n\}$, $1 \leq j \leq n$, and if $m_i \geq N$, $1 \leq i \leq d$, then $x_1^{m_1}, \dots, x_d^{m_d}$ is an unconditioned *d*-sequence.

Recall the local ring (S, N) is equidimensional if for every minimal prime divisor p of zero, dim $S/p = \dim S$.

Serre's property S_k is that

depth
$$R_p \geq \min[\operatorname{ht} p, k]$$

for all primes p.

We will always denote the local cohomology functor by $H_m^j(_)$ ([1]).

We recall the definition of a d-sequence due to this author [3].

DEFINITION 0.1. A system of elements x_1, \dots, x_d in a commutative ring R is said to be a d-sequence if

(1) $x_i \notin (x_1, \cdots, \hat{x}_i, \cdots, x_d)$

(2) $((x_1, \dots, x_i): x_{i+1}x_k) = ((x_1, \dots, x_i): x_k)$ for $k \ge i + 1$ and $i \ge 0$. A *d*-sequence is said to be unconditioned if any permutation of it remains a *d*-sequence.

These have been studied extensively by this author and have been useful to determine the "analytic" properties of ideals generated by them. In [3] the following was skown:

PROPOSITION. Let (R, m) be a local Noetherian ring. Then R is Buchsbaum (see [10] for a definition and discussion) if and only if every system of parameters forms a d-sequence.

Thus Theorem 1.1 may be seen as a related result, characterizing rings in which "almost all" s.o.p.'s form a d-sequence. Independent

of this characterization of rings with "lots" of d-sequences, Theorem 1.1 is the generalization of a result due to Steven McAdam [7] which in turn is related to a characterization of unmixed 2-dimensional local rings proved by Ratliff [8].

Let (R, m) be a 2-dimensional local domain and let b, c be a system of parameters. By S(b, c, n) denote the least k such that

 $(b^n: c^k) = (b^n: c^{k+1})$.

Recall a local ring R is said to be unmixed if for each prime divisor p of (0) in \hat{R} , dim $\hat{R}/p = \dim \hat{R}$.

Ratliff showed, [8],

PROPOSITION. The following are equivalent for a 2-dimensional local domain

(1) R is unmixed.

(2) S(b, c, _) is bounded.

(3) $R^{(1)} = \bigcap_{\text{ht } p=1} R_p$ is a finite R-module.

McAdam discussed this and obtained the following improvement:

PROPOSITION [5]. Let (R, m) be as above. Then the following are equivalent:

(1) R is unmixed, i.e., for all prime divisors p of (0) in \hat{R} , dim $\hat{R}/p = \dim \hat{R} = 2$.

(2) $R^{(1)}$ is a finite R-module.

(3) There exists an N such that for every s.o.p. x, y

 $S(x, y, _{-}) \leq N$.

In particular, (3) is equivalent to saying for all $n \ge N$ that $(x^n: y^n) = (x^n: y^{2n})$ and this is equivalent (in this case) to saying x^n , y^n form a *d*-sequence.

To see our statement (1) is equivalent to (1) of the above proposition, note that if dim R = 2 and R is a domain, then to say R is unmixed is precisely to say \hat{R} satisfies S_1 and is equidimensional.

Finally, we will show that $R^{(1)}/R$ is isomorphic to $H_m^{-1}(R)$ in this case, and show that $R^{(1)}/R$ has finite length if and only if $R^{(1)}$ is a finitely generated *R*-module. Hence our Theorem 1.1 is the exact generalization of the above proposition of McAdam.

1. Proof of Theorem 1.1. For details on local cohomology we refer the reader to [1]. We note the following facts.

(1) Since depth R = d - 1, $H_m^i(R) = 0$ if i < d - 1.

(2) There is a canonical isomorphism, $H^{d-1}_{\mathfrak{m}}(R)\cong H^{d-1}_{\hat{\mathfrak{m}}}(\hat{R}).$

132

133

(3) If S is a complete regular local ring mapping onto \hat{R} (see [6]) and M is the maximal ideal of S, then $H^{d-1}_{\mathfrak{m}}(R) \cong H^{d-1}_{\mathfrak{U}}(\hat{R})$ where \hat{R} is regarded as an S-module.

(4) If S is chosen as in (3), $e = \dim S$, and we let $E = H_{M}^{e}(S/M) =$ an injective hull of S/M, then

$$\operatorname{Hom}_{S}\left(H^{j}_{\mathfrak{m}}(R),\,E
ight)\cong\operatorname{Ext}_{S}^{e^{-j}}\left(\widehat{R},\,S
ight)$$

and $H^{j}_{\mathfrak{m}}(R) \cong \operatorname{Hom}_{S}(\operatorname{Ext}_{S}^{e-j}(\hat{R}, S), E)$. This is local duality.

(5) We may compute $H^{d-1}_m(R)$ as follows: let x_1, \dots, x_d be an s.o.p., and consider the complex,

$$\bigoplus_{i < j} R_{x_1, \dots, \hat{x}_i, \dots, \hat{x}_j, \dots, x_n} \longrightarrow \bigoplus_i R_{x_1, \dots, \hat{x}_i, \dots, x_n} \longrightarrow R_{x_1, \dots, x_n} \longrightarrow 0$$

where the subscripts denote localization at the elements subscripted. Then $H_m^{d-1}(R)$ is isomorphic to the middle homology of this complex. If we denote by $\operatorname{syz}(x_1, \dots, x_d)$ the module defined by K/L where $K \subseteq R^d$ is the module of syzygies of x_1, \dots, x_d and L is the submodule of syzygies which come from the trivial ones given by the Koszul relations, then

$$H^{d-1}_m(R) \cong \lim \operatorname{syz} \left(x^{n_1}_1, \ \cdots, \ x^{n_d}_d
ight)$$

where if $m_i \ge n_i$, the map

$$\operatorname{syz}(x_1^{n_1}, \cdots, x_d^{n_d}) \longrightarrow \operatorname{syz}(x_1^{m_1}, \cdots, x_d^{m_d})$$

is defined by mapping a syzygy (r_1, \dots, r_d) of $(x_1^{n_1}, \dots, x_d^{n_d})$ to the syzygy $(r_1 x_2^{m_2-n_2} \cdots x_d^{m_d-n_d}, \dots, r_d x_1^{m_1-n_1} \cdots x_d^{m_{d-1}-n_{d-1}})$ of $(x_1^{m_1}, \dots, x_d^{m_d})$. We now turn to the proof of Theorem 1.1.

The fact (1) if and only if (2) holds is well-known but we give the details here for completeness.

We first observe that $H^{d-1}_{\mathfrak{m}}(R)$ has finite length if and only if $\operatorname{Hom}_{S}(H^{d-1}_{\mathfrak{m}}(R), E) \cong \operatorname{Ext}_{S}^{e-(d-1)}(\widehat{R}, S)$ has finite length. (See [5].)

If p is a prime in S and $\widehat{R} \cong S/I$, then if $p \not\supseteq I$

$$({\rm Ext}_{S}^{e^{-(d-1)}}(\widehat{R},\,S))_{p}=0$$
 .

Hence, $\operatorname{Ext}^{\scriptscriptstyle e^{-(d-1)}}_{\scriptscriptstyle S}(\widehat{R},\,S)$ has finite length if and only if

 $(\operatorname{Ext}^{\scriptscriptstyle e-(d-1)}_{\scriptscriptstyle S}(\hat{R},\,S))_p=\operatorname{Ext}^{\scriptscriptstyle e-(d-1)}_{\scriptscriptstyle S_p}((\hat{R}_p,\,S_p)=0 \ \ ext{for all} \ \ p\supseteq I \ , \ \ p
eq M \ .$

If i < d - 1, then since depth $\hat{R} = \operatorname{depth} R = d - 1$, we see

$$H^i_{\hat{m}}(\widehat{R}) = H^i_{\mathcal{M}}(\widehat{R}) = 0$$

and so

$$\operatorname{Ext}_{S}^{e-i}(\widehat{R},S)=0$$

or, otherwise put,

 $\operatorname{Ext}_{S_{n}}^{k}(\hat{R}_{p}, S_{p}) = 0$

for all $k \ge e - (d - 1)$ if and only if $H_m^{d-1}(R)$ has finite length. (Note for k > e, $\operatorname{Ext}_S^k(M, S) = 0$ for all M.)

Since S_p is regular,

 $\operatorname{Sup}_n \{\operatorname{Ext}_{S_p}^n(\hat{R}_p, S_p) \neq 0\} + \operatorname{depth} \hat{R}_p = \dim S_p . \quad (\operatorname{See} \ [9.])$

From this we may conclude that $H^{d-1}_{m}(R)$ has finite length if and only if depth $(\hat{R})_{p} > \dim S_{p} - (e - (d - 1))$ i.e., if and only if

$$\operatorname{depth} (\widehat{R})_p \geq \dim S_p - \dim S + \dim \widehat{R}$$

We claim that

$$\dim S_{\mathfrak{p}} - \dim S + \dim \widehat{R} \geqq \dim (\widehat{R})_{\mathfrak{x}}$$

in any case. For since S is regular, $\dim S = \dim S_p + \dim S/p$ and so the left side is just

$$-{
m dim}\,S/p\,+\,{
m dim}\,\widehat{R}\,$$
 .

Thus it is enough to show

$$\dim \widehat{R} \ge \dim S/p + \dim (\widehat{R})_p$$

but this clearly always holds since p contains I.

Thus we have shown $H_m^{d-1}(R)$ has finite length if and only if

$$(*) \qquad \operatorname{depth}(\widehat{R})_p \geq \dim S_p - \dim S + \dim \widehat{R} \geq \dim (\widehat{R})_p.$$

We claim these last two inequalities occur if and only if \hat{R} satisfies S_{d-1} and is equidimensional.

If (*) occurs then clearly $(\hat{R})_p$ must be Cohen-Macaulay for all $p \neq \hat{m}$, and since depth $\hat{R} = d - 1$, this shows \hat{R} satisfies S_{d-1} . Since we must have

$$\dim (\widehat{R})_{p} = \dim S_{p} - \dim S + \dim \widehat{R}$$

in this case, the work above shows that for all $p \supseteq I$,

$$\dim \widehat{R} = \dim S/p + \dim (\widehat{R})_p$$
 ,

and this shows \hat{R} is equidimensional.

Conversely, since \hat{R} is catenary, if \hat{R} satisfies S_{d-1} and is equidimensional then

(a)
$$\operatorname{depth}(\hat{R})_p = \operatorname{dim}(\hat{R})_p$$

for all primes $p \neq \hat{m}$, and

(b)
$$\dim \hat{R} = \dim S/p + \dim (\hat{R})_p$$

for all primes p. Thus in this case (*) holds and so $H^{d-1}_{\mathfrak{m}}(R)$ has finite length.

We now show (2) if and only if (3). Assume (2). Then there is a N such that $m^N H_m^{d-1}(R) = 0$. It was shown in [2] that if $R \to S$ faithfully flat and $x_1, \dots, x_n \in R$ then these elements form a *d*-sequence in R if and only if they form a *d*-sequence in S. Thus we may work in \hat{R} and assume R is complete for the remainder of this implication. By (1), R is locally Cohen-Macaulay on the punctured spectrum, i.e., R satisfies Serre's condition S_{d-1} .

Now let x_1, \dots, x_d be in R such that $ht(x_{j_1}, \dots, x_{j_i}) = i$ for each $i, 1 \leq i \leq d$.

Then since R satisfies $S_{d-1}, x_{i_1}, \dots, x_{i_{d-1}}$ form an R-sequence for any d-1 of $\{x_1, \dots, x_d\}$. Hence to show (3) it is enough to show for $m_i \ge N$ that

$$((x_1^{m_1}, \cdots, \hat{x}_i, \cdots, x_d^{m_d}): x_i^{2m_i}) = ((x_1^{m_1}, \cdots, \hat{x}_i, \cdots, x_d^{m_d}): x_i^{m_i})$$

Since we may rearrange the x_i we may assume i = d. Suppose (r_1, \dots, r_d) is a syzygy of $(x_1^{m_1}, \dots, x_{d-1}^{m_{d-1}}, x_d^{2m_d})$. Since $m^N H_m^{d-1}(R) = 0$ we see that $x_d^{m_d}$ must kill the image of this syzygy in $H_m^{d-1}(R)$.

By the construction (5) above we see this means that

$$(r_1 x_d^{m_d}(x_2, \cdots, x_d)^M, \cdots, r_d x_d^{m_d}(x_1, \cdots, x_{d-1})^M)$$

becomes a trivial syzygy of

$$(x_1^{m_1+M}, \cdots, x_{d-1}^{m_{d-1}+M}, x_d^{2m_{d+M}})$$
.

In particular,

$$r_d x_d^{m_d}(x_1, \cdots, x_{d-1})^M \in (x_1^{m_1+M}, \cdots, x_{d-1}^{m_d-1+M})$$
.

As x_1, \dots, x_{d-1} forms an *R*-sequence, this shows (see [4]) that

$$r_d x_d^{m_d} \in (x_1^{m_1}, \cdots, x_{d-1}^{m_{d-1}})$$

which shows (3).

Now assume (3) and let us show (2). First, we show,

LEMMA 1.1. Let (R, m) be a local Noetherian ring of dimension. d. Suppose for every x_1, \dots, x_d in m such that height $(x_1, \dots, x_j) = j$, there exist integers $m_1, \dots, m_d \geq 1$ such that $x_1^{m_1}, \dots, x_d^{m_d}$ form a d-sequence. Then R_p is Cohen-Macaulay for all $p \neq m$.

Proof. Let p be a minimal prime in R with R_p not Cohen-Macaulay. If height p = n, choose a_1, \dots, a_n in p such that height

 $(a_1, \dots, a_i) = i$. Complete a_1, \dots, a_n to a system of parameters $a_1, \dots, a_n, a_{n+1}, \dots, a_d$ of R with $\operatorname{ht}(a_1, \dots, a_i) = i$. Since p is the minimal prime which is not Cohen-Macaulay, we may assume p is associated to (a_1, \dots, a_i) with i < n. Let m_1, \dots, m_d be chosen so that $a_1^{m_1}, \dots, a_d^{m_d}$ form a d-sequence. Then p is still associated to $a_1^{m_1}, \dots, a_d^{m_d}$. By [3],

$$(a_1^{m_1}, \cdots, a_i^{m_i}) = ((a_1^{m_1}, \cdots, a_i^{m_i}): a_{i+1}^{m_{i+1}}) \cap (a_1^{m_1}, \cdots, a_d^{m_d})$$

Now since $(a_1^{m_1}, \dots, a_d^{m_d})$ is primary to m, this decomposition shows that p is associated to $((a_1^{m_1}, \dots, a_i^{m_i}): a_{i+1}^{m_{i+1}})$. However $a_{i+1}^{m_{i+1}} \in p$ and $a_{i+1}^{m_{i+1}}$ is not a zero divisor modulo $((a_1^{m_1}, \dots, a_i^{m_i}): a_{i+1}^{m_{i+1}})$. This contradiction proves the lemma.

Now assume (3). By Lemma 1.1 R satisfies S_{d-1} . (Note we may not assume \hat{R} satisfies S_{d-1} !)

Hence if x_1, \dots, x_d are chosen so that height $(x_{j_1}, \dots, x_{j_d}) = i$ for all $1 \leq i \leq d$, to show $H_m^{d-1}(R) = 0$ it is enough to show in this case that if such an x_1, \dots, x_d are a *d*-sequence, then

$$\operatorname{syz}(x_1, \cdots, x_d) \longrightarrow \operatorname{syz}(x_1, \cdots, x_{d-1}, x_d^2)$$

is onto. For if we can show this, then it is clear that the map

$$\operatorname{syz}(x_1^N, \cdots, x_d^N) \longrightarrow H_m^{d-1}(R)$$

will be onto, where N is as in (3). This will show $H_m^{d-1}(R)$ is finitely generated; as $H_m^{d-1}(R)$ satisfies the descending chain condition, this will show (2).

So let (r_1, \dots, r_d) be a syzygy of $x_1, \dots, x_{d-1}, x_d^2$. Then since

$$r_d \in ((x_1, \dots, x_{d-1}): x_d^2) = ((x_1, \dots, x_{d-1}): x_d)$$

we see

$$0 = r_d x_d + \sum_{j=1}^{d-1} s_i x_i$$
, and hence $(r_1 - s_1 x_d) x_1 + \cdots + (r_{d-1} - s_{d-1} x_d) x_{d-1} = 0$

Thus, $(r_1 - s_1 x_d, \dots, r_{d-1} - s_{d-1} x_d, 0)$ is a syzygy of $(x_1, \dots, x_{d-1}, x_d^2)$. Since x_1, \dots, x_{d-1} will form an *R*-sequence, this syzygy of $(x_1, \dots, x_{d-1}, x_d^2)$ will be trivial. Hence the image of $(s_1, \dots, s_{d-1}, r_d)$ in syz (x_1, \dots, x_d) will map onto $(r_1, \dots, r_d) \in \text{syz} (x_1, \dots, x_d^2)$. This finishes the proof of Theorem 1.1.

Finally, we wish to relate condition (2) of Theorem 1.1 to the finiteness of $R^{(1)}$. To this end, let (R, m) be a 2-dimensional Noetherian local domain and let $S = R^{(1)} = \bigcap R_p$ taken over all height one primes p. If t is in S, then $J = \{r \in R \mid rt \in R\}$ is not contained in any height one prime and is thus primary to m. Hence if x, y is an s.o.p., $x^* \in J$ for some k. Then $x^k t = r \in R$ and so $t = r/x^k$. Thus $J = (x^k; r)$

is primary to m, and so $y^m \in J$ for some J which shows $r \in (x^k; y^m)$ for some m. Thus (see McAdam [7]), $S = \{r/x^k | r \in (x^k; y^m) \text{ some } k, m\}$. (The converse is easy to see; i.e., such r/x^k are indeed in R_p for all height one primes p.)

Now $H_m^1(R)$ in this case is the middle homology of

$$R \longrightarrow R_x \bigoplus R_y \longrightarrow R_{xy} \longrightarrow 0$$
.

That is, if

$$\{(r/x^k, s/y^e) \,|\, r/x^k - s/y^e = 0\} = N$$

and $M = \{(r, r) | r \in R\}$ then

$$H^{\scriptscriptstyle 1}_{\scriptscriptstyle m}(R)\cong N/M$$
 .

(Note $r/x^{*} + s/y^{e} = 0$ if and only if $ry^{e} + sx^{k} = 0$ since R is a domain.)

We map S onto $H^1_m(R)$ as follows: if $t \in S$, let $g(t) = (t, t) \in N/M$. The discussion above shows $t \in R_x \cap R_y$ and so the map $g(_)$ makes sense. This map is clearly onto since

$$S = \{r/x^k | r \in (x^k; y^m) \text{ for some } k, m\}.$$

The kernel is the set of $t \in S$ such that $(t, t) \in M$; this is precisely if $t \in R$.

We have therefore shown

$$H^1_m(R) \cong S/R$$
.

Now if S is finitely generated over R, then $H_m^1(R)$ is also and so it has finite length. Conversely, if $H_m^1(R) = S/R$ has finite length, then S is obviously a finite R-module.

References

1. A. Grothendieck, (Notes by R. Hartshorne) *Local Cohomology* Lecture notes in Math., no. **41**, Springer-Verlag, Berlin, 1967.

2. ____, Element de geometrie algebrique, IV, I.H.E.S. Vol. 24.

3. C. Huneke, The theory of d-sequences and powers of ideals, (to appear, Advances in Mathematics).

4. I. Kaplansky, *R*-sequences and homological dimension. Nagoya Math. J., **20** (1962), 195-199.

E. Matlis, Injective modules over Noetherian rings, Pacific J. Math., 8 (1958), 511-528.
 H. Matsumura, Commutative Algebra, W. A. Benjamin Inc., New York, 1970.

7. S. McAdam, Unmixed 2-dimensional local domains, Pacific J. Math., 68 (1977), 153-160.

8. L. J. Ratliff, A theorem on prime divisors of zero and characterizations of unmixed local domains, Pacific J. Math., 65 (1976), 449-470.

9. P. Samuel, Séminaire d'algébrae commutative, Anneaux de Gorenstein et torsion en algébre commutative, Secrétariat mathématique, 11, rue Pierre Curie, Paris (5[°]), 1967.

137

CRAIG HUNEKE

10. J. Stuckrod and W. Vogel, Towards a theory of Buchsbaum singularities, Amer. J. Math., 100 (1978), 727-746.

Received October 18, 1979. Partially supported by the National Science Foundation.

UNIVERSITY OF MICHIGAN ANN ARBOR, MI 48109

138