PACIFIC JOURNAL OF MATHEMATICS
Vol. 95, No 2, 1981

ON THE RELATION PQ — QP = —il

W. J. PHILLIPS

There is a variety of literature on the relationship be-
tween the two equations

(1.1 PQ—QPc —il
(1.2) exp(itP) exp(isQ) = exp(ist) exp(tsQ) exp(itP), s,t€R

where P and () are self-adjoint operators on a Hilbert space.
Yon Neumann has characterized the solutions of (1.2) as those
pairs (P, @) which are unitarily equivalent to a direct sum
of a number of copies of the Schridinger pair (p,q) where
p is —i(d/dx) and q is multiplication by = on L*(R). Hence
any pair which satisfies (1.2) and is irreducible in the obvious
sense is unitarily equivalent to the Schriodinger pair. It is
well known that any pair satisfying (1.2) satisfies (1.1) in the
following strong sense:
(1.3) there is a dense subspace 2 which is a core for both
P and Q, is invariant under P and Q and PQf — QPf =
—tf for all f in Q.

In this paper we construct an uncoutable family of irreducible,
unitarily inequivalent pairs satisfying (1.3) but not (1.2).

A reducible pair satisfying (1.3) but not (1.2) is given in [4,
page 275]. The construction is due to Nelson. It was a detaild ex-
amination of this pair which led us to our uncountable family of
pairs. In [1], Fuglede constructs a pair (P, @) satisfying a stronger
version of (1.3) but not (1.2), but the irreducibility of the pair is left
as an open question. The techniques in the analysis of our examples
are applicable to (P, @) and we show that this pair is irreducible.
For a related example due to Fuglede, see [2, Example 2].

The operators constructed in [4] and [1] are obtained from pairs
(X, Y) of self-adjoint operators satisfying

(1.4) there is a dense subspace 2 which is a core for both. X and
Y, is invariant under X and Y and

XYf=YXf for all fin @
but not
1.5) the spectral projections of X and Y commute.

We also construct an uncountable family of unitarily inequivalent
pairs of operators satisfying (1.4) but not (1.5). For other such
pairs see [4, page 273, Example 1], [1] and [2] and [3, Example 3].
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2. The operators. Consider the Hilbert space H = L*R?. The
Schrodinger 2-system {p,, »;;q,, ¢.} is defined by the following strongly
continuous unitary groups.

(exp(itg;)f) (@, «,) = exp(ita,)f(x, %) j=1,2
2.1) (exp(itp)f) (@, @) = f(@, + &, @)

(eXP(EP)f) (%1, @) = fla@y, %, + 7).
For ae A = {z€C:|z| = 1} define ¢,: R*— C by

a 20, 2,=0

Py &) = 1 elsewhere.

Define the self-adjoint operators P,, Q. by the following strongly
continuous unitary groups.

exp(itP,) = exp(itp,)

2.2 i
@2) exp(1tQ.) = P.(qy, q.) exp(itq;) exp(itD:)pu(ds, @) -

THEOREM 1. The family {(P,, Q.): a € A} satisfies the following
properties:
(a) For each a there is a demse subspace

2,cdom P,Ndom @, (dom X is the domain of X)
with P2, C 2., Q.2, C 2,,
Plo, and Q.o are essentially self-adjoint.

(b) For each a # 1, the pair (P,, Q.) is irreductble.
(e) For various a, the pairs (P, Q,) are unitarily inequivalent.
(d) For each a, the pair (P, Q.) satisfies (1.1); that is,

PQ.f — Q.P.f = —if fedom PQ,Ndom@Q,P, .
(e) For each a +# 1 the pair (P,, Q,) does not satisfy (1.2).

The operators P, and @, are related to the self-adjoint operators
X, and Y, defined by

exp(itX,) = exp(itp,)

2.3 i
@3) exp(itY,) = ¢4(q,, q:) eXp(itD;)d.(q:, qz)

and we have the following result:
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THEOREM 2. The family {(X,, Y.): a € A} satisfies properties (a),
(b) and (c) of Theorem 1. In addition, for each fe(dom X,Y,)N
(dom Y ,X,)

@) X.Y.f = Y. X.f.

REMARKS. Since the pair (X,, Y,) is irreducible for a == 1 it is
clear that their spectral projections cannot commute.

Proof of Theorem 1. Let 2, be the set of all f € L*(R?) such that
(1) feC~(R\{(x, x,): 2, =0, x, = 0})
(2) a(DljD;cf)(wly 0+) = (DljD;cf)(xly 0—) x < 0’ j’ k= 0’ 1’ 27 e
(8) f is compactly supported.

It can be shown that:

dom p; = {f € L*(R*: for almost all x, (k # j), (x; — f(x,, ,))
is absolutely continuous with D;f € L*(R*)}
D)@y, %) = — (D f )@y, %) , f€dom p;
dom q; = {f € L*(R?: ((&,, ®,) — x;f (%, %)) € L*(R*)}
(0@, ) = w;f (2, @), fedomyg;.

From these facts it is easily deduced that 2, C dom P, N dom @, and
for f e, we have the following formulas for a.e. (x,, x.):

(Pef) @y, ;) = — (DS ) (@, @,)
(Quf )1, ) = 2,1 (21, @) — 1(Dof ) (s, ) .

This shows that PR, C 2, and .2, < 2,. To prove the rest of part
(a) we introduce the dense subspaces

‘Q; = {fega: (Di?fo)(O’ xz) =0 v @, Vj,k = Or 1’ "'}
) ={fel,;: (DiD¥f)(x, 05)=0Vux,Vs k=01 ---}.

These subspaces are dense for they contain all C~ compactly supported
functions vanishing in a neighborhood of the axes. Furthermore
2. is invariant under the group (exp(it@Q,):t€ Q) and 2. is invariant
under the group (exp(itP,):t e R). It follows from well-known prop-
erties of strongly continuous semigroups (see [1] Theorem VIII.10)
that

(Palﬂ;l)** = Pa and (Qa].og)** = Qa ’
so the same result holds when 2, is substituted for 2, and 2. This
proves part (a).
Parts (b), (¢) and (e¢) can be proven by computing the “group
commutator”

Cu(s, 1) = exp(isP,) exp(itQ,) exp(—1isP,)exp(—itQ,) .
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Using the definitions of P, and @, we have

(2.4) C,(s, t) = exp(isp,)Pa(q:, @) €xp(itq,) exXp(itP,)$.(q:, Cs)
X eXP(—18D1)Pa(qs, ¢:) €XD(—1tq;) eXP(—1tD:)$u(q:, C) -

It follows from (2.1) that if ¢: R*— C is a bounded Borel function
then

/eXp(itfh)Sﬁ(Qu QZ) = ¢(QL + tI, QZ) eXp(?:tpl)
(2.5) iexp(itpz)sb(ql, q.) = ¢(q,, q, + tI) exp(itp,)

exp(isp,) exp(itq;) = exp(ist) exp(itq,) exp(isp,) .
Using (2.5) we can simplify (2.4)

Cu(s, t) = exp(ist)d.(q: + sI, ¢.)¢.(a: + sI, ¢, + tI)
X 97—5«((111 g, + t1)g.(q,, q5) -

Now for s, t = 0 define

a —s<x,<0,0<2, <t
1 elsewhere.

’l/l‘a(S, t)(xly xz) =

Then for s, t = 0 we have

(2.6) Culs, —t) = exp(—1ist)ya(s, 1)(qy, ¢2) -

Part (c¢) follows immediately from (2.6) for the operators
Va8, £)(q,, ¢.) have different eigenvalues for different values of a.

Part (e) follows immediately as well.

To prove (b), let a, be the von Neumann algebra generated by
the spectral projections of P, and @,. We must show that the com-
mutant of a,, is (\[: A€ C}. From (2.6) it is clear that

(2.7) Vo8, 10y ¢) €A, 8,820
Since ¢,(q,, ¢») is the strong limit of (s, t)(q;, ¢,) as s, t — = we have
(2.8) $o(d, ¢2) €A, -

Using (2.8) and (2.2) we obtain

exp(itp)€ea, VieR
exp(itq,) exp(itp,)€a, VieER.

If X(E) denotes the characteristic function of a set K CR* then (2.7)
implies that

(2.9)

@10) X[~ 0] x [0, sD(@, ) = ——(uls, @, 0) — Do -

Let a £ b, ¢ £ d, then using (2.9) and (2.10) we have
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(2.11)  X([a, b] X [¢, dD)(gy, @=)
= exp(—1bp,) exp(—icq,) exp(—icp,)X([a — b, 0] x [0, d — c])
X (¢, 4z) exp(icq,) exp(icp,) exp(ibp,) € A, .
So a, must contain the maximal abelian von Neumann algebra m =
{n(q,, ¢.): ne L=(R?*}, since linear combinations of operators of the
form (2.11) are weakly dense in m. Now let Beal, (commutant of

a,) then Bem’ = m. So there is an ne L*(R?* such that B = n(q, q,).
Using (2.9) and the method employed in (2.11) we obtain

n(q, +sl, g, +tI) =n(q, q,) Vs, t.

This mean that n is a constant almost everywhere. That is B = \J
for some neC. This proves part (b).

For part (d) we first show that if f, g edom P, N dom @, with
either f or g vanishing in a neighborhood of (0, 0) then

(2'12) (Qafr Pag) - (-Paf; Qag) = —Z(f" g) .
To prove (2.12) we use (2.6) to write

(2.13) (exp(itQ.)f, exp(isP,)g)
= exp(—1ist)(exp(— 18P )v.(s, t)(q, @.)f, exp(—itQ.)g) .

If f vanishes in a neighborhood of (0, 0) then we can choose s and
t small enough so that (2.13) takes the form

(2.14) (exp(itQ.)f, exp(isP,)g)
= exp(—1st)(exp(—1isP,)f, exp(—1ilQ.)9) .

If f, g €dom P,Ndom @, we can differentiate both sides of (2.13) with
respect to s and £. The result is (2.12). A similar proof shows that
(2.12) holds when ¢ vanishes in a neighborhood of (0, 0) and f, g€
dom P, Ndom Q.. In particular (2.12) holds when fedom P,Q.N
dom Q,P, and g is C=, compactly supported and vanishes in a neigh-
borhood of the axes. In this case we can write (2.12) as

(215) (PaQotf - QaPaf + Zf; g) =0.
Since (2.15) must hold for all such g, a dense subspace of L’(R?),
part (d) is proven. O

The proof of Theorem 1 can be slightly modified to give a proof
of Theorem 2.

3. The pair (Py, Q7). Let H be the Hilbert space L*(R) and
% the Fourier transform .# :L*R)— L*R). The Schrodinger
1-system {p, ¢} is defined by the following strongly continuous unitary
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groups
{(exp(itq)f )(x) = exp(itx)f(x)

(exp(itp) f)(x) = flw + t) .

It is well known that the pair (p, q) satisfies (1.2), is irreducible and

FYF =p, FeF = —p.
Let @ = 127 and define

(3.1)

X = exp(®wg) , Y = exp(—wp)
P, = exp(—i0'X)p exp(iw—X)
Qr = exp(—10'Y)q exp(i®'Y) .

(3.2)

Fuglede [1] proves that both pairs, (X, Y) and (P Qy), satisfy
property (a) (of Theorem 1) and the commutation relations

3.3) (Xf, Y9) = (Yf, Xg9) f,9€edom X NdomY

(3.4) (Qzf, Prg) — (Prf, Qrg) = —i(f, 9) f, gedom PN domQp .
The pair (X, Y) is shown to be irreducible but the question of irre-
ducibility of (P, Q) is lef open.

THEOREM 3. The pair (Py, Qp) 18 irreducible.

Proof. We use the group commutator
C(s, t) = exp(itPy) exp(isQyr) exp(—1itPy) exp(—1isQz) .
To simplify C(s, t) we first show
(3.5) exp(itPy) = exp(th(t)X) exp(itp)
(3.6) exp(isQy) = exp(th(s)Y) exp(isq)

where h(t) = o' (e** — 1).
To prove (8.5) let fe L*(R) then for a.e. z in R.
(exp(it Pp) f)(2) = (exp(—iw™X) exp(itp) exp(i®~ X f)(x)

= exp(—iw~" exp(wx))(exp(tX)f)(x + t)
= exp(—iw~' exp(wx) + 1w exp(wx + wt))f(x + 1)
= exp(th(t) exp(wx)) f(xz + t)
= (exp(zh(¢)X) exp(itp) f)(x)

(3.6) follows by a similar calculation. Using (3.5) and (3.6) we can

simplify C(s, t) to

C(s, t) = exp(ist) exp(th(t)X) exp(th(s)Y) exp(—ih(t)X) exp(—ih(s)Y) .
Let . be the von Neumann algebra generated by P, and Qj.
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Letting s, ¢ — —c in exp(—1ist)C(s, t) we obtain
3.7 exp(—iwX)exp(—iw™Y)exp(iw~X) exp(ivw'Y)e . .
Since bounded Borel functions of P, are in .
(3.8) exp(iw* exp(—wPy))

= exp(—10w'X) exp(i®w™Y) exp(tw—X) e .7 .
Multiplying (3.7) and (3.8) we obtain

exp(—iw™'Y)e .7 .
So for all teR,
exp(itq) = exp(1®'Y) exp(itQy) exp(—iw'Y) € .7 .

Similarly exp(isp) € .o~ for all se R. Since the pair (p, ¢q) is irredu-
cible we see that (P, Q) is irreducible. O

We have been unable to decide whether the relations (3.3) and
(3.4) hold for the families {(X,, Y,):a #= 1} and {(P,, Q.): a # 1}
respectively.
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