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POLYNOMIAL NEAR-FIELDS?

YONG-SIAN So

It is well known that all finite fields can be obtained as
homomorphic images of polynomial rings. Hence it is natural
to raise the question, which near-fields arise as homomorphic
images of polynomial near-rings.

It is the purpose of this paper to give the surprising
answer: one gets no proper near-fields at all—in dramatic
contrast to ring and field theory. Another surprising result
is the fact that all near-fields contained in the near-rings of
polynomials are actually fields.

Homomorphic images are essentially factor structures. So we
take a commutative ring R with identity, from the near-ring R[x]
of all polynomials over R (or the near-ring RJ[x] of all polynomials
without constant term over R) and look for ideals I such that R[x]/I
becomes a near field. With this notation (and containing the one of
[1] and [2]) we get our main result:

THEOREM 1. If R[x]/I (or R x]/I) is a near-field then it is iso-
morphic to R/M (where M is a maximal ideal of R) and hence a
Jield.

The proof requires a series of lemmas as well as a number of
results on near-fields.
Our first reduction is the one of R[x] to R,[x].

LEMMA 1. If I is an ideal of (the mear-ring) R[x] such that
R[x]/I is a near-field, them there exists an ideal J of Ryx] with
Rlz]/I = Ry[x]/dJ.

Proof. Ryx] S I implies 2 €I, hence R[x] = I, a contradiction.
So we have R,[x] £ I and—since I must be maximal in order to get
a near-field—R,[x] + I = R[x]. By a version of the isomorphic theo-
rem (which is valid in our case) we get

R[z]/I = (R [x] + I)/I = R[x]/(I N R,[x])
and J:= RJx] N I will do the job.

REMARK 1. The converse of Lemma 1 does not hold: Take
Ji={a.2* + ax* + -+ a,x"/meN, n=2, a;c R}. Then R][z]/J =R
is a (near) field, but the near-ring R[x] is simple ([2] or [3], 7.89),
so there is no I <J R[x] with R[z]/I = R.
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We can therefore reduce our search to get suitable ideals of
R,[2] which yield near-field factors.

LEMMA 2. Let I R)x] =: N. Then Rj|x]/I is a near-field iff I
18 a maximal N-subgroup of N.

Proof. =: Suppose that N/I is a near-field. Then N/I is N/I-
simple by ([3], 8.3). Consider the canonical epimorphism h: N — N/I
with kernel I. If M is some N-subgroup strictly between I and N
then A(M) turns out to be a proper N/I-subgroup of N/I, which is a
contradiction. Hence I is a maximal N-subgroup of N.

«: Let I be a maximal N-subgroup of N and take % as above.
If M is a proper N/I-subgroup of N/I then h*(M) is an N-subgroup
of N strictly between I and N, which cannot happen. Hence N/I is
N/I-simple and again by ([3], 8.3) a near-field.

Due to the works of Clay-Doi [2], Brenner [1] and Straus [5] we
know quite a bit about maximal ideals of R[x]. These informations
can be used to find all ideals I of R[x] which are maximal R[x]-
subgroups of R[x] and which we call “strictly maximal” ones (from
now on).

First we need some

NOTATIONS.

(i) (@) :={ax*+ --- + a,x"/neN, n =2, a,€ R}.

(ii) If I Rjx]then I, := {a € R/some ax + a,x* + --- + a,x" € I}
I' .= {ae€Rlax e I}.

(iii) If M< R then Mx:= {mx/m e M}.

LEMMA 3. (i) (&) 1s an ideal of R fx] with R[x]/((«?)) = R.
(ii) I, and I' are ideals of R with I' = I,.

Proof. Straightforward.

LEMMA 4. Let I be a strictly maximal ideal of Rx] and h: R —
R/I' the canonical epimorphism. We define h' as follows: h': R [x] —
(B/I")[x]

a,x" + -+ + ax—> h(a,)x” + -+ + hla)x .

Then J:= h'(I) is a strictly maximal ideal in (R/I")[x] = h'(R[x])
and J' is the zero ideal in R/I'.

Proof. By ([4], 4.6), k' is a near-ring epimorphism and we get
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Rx)/I = (R [x])/WI) = (R/;)[x]/J. So J must be strictly maximal
in (R/I")[x], by arguments as in Lemma 2. Observe that (I')[z] = I.

Now suppose that »' € R/I' is in J'. Then 'z ¢ J = h'(]) and there
is some 7 € I with #'(7) = »'x. Leti =ax + --- + a,2*. Then A'(:) =
h(a)x + - -+ + h(a,)z” = r'x, whence —rx + a6 + --- + a,x"c Ker b’ =
(I")fz] < I for some re R with h(r) = +’. Hence rx must be in I,
so €I’ and consequently 7’ is the zero element of R/I’. This shows
that J' is the zero ideal of R/I'.

By using the second isomorphism theorem, we therefore can con-
fine our attention to strictly maximal ideals I with I’ = {0}. But
then the worst cases are behind of us:

LEMMA 5. Let I be a strictly maximal ideal in R[x] with I' =
{0}. Then R is an integral domain.

Proof. Let a,beR, a #0, b0 and ab =0. Then axobx =
abx = 0ecl. If bothaxe¢l, bx¢ Ithen (ax+ I)o(bx + 1) =abx+ I = 1I;
a contradiction to the fact that a near-field has no divisors of zero.
So we get axel or bxel, whence acl’ or bel’, a contradiction.
R is therefore an integral domain.

By ([3], 8.9), the characteristic of a near-field is either 0, a
prime # 2 or = 2. We treat these 3 cases separately, and start
with:

LEMMA 6. Let I be a strictly maximal ideal of R[x] with I' =
{0} and Char Rjx]/I = 0. Then there exists a maximal ideal M of R
with R[x]/I = R/M.

Proof. By Lemma 5, R is an integral domain. It is easy to see
that in our case Char R = Char R[z] = Char R[x]/I = 0, hence R is
infinite.

Case 1. ((¢*)) & 1. Since I, cannot be = R (otherwise I = R [x]),
I, is contained in a maximal ideal M of R. I = ((x?)) + Lx S ((«?) +
Mz which is a proper ideal of RJx]. But I is a strictly maximal ideal,
hence I = ((*)) + Mx and R,[z]/I= ({ax/ac R/M}, +, 0)=(R/M, +, -).

Case 2. ((x*)) & I. Since I is a strictly maximal ideal we get
I+ ((2®)) = RJx]. Then I, = R and we can select a polynomial ¢ =
b,x" 4+ -+ + bxelwithbd, = 0 and » minimal for being a polynomial
in I with nonzero coefficient of . If e R then ¢o(rx) — rxoiecl —
I=1 But io(ra) —rxei =0, ,(r" — r" Dz + -+ + b,(r" — +H)a* +
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b,(r* — r)x. Since R is an integral domain, hence embeddable into
a field, the set of all se R with s® = s has cardinality < ». Since
R is infinite, we can take r e R so that »" %= ». Then 7o0(rx) — rxoq
is a polynomial in I with nonzero coefficient of x and a degree < n — 1
which is a contradiction. So Case 2 cannot occur.

Hence we have proved our Theorem 1 in the case when
Char R [x]/I = 0. Now we consider the case of characteristic p = 2.

LEMMA 7. Let I be a strictly maximal ideal of Rx] with
Char R [xz]/I # 2. Then there exists a maximal ideal M of R with
I = Mx + ((«*), hence R,[x]/I = R/M.

Proof. First we show: z*cI. Since x¢l, —x¢l. If 2*¢l we
have: (@* + Do(—ax + 1) = —((@*+ Do(@+ 1) = —@+ 1) = —a*+ 1
by ([3], 8.10(b)). But (#* + I)o(—a + I) = a?o(—x) + I =2+ I. So
we have 2x*c¢ I. Since (p, 2) = 1 there are a,be Z with 1 =a-p +
b:2. x*=(a-p+b-2)x*= apx® + 2bx*c ] because px*cl as a result
of Char Rj[x]/I = p. This is contradiction, hence #*¢ I. Then we have
o = x?ox”c I for all ne N.

Now we show: z"e I for all ne N andn = 2. Letn = 2. Then
TPo(x™ + ) = g2 4+ 20 + 2™ %ec ], and we get 22 ‘el because
2 el for n = 1. As above, we have #***¢I. Hence we have: 27 [
for n = 2. And as a result of this we have ((x*)) < I and, similarly
to the proof of Lemma 6, we have I = Mx + ((«*)) where M is a
maximal ideal of R. Therefore R [x]/I = R/M.

So it remains the case that Char R[x]/I = 2, which—as usual—
causes the most trouble.

LEMMA 8. Let I be a strictly maximal ideal in RJx] with
Char R [x]/I = 2. Then (2R)[x] < I.

Proof. Since x + Ic R,[x]/I we have 2x + I = I. Hence 2x¢ I.
But for all fe R[x] 2xo f = 2fe I, hence (2R)[x] < I.

LEMMA 9. Let I be a strictly maximal ideal in Rjx] with
Char R,[x]/I = 2. Also, let h: R — R/2R be the canonical epimorphism
and b': Bx] — (R/2R)[x]: @, 2"+ - - - +a,2 — h(a,)x"+ - - - +h(a)x. Then
R [z]/I = (EB/2R),[«]/h'(I).

The proof is similar to the one of Lemma 4 and therefore omitted.
In view of this result, we only have to look at the case: Char R =
Char R,[x]/I = 2, R an integral domain and I' = {0}.
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We now treat the infinite case:

LEMMA 10. Let I be a strictly maximal ideal in Ryx] with
Char R = Char R[x]/I = 2, R an infinite integral domain and I' = {0}.
Then there exists a maximal ideal M of R with I = ((x*)) + M,
hence Rx]/I = R/M.

Proof. Suppose there is no maximal ideal M of R with I =
((«®)) + Mx. Then we get I, = R, otherwise I, would be in a maximal
ideal M, of R and I < ((a%)) + M.

Let U:={a, 2"+ --- +axelneN,a, +0}. Clearly U = {0},
since I, = R. Let m Dbe the minimum of the degrees of nonzero
polynomials in U. Since I’ = {0}, m is =2. Let ee R\{0, 1} + @&.
Letb, 2™+ ---+bxcUS I (ba™+ -+ +bx)o(ex) + e™xo(ba™+ - - -
+ b,2) = b,_,(e™ + e™)x™ ' + --- + b(e™ + e)x € I. Since m is minimal,
be™ +¢)=0. We get e +e=0, e '+ 1=0, because R is an
integral domain. But 1™'+1=0, so we get for all ec R\{0}
et +1=0.

So m — 2 = 1; consequently e™'!=¢e-e"?=1 and hence e¢™? is
the inverse of ¢ in R. R is then a field with ¢™* = 1 for all e € R\{0},
hence with infinitely many roots of unity, a contradiction.

So there is a maximal ideal M of R with I = ((«*)) + M.

In particular, if R is a field, we get I = ((x%).

We still have to look at the case: Char R = 2, R a finite integral
domain, I’ = {0}. But a finite integral domain is a field. So for our
R we have either R = Z, or R = GF(2") with n = 2.

First some preparations:

LEMMA 11. Let F be a field with Char F =2, |F| > 2. Let I
be a strictly maximal ideal in Flz]. If x™el then x™ el for
m + 1 = 4 where 1€ N.

Proof. o™+ 4 g™ = (x™ + x)* + 2* + «*” e l. Since |[F|> 2, it
is possible to choose ¢ witha # 0, a = 1. From (2™ + ax)’ + (ax)’c [
we get ax’™*! + ax™*e l. But awo (x** + a™*%) = ax®™* + ax™e L.
By adding of these two polynomials we get (a* + a)z™**€ I. Since
a*+ a # 0, we have z™*2c 1. So we have: g™, ™ g™ o™+, ... ¢ L.

But 2™ = g™ox?c I, we also have a*™+*el. 2™+ = (x™)ox’el,
so we have either x’c I or a™t' eI since Fi[x]/I is a near-field and
has no zero-divisor.

If x™t*e] we get: x™*t' e for all 1€ N.

If °c1 then a* + 2° = (@* + 2)° + «° + «°€ I. Hence then 2°¢ .
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So we have: 2* 2%, 2% --- €I, &, 2", 2% --- €.
Hence ™+ eI for m + 1 = 4, where 1€ N.

LeEMMA 12. Let I # Fi[x] be an ideal of F[x], when F is a field
of characteristic 2. If there is an n = 2, so that 2™ € I for all m = n,
then I < ((x%).

Proof. Suppose I £ ((«*). Then there is some f € I\((z*)). Without
loss of generality, we can assume f= 2 + a2 + -+ + a,_; 2" "

fown—-l — xn—l + a2(x‘n—1)2 _|_ P + a“—l(wn—l)n—l e I
2"t = fox"t 4 ay(a” ) + - + @, (") el

since the degrees of second, third, --- terms are = n. Therefore we
can reduce » and we get: z" % 2" ® ---,2*c¢l. But then z = f+
axt + -+ + a,_x*'el, a contradiction. Hence I < ((x%).

LEMMA 13. Let I be a maximal ideal in F[x], when F is a
field of characteristic 2 and |F'| > 2. If there is some ne N with
n =2, so that x™ eI for all m = n, then I = ((x?).

Proof. Use Lemma 12.

LEMMA 14. Let I be a strictly maximal ideal in Fx], when F
18 a field of characteristic 2 and |F| > 2. If there is an n € N with
n =2, x"€l, then I = ((a?)).

Proof. According to Lemma 11 we have: z™el for all m =
max (n, 4). Lemma 13 will do the rest of the job.

LEMMA 15. Let F be a field of characteristic 2 and I a strictly
maximal ideal of F|x]. Then there is an odd number t with
2+ - +axwel

Proof. Since I+ {0}, there is a ke N with 2* + --- + bxel,
otherwise our assertion is already proved.

(@4 - +bx+a)P+a*=@*+--- +bx)+ @+ .-+ bx)x +
@ + -+ +bx)x*el. Wegeta ' 4 --- +a®2 4+ ...e]. Forn=1,
4k + 1 is greater than 2k + 2 and so there is a polynomial of degree
4k + 1 (an odd number) in I.

LEMMA 16. Let F be a finite field of characteristic 2 and I a
strictly maximal ideal of F[x]. Then the near-field Fi[x]/I is finite.

Proof. We know from Lemma 15 that there is an odd number
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t with * + --- + axel.
We show: For all n = 6t there is some 2" + --- + bxel.

Foralll = 1, (2'+ - - +ax + 2" + (&**')* € I. Hence (x'*+")(a’+ - - -
+ a.x) + (@)@t + --- + bx)?e I, whence 2¥+* + ... 4 ¥ 4+ ... e L
Since (x'+---+ ax)® = 2% + --- € I, there are polynomials of following
degrees in I: 3t, 3t + 2, 3t -+ 4, ---. Since 3¢ is odd, we have: For all
odd numbers &k = 3¢, there is some normed polynomial of degree & in I.

@+ - +ax)f=a"+---el.
@+ Faw)=a"~+--- +execl.
(x2t+l 4ot . ex)® + (w2t+’)3eI.

Hence (2**)*@* + ---) + (@*+*)(x* + ---)*€ I, whence 2% 4 ... +
2%+t + ... el. Therefore there are also polynomials of following
degrees in I: 6¢t, 6t + 2, 6t + 4, - - -.

We get: For all & = 6t there exists some polynomial «* + ... +
bxel. Hence |Fz}/I| £ |F|” which is finite.

LEMMA 17. Let F be GF@"), n=2 and I a strictly maximal
ideal of Fjx]. Then I = ((x%).

Proof. Lemma 16 tells us that K := Fi[z]/I is a finite near-field.
By 8.34 of [3], all finite near-fields (except 7 exceptional cases of
orders 5% 117 77, 237 11% 29% 59?) are Dikson near-fields. Our K can-
not be exceptional, so it is a Dickson near-field. In this case, we
know from 3.3 of [6] that the center C(K):= {feK/fog =g f for
all g€ K} is closed with respect to addition.

Since, by the well-known rules how to calculate in GF2"), x + I
and 2*" + I belong to C(K), so does their sum z + 2 + I. So we
get @'+ +DNo@+1I)=(@""+ Dol +a+1). @)+
2t I = (@ )t L= ()" 4 (@) A e e e
I — x(z"b—l)z"‘ + 2%’;—12 xznk+(2"—1—k) + xz"b—l + I Hence Zi“:—lz wz"k+(2”__1_k) c I
But 2"t + @2 —1—k) =@ — Dk+@ -1 =2 " — 1)k + 1), so
SEgrgttonkn = SRR (gt = (3T aR o™ e [, Since K is a
near-field, either Y@ 2xftie JTor o™ 'el. If x**e I, we are through,
for we get I = ((x*)) by Lemma 14. So we may assume that
Skttt =" 4 . fate L

The multiplicative group of GF(2") is cyclic. Therefore there is
some ce€ GF(2") of order 2" — 1. We know: ¢ # 0, ¢c#=1. ¢ *'=1
and foralll <2 —1¢' == 1land foralll, j <2 — 1,1 j: ¢ + ¢ = 0.
Since ¢t + --- +ext = @+ .- +aDo(ex)e ], P+ -
+ ¢t = ¢ wo ("t + - +a?) e ], we get (¢ 4 YT -
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+ (@t + atel. Also ("' + ¢ )"t + o004 (¢ + At =
((62”—1 + 02”—2)x2n—2 + P + (02”—1+c2)w2) ° (cx) e I and (02”—1+c2”—2)c2”—2x2”—2+
oot (02"—1+02)c2"—2x2 — (62“—-2:1:) o ((62”—1+ c2”—-2)xz”—2 e (02"—1 + cz)xZ) el
Hence (¢ + ¢ )" + ¢ a?" = + - -+ + (' + ("2 + Da*e L
If we continue this procedure, we finally arrive at (¢~ + ¢¥)(¢*"~* +
¢ --- (¢ + ¢)x? e I where the coefficient of 22 0. So x’c [l and we
get I = ((«*)) again by Lemma 14.

Our last case is R = Z,. This case is rather complicated and so
the way is longer. Brenner has shown in [1] that there are only
two maximal ideals in ZJ[x]. One of them is T := the subgroup
generated by {1,  + o? 2%, « + &', ® + 2% %, x + o, © + 25 2, .-}
The other one is V, the subgroup generated by {1,z + 2% z + 2%,
z+ 2t ---}. Wedefine T, V, as follows: T,:=T N (Z,)x] and V,:=
VN {(Z,)lx]. T, and V, are easily shown to be ideals in (Z,),[x]. They
are even strictly maximal ideals as will be demonstrated in the fol-
lowing. Together with ((#%), there are just three strictly maximal
ideals in (Z,),[x].

LemMMA 18. Let I be a strictly maximal ideal in (Z,)[x] with
x*el, then I = ((x%).

Proof. Since a*e I, x* = x*ox* e I for all k€ N. Hence (a* + x)° +
x*€ I, whence 2°c€I. But 2° = 2*c2® so x*c I since (Z,),[x]/] has no
divisors of zero. Therefore ™ + x*+* + x*+° 4 &° = (2 + «°)° € I, from
which we get that «*+*c I for all ke N. Also, (x* + %) + x°e I gives
us z*+*el for all ke N. All 2* and z*+? = 202+ are also in I, so,
putting altogether, 2" e I for » = 2, which means I = ((x?)).

LEMMA 19. Let I be a strictly maximal ideal in (Z,)[x] with
x2*¢l, x*°el. Then I =T,

Proof. By Lemma 16 and the information in the proof of Lemma
17, we know (Z,)[x]/I is a finite Dickson near-field of characteristic
2, so it has order 2! (by 8.18 of [3]). Since «* + I == 0 + I, the order
kof #* + I'divides2* — 1. Sowehave 2™ + I = (2> + I)o(a? + I)o---o0
(@*+ I) =2+ Iand k/2* — 1. Hence k is odd, whence 3/2F + 1. Let
28 +1=:8j. For all seN, s=3, we get a*c(x* + 2**) eI whence
25 + g¥*2cl and %o (x® + 2% €l whence z**+ x**cl. Hence
Prrl=g =gt =¥ 0= ... =2 =2 (mod ). In particular, x =
*" = %' =g*and we get &" + wxcIforallme N, 3+/n, n=4. Also,
from @+ Do@+DN=a*+I=a2+1 we get x*+I=x+1 by
8.10.a of [3]. Hence all the additive generators of T, are in I, whence
T, < I. But T, is a subgroup of (Z,),[x] of order 2, hence T, = I.
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LEMMA 20. Let I be a strictly maximal ideal of (Z,)[x] with
xiel, x*°¢l, 2° +2°cl. Then I =V,

Proof. Since x* + 2*€ I, also (x* + 2°) o (2°* + x) € I, whence x*+! +
zt?e Iand (a* + 2% o (@* + 2*) € I, implying that «*+* + x***el. From
the first result we get 2° = 2%, 2" = 2%, 2° = 2° (mod I) and from the
second we derive 2* = 27, 2° = 2%, =% --- (mod I), so (since also
@+ a2)ox*=2a*+2°cl) we get a*=2"=2°= .- (modI). Since
x*¢ I, there is some ke N with 2** + xcI (same reason as in the
proof of Lemma 19). Hence 2 = #** = 2* (mod I). Also (&** + 2)oa*e ],
whence #* = ¢***" = #* (mod I). Since 2* + 2*c I, we get x* = 2°* (mod
I), and therefore r=a*=a*=2a'=---=2"= :-- (modI). Thus
for all ne N x* + x € I, hence V, =& I. But V, is a subgroup of index
2 in (Z,)[x], so V, = 1.

LEMMA 21. Let I be a strictly maximal ideal of (Z,)x]. Then
I is either = (&%) or =T, or =V,

Proof. Suppose I # ((x*), I+ T,, I #V, Applying Lemmas 18,
19 and 20 we have: x*¢l, 2°¢I, x* + 2°¢ 1. As in the proof of
Lemma 17, let C(K) be the center of K := (Z,)J[x]/I. Obviously
2+ IeCK), *+IeC(K), hence x + I +2* + I =2 + o* + I e C(K).
So @ +ax+ Do(@®*+I)= @+ I)o(@*+ x + I), hence 2* + 2* + [ =
O+ +at+a*el and o +2tel. Also, (&° + xHo(a® + 2) = 2 +
o+ a4+ 2+ a4+ x*el. Since (& + 2 oa® =2+ 2°cTand 2° + 2* e ],
we have 2°+2af¢l. But I=2"+2*+1=@@+ 2+ I)o(a® + I),
implying that either «° + x*e I or a2’ I, both being contradictions.

LEMMA 22. Let I be a strictly maximal ideal of (Z,)x]. Then
(Zo)2)/I = Z,.

Proof. Applying Lemma 21, we know I is either =((x?) or
=T, or =V, But [(Zz)o[m]: ((xz))] = [(Zz)o[x]: To] = [(Zz)o[x]: Vo] = 2.
So we have in all of these three cases: (Z,)[z]/] = Z,.

This completes the proof of Theorem 1.

As a byproduct, we have a complete knowledge of all strictly
maximal ideals in polynomial near-rings:

COROLLARY. Let I be a strictly maximal ideal of RJ[x]. Then
there exists a maximal ideal M of R with I = ((«*) + Mz, unless
R = Z,. In this case, I might as well be =T, or = V,.
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In particular, for a field R +# Z,, there is just one strictly maxi-
mal ideal, namely ((x?).

G. Pilz suggested to investigate near-fields which are contained
in R[x]. Since all near-fields with the exception of a trivial one ([3],
8.1—we exclude this one from our considerations) are zero-symmetrie,
we only need to search them in R,[x].

LeEMMA 28. Let R be an integral domain and F' a mear-field in
R,[x]. Then there is a subfield K of R such that F = {ax/a € K}.

Proof. Straightforward.

LEMMA 24. Let F be a near-field in Rjfx], 0 # f = a2 + --- +
axelF. Then a, a ---, a, € PR) (prim-radical of R) and a, is a
unit in R.

Proof. We use the following epimorphisms: k: R — R/M where
M is a prime ideal of R, h': R[x] — (R/M),[x]:

ax” + -+ + o0,x—— h(a,,,)x” + .-+ h(Ch)x .

In (R/M),x] we can apply Lemmas 2, 8 and get: 2(a,) = h(a;) = +--=
h(a,) = 0. So we have a,, ---, a, € B(R).
Since f # 0, a, cannot be = 0, otherwise f has no inverse in F.
Suppose a, were not a unit, so @, is in a maximal ideal M, of
R. Let h: R— R/M, and h': R[x] — (B/M,)),[x] be as above and we get
h(a,x® + --+ + ax) = h(a)x = 0, a contradiction to the fact that
W(F) = {ax/a € K} for some subfield K of h(R).

THEOREM 2. Let F be a mnear-field contained in Rjx], F,:=
{a,/some a,x” + --- + a,x€ F}. Then F = Fix.

Proof. Define h: F'— Fyx.
a,xr” + - + aor—— a2

h is surjective. We show it is injective, too. Let f, f,€ F with
fi=a2x*+ --- +axand f,=0,2"+ --- +ax. Thenf, —f,=--- +
(ay — b)x* + 0x € F. But then f; — f, = 0 by Lemma 24. Hence f, = f;
and & is 1 — 1.

It is easy to show that 2 is a near-ring homomorphism, so & is
a near-ring isomorphism.

ExampLES. Take R:= Z[t]/(t*+t*+1). Then K,:={0, 2}, K,:=
{0, z, tx, (&* + )z} and K,:= {0, z, &> + ¢ + D)a® + t2x, (> + ¢ + D> +
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(t* + 1)z} are examples of subnear-fields of RJx]. Note that K,
contains non-liear polynomials.

Application. Let P be a planar near-ring with identity which
is either contained in some R Jz] or a factor of R,x]. Then P is a
field and isomorphic to a subfield or a factorfield of R. This holds
because a planar near-ring with identity is accurately a near-field,
as can be easily seen.
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