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INVARIANT SUBSPACES OF NON-SELFADJOINT
CROSSED PRODUCTS

MICHAEL MCASEY

Let 2 be the von Neumann algebra crossed product deter-
mined by a maximal abelian self ad joint algebra L°°(X) and
an automorphism of L°°(X). The algebra 2 is generated by
a bilateral shift L§ and an abelian algebra WlL isomorphic
to L°°; the non-self ad joint subalgebra 2+ of 2 is defined
to be the weakly closed algebra generated by L§ and WlL.
The commutant of 2 is the algebra Dΐ, also a crossed pro-
duct. The invariant subspace structure of 2+ is investigated.
It is shown that full, pure invariant subspaces for 2+ are
unitarily equivalent by a unitary operator in ΪR if and only
if their associated projections are equivalent in WL.
Furthermore, a multiplicity function can be associated with
each invariant subspace. The algebra Σft contains a subal-
gebra ΐfl+ analogous to 2+. It is shown that subspaces invari-
ant for both algebras 2+ and ΐd+ can be parameterized in
terms of certain subsets of the cartesian product Z x X

1* Introduction* In their fundamental paper of 1936, Murray
and von Neumann used the algebraic idea of a crossed product to
exhibit special types of von Neumann algebras. The result of this
construction is a crossed product of an abelian von Neumann algebra
with a group of automorphisms of the algebra. This crossed
product is now commonly called a group-measure algebra. Today,
the study of crossed products in operator theory has become impor-
tant not only for the examples it yields but also for its contribution
to the general structure theory of operator algebras. For example,
they have been useful in unraveling the structure of type III von
Neumann algebras [11]. Indeed, Feldman and Moore [4] have
recently shown that it is likely that every von Neumann algebra
can be realized as a crossed product—perhaps of a complicated
nature.

In this paper we shall consider crossed products of the type
first considered by Murray and von Neumann [7]. We shall con-
centrate our attention on certain non-selfadjoint subalgebras of
their crossed products, subalgebras which we call non-selfadjoint
crossed products. These subalgebras stand in the same relation to
group-measure algebras as H°° (the space of boundary values of
bounded analytic functions on the unit disc) stands in relation to
L00 of the circle. Two specific representations of the non-selfadjoint
crossed products will be useful; these are defined in § 2 and are
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denoted by £+ and 9ΐ+. In addition some background is given and
results discussed which may be helpful in viewing the present paper
in its proper perspective. In § 3 we show that certain equivalence
classes of invariant subspaces of the algebra 8+ can be identified
with equivalence classes of projections. Furthermore, with each
class of invariant subspaces we associate an essentially unique
multiplicity function. In § 4 it is shown that subspaces invariant
under both S+ and 3ΐ+ have a particularly simple form. These
subspaces can be used to provide a perspicuous set of canonical
models for the S+-invariant subspaces in certain instances. After
an example in § 5, we conclude with remarks which relate the
algebra S+ to crossed products defined elsewhere in the literature.

2 Definitions and preliminaries. The construction of the
crossed product of a von Neumann algebra Sί with an automorphism
a can be found in many places in the literature (eg. [3, § I. 9.2],
[6, § 3]). We shall consider two specific representations of the
crossed product for the case that Sί is L°°(X), a maximal abelian
self ad joint algebra (m.a.s.a.) and a is given by a transformation
τ of X.

Let X be a σ-finite measure space with positive measure μ. All
such spaces are assumed to be standard Borel. Let τ be an inver-
tible measurable transformation and assume that the measures μ
and μoτ are mutually absolutely continuous; i.e., μ is quasi-invariant
under τ. Using the product of counting measure on the integers,
Z, and the measure μ on X, we may realize ZxX as a measure
space. The Lebesgue space L2(ZxX) is also a Hubert space with
inner product

(/, 9) = Σ \ fin, x)gΊ£~x)dμ(x) (/, g e L\Z x X)) .

When no confusion results, we shall often abbreviate L2(Z x X)
to L\

For any integer n, let Jn denote the Radon-Nikodym deriva-
tive Jn~dμoτ~n/dμ. We define the following operators on L2(ZxX):
for / in L\Z x X) and φ in L°°(X)9 let

(LJXn, x) = Jϊ\x)f{n - 1, τ^x)

(Rδf)(n, x) = f(n - 1, x)

(Lφf)(n, x) = φ(x)f(n, x)

(R9f)(n, x) = φ(τ~nx)f(n, x) ,

and

(Jf)(n, x) = Jil2(x)f(-n, τ~*x) .
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All of the operators are bounded, Lδ and Rδ are unitary oper-
ators, and J is an anti-unitary operator (i.e., (Jff Jg) = (g, /)) (cf.
[8, Lemma 3.6.1]). Let WlL (respectively WlB) denote the algebra
generated by {Lφ\φeL°°(X)} (resp. {Rψ\φeL°°(X)}). The left (resp.
right) von Neumann algebra crossed product of L°°(X) with (the
automorphism implemented by) τ is defined to be the von Neumann
algebra 2 (resp. 91) generated by ΈlL and Lδ (resp. SK̂  and Rδ). In
this paper we shall be concerned with particular non-selfadjoint
subalgebras of 2 and 91 of the type first considered by Arveson [1].
Define the left (resp. right) non-selfadjoint crossed product to be
the weakly closed algebra 2+ (resp. 91+) generated by WL and Lδ

(resp. WlB and Rδ). Note in particular that while Lδ is in both 2
and S+, L* lies in 2 but not in S+.

It is well known that 2\ the commutant of 8, equals 31 and
also that 31' = 8 (cf. § 3.6 of [8]). The operator / is an involution
on U and has the property that J2J = 3t. As a consequence of
this last equation we will prove theorems for the left-algebra only
and leave the corresponding theorems about 31 to the reader.

Although WlL is abelian, 8 is not abelian since Lδ does not com-
mute with SKL. We do have, however, the following vestige of
commutativity: LδLφ = Lφoτ~iLδ. Writing this equation as LδLφLf =
Lφoτ~i shows that the unitary operator Lδ normalizes $JlL; i.e.,
LδyJlLLf = $JlL. Another consequence of this observation is that we
may realize 8 (resp. 2+) as the weak closure of the set of operators
of the form ΣS=-* LΨM ( r e s P Σjt=o LΨnL^). The proofs of these
statements and the corresponding statements for the algebra 3ΐ are
elementary computations and are omitted.

In this paper we concentrate on the invariant subspaces for
the algebras 8+ and 3t+. To place our results in perspective we
note that the algebra 8+ can be constructed by using algebras %JlL

which are not isomorphic to L°°(X). For example in case ΈlL is
isomorphic to a factor (satisfying certain technical hypotheses), the
invariant subspaces for 2+ and 31+ have been completely classified
in our paper written with Muhly and Saito and have a particularly
elegant form. Theorem 3.3 in [6] asserts that the (pure) invariant
subspaces for 2+ are parameterized in essentially the same way as
the Beurling-Lax-Halmos theorem characterizes the invariant sub-
spaces of the shift. We shall show that the algebras 2+ for which
WlL is a m.a.s.a. as considered here produce a very different non-
selfadjoint algebra than the one defined in [6]; one striking differ-
ence is that the analogue of Beurling's theorem fails. Nevertheless,
the analysis in both cases is based on the fact that Lδ is a bilateral
shift.

The first step in our attack is to show that particular unitary
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equivalence classes of (pure) invariant subspaces of 2+ can be
identified with equivalence classes of projections in WL. This obser-
vation "reduces" the problem to investigating these latter equivalence
classes. It should be noted that this step is motivated by the
Beurling-Lax-Halmos theorem, but does not solve the problem in a
concrete fashion. It develops that it is natural to make a separate
analysis of the subspaces which are invariant under both 2+ and
9ϊ+. (The weakly closed algebra generated by 2+ and 3ΐ+ is denoted
by 8+V 31+.) In case τ is an ergodic but not a periodic transforma-
tion on X, the subspaces invariant under 8+ V 9ΐ+ can be parameter-
ized quite nicely by certain subsets of Z x X. For the case that
τ is periodic, not every 2+ V 3i+-invariant subspace is determined
by a subset of Z x X (cf. § 5) but those that are sufficiently
numerous that the analysis may proceed with them alone. The next
task is to determine when two 2+ V 9t+-invariant subspaces are
unitarily equivalent by a unitary in 3t, the commutant of 2. To do
this we associate with each 8+-invariant subspace a "multiplicity
function" which provides a connection between an invariant sub-
space and its corresponding subset in Z x X. It will be shown that
two invariant subspaces are unitarily equivalent by a unitary
operator in & if and only if the associated multiplicity functions
are identical.

We conclude this section by recording terminology used for
subspaces of ZΛ A (closed) subspace ^/Z of L\Z x X) is: left-
invariant (or 2+-invariant) if 2+^fξ^^//€\ left-reducing if 2^/f £
Λ€\ left-pure if ^ is left-invariant and contains no (nonzero) left-
reducing subspace; and left-full if the smallest left-reducing subspace
containing ^ is L2. A subspace ^ff is said to be right-invariant
(or 3i+-invariant) in case 3t+^^ Q ^f. The definitions of the other
"right-" terms are similar. We say a subspace is left-right-invari-
ant or two-sided invariant or 2+ V $t+-invariant in case it is invari-
ant for both 2+ and 31+ (and hence for the algebra 2+ V 3ΐ+).

3* Equivalence classes of left-invariant subspaces* The major
theorem of this section shows that the equivalence classes of invar-
iant subspaces for the algebra 2+ can be identified with certain
equivalence classes of projections. Moreover, each such equivalence
class can be identified in terms of a multiplicity function. The
following proposition shows that the analysis of the invariant
subspace structure of 2+ may be reduced, in part, to known results
about the invariant subspaces of Lδ. The proposition can be found
in [6].

PROPOSITION 3.1. Let ^J€ be a left-invariant sub space in
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L\Z x X). Then
(1) ^£ reduces ΊίlL\
(2) Λ€ reduces 2 if and only if ^/ί reduces Lδ;
(3) ^ is pure if and only if Π α o i ? ^ = {0}; and
(4) Λ is full if and only if V\<LM^ = L\Z x X).

Recall that a subspace ^t is said to be wandering for a unitary
operator U in case Um^f l W*^£ for any two distinct integers w
and m. The following elementary lemma about £+-invariant sub-
spaces will be useful in the sequel. An analogous statement is
valid for the algebra 3ΐ+.

LEMMA 3.2. If ^/ί is an 2+-invariant subspace then ^~ = %

is a wandering subspace. Moreover, the projection P^ onto
lies in WL.

Proof. Since Lδ is a unitary operator, the first statement is
immediate. To show that the projection P^ is in WL, we need to
use the fact that Lδ normalizes ΈfiL. Observe first that since the
subspace ^// is invariant for the algebra S+, it reduces 3KL by the
preceding proposition. In addition, Lδ^ is invariant under -$JlL since
for φ in L°°(X)9 LψLδ^£ — Lδ(L*LφLδ)^ = LδLψaτ^ζ=Lδ^€. Thus
Lδ^£ and, of course, {Lδ^£)L reduce ^ L . Hence
reduces ΈlL and so Pjr lies in WL.

Let ^ be any left-reducing subspace. Then ^ is invariant
(and hence reducing) for the full von Neumann algebra S and so
the projection P^ onto ^ lies in £' = 3ΐ. Thus any reducing sub-
space for 2+ is simply the range of a projection in 3ΐ. It is for
this reason and because of the following well known result that
we shall be concerned mainly with the pure invariant subspaces of £+.

PROPOSITION 3.3. Let ^£ be an 2+-invariant subspace. Then
= ^ ^ 0 ^Sι where ^Iζ is a left-reducing subspace and ^ ^ is

a left-pure subspace.

Proof Set ^ = Γ U o U ^ and ^ = y / 0 X Since Lδ

normalizes WlL, ML leaves L*^ invariant for all n. Hence WlL

leaves ^£[ = Π ô Σ'?*^' invariant. Since ^ ^ reduces Lδ, ̂ £x reduces
8+ by Proposition 3.1. Since 33^ leaves ^ S ί ~ ^ Q ^ ι invariant
and since Lδ\^£% is pure, ^f^ is a left-pure invariant subspace by
Proposition 3.1 again.

The next objective is to identify the relevant equivalence classes
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of certain invariant subspaces for the algebra £+. Let P and Q be
projections in a von Neumann algebra 5L We say P is equivalent
to Q in Sί (or relative to Sί) in case there is a partial isometry F
in 31 such that F * F = P and F F * = Q. This relationship is denoted
by P ~ Q. There is also a pre-order on the projections with respect
to a von Neumann algebra Sί. A projection P is dominated by a
projection Q m ?ί (P ^ Q in Sί) in case there is a projection £7 in Sΐ
such that P ~ E in SΆ and E <L Q.

We continue our preparatory remarks by indicating several
different ways to view the Hubert space and the algebras with
which we shall be concerned. First note that L\Z x X) may be
identified with the Hubert space direct sum of a countable number
of copies of L\X), Σ-co@L2(X). Dixmier [3, pp. 23-24] shows how
we may identify this space as the Hubert space tensor product
s\Z) (x)L2(X). In addition, Dixmier (p. 153) also shows how we

S Θ
έ%f (x)dx

X

where 3ίf{x) is simply /\Z) for each x; we shall write this as

SΘ
s\Z)dx. In a similar way we may identify the algebra WlL with

X

the von Neumann algebra tensor product C^iz) (x) L°°(X) where
C^2(z) denotes the algebra of scalar multiples of the identity acting
on the space s\Z) and L°°(X) is, of course, the algebra of multipli-
cation operators on L2(X). This identification maps the operator
Lφ in WL to the operator I ® Mφ where Mψ is the multiplication
operator determined by φ in L°°(X) acting on L\X). From this
we are able to identify the commutant of $JlL: fΰl'L = (C^z) (g) L°°(X))' =
CΆE) Θ L-(Xy = Se{/\Z)) ® L°°(X), where J^V2(Z)) is the full
algebra of operators on /2(Z). Finally we may identify this last

Se
J^{/\Z))d%.

X

The last new concept we shall need is that of a multiplicity
function for a subspace. Let ^£ be a left-invariant subspace with
wandering subspace ^ — ̂ £ QLt^#. From Lemma 3.2, we know
that the projection P-. onto the space Jf lies in WL. By the

re
preceding discussion we may write P~ = I P(x)dx where P(x) is a
projection in £f(s\Z)) for almost all x. The multiplicity function
of the subspace ^f is the function m defined by the equation

m{x) = dimension of range of P(x) — rank P(x) .

This notion of multiplicity will allow us to analyze completely the
2+ V 3ΐ+-invariant subspaces in several concrete situations.

In the following two theorems, we will be concerned with the
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algebra 8+ and so the terms "invariant", "pure", "full", etc. are
all assumed to be "left-invariant", etc.

THEOREM 3.4. For i = 1, 2 let ^ C be a pure invariant subspace
for the algebra £+. Let «̂ 7 = ̂ Q ^ ^ be the associated wander-
ing subspace with corresponding projection P^i and multiplicity
function m*. The following statements are equivalent.

(1) P^t = RVP X/2R* for a partial isometry Rv in 3t, so that

(2) The multiplicity function for ^t2 dominates the multipli-
city function for ^ x almost everywhere; i.e., mx(x) ^ m2(x) (a.e.);
and

(3) Pjr^P^ in M'L.

Proof. We first prove that the first statement implies the

S Θ
£f(/\Z))dx and

S x
v{x)dx, where v(x) is a partial isometry

X

(a.e.) in £f(s\Z)). In addition, since P_. is in WL, we may write

Pi(x)dx where Pt(x) is a projection (a.e.). Now observe
that sincXe P/χ - RVP^2R: we have P r . 1 = P^ 1 -L d P^ 1 L a = JB,P^ 2B?-
LδRvP^β*Lf - Λ.(P^8 - LδP^2Lt)Rΐ - RυP^Rΐ. Thus

(a.e.). Since the multiplicity function m£(x) of ^ < at the point x
is, by definition, the dimension of the range of Pt(x) we have (a.e.)

mt(x) = rank PL(x) = rank v(x)P2(x)v*(x) ̂  rank P2(x) = m2(x) .

To show that the second statement implies the third, we will
assume that X is a σ-eompact separable metric space. Since we
are already assuming that our measure spaces are standard Borel
spaces, this is really no restriction at all. Let Bx denote the unit
ball of operators on /\Z) equipped with the weak operator topology.
The weak topology on any bounded weakly closed set of operators
is the topology of a complete separable metric space [9, p. 38]. Let
T^ denote the set of partial isometries on /\Z) and let °Γ have the
Borel structure induced by the weak operator topology. Recall (cf.
[5]) that T = {V\ VeBlf V= VV*V}. It follows as a corollary to
Lemma 9.2 of [12] that T is a Borel subset of Bx.

Let E = {(a?, v) e l x B,\v e T, vP2(x)v* = P^x)}. Then E is a
Borel (hence analytic) subset of X xJBx. Furthermore {xeX\(x, B^f]
E Φ φ) is almost all of X due to the hypothesis that the multiplicity
functions satisfy mλ(x) ^ m2(x) (a.e.). Hence by von Neumann's
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principle of measurable choice [9, p. 35], there exists a null set N
in X and a Borel function v\X\N-^B1 such that (x, v(x)) e E for

almost all x. Let V= \®v(x)dx. Then VPJΓ2V* = PJΓl. Moreover V

is in WL and so P^V is "also in SKI. In addition {VP^2){VP^2T =
VP^V* = P^ and (FP^2)*(FP^2) = P^V^VP^^ P^. Thus FP^ 2

is a partial isometry in 3K'L with final space ^[ and initial space
contained in «^v Hence P j r i ^ P^-2 in 3W'L.

To demonstrate the remaining implication suppose W is a partial
isometry in WL with the property that WW* = P^ and W*W ^
Pjr^ We may write L\Z x X) = ^ t Θ ^ t where <%t = Σ?=-oo θ
L J ^ and ^ ? = .^ t 1 . The elements in ^ are sums Σ?=-ooi>X
where β . e ^ and Σ ϊ — - il^Xll2 = Σ?=-co | | e j | 2 < oo. Define F on

by the formula

Extend V to all of IS by defining F ( ^ ) = 0. Observe that V is
bounded because We^eJ^ and || F(Σ-^X)II2 = Σ II Wen | |2^Σ lkll2 =

| |Σ-kXj | 2 I n fac^ once we show V commutes with Lδ9 the same
computation shows that V is a partial isometry with initial space
equal to Σ?=-~£J(W*TF«^) and final space equal to Σ?=-oo L*^.
We now show that F commutes with S.

And so V commutes with L3; finally, let LΨ be in

Hence V is in S' which equals 3ΐ; to indicate this we write V = Bv.
Next observe that WP^-2W* = P ^ . To see this consider the partial
isometry W= WW*W. By hypothesis, W*W ^ P^-2 and so we
have WP^W* = WW*WP^W* = WW*WW* = P^. Using this
fact we have
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RVP β* = RV Σ up^Lrm

= ΣURvP^R*vLf

Σ T n

o

Using the elementary properties of projections and partial isometries,
it follows that ^ϋ ~ Rv^2. This completes the proof.

The following theorem is actually a corollary to the proof of
Theorem 3.4. It relates the unitary equivalence classes of left-
invariant subspaces to equivalence classes of projections in WL. It
also shows that for each such equivalence class there is an essentially
unique multiplicity function.

THEOREM 3.5. For i = 1, 2, let ^ , ^7, P^., and mf be as in

Theorem 3.4. Assume, in addition, that ^y/^ is a full subspace.
The following statements are equivalent.

(1) ^ x = Ru^f2 for a unitary operator Ru in 9ΐ;
( 2 ) m^x) = m2(x) (a.e.);
( 3) P ^ ~ P^2 in WL; and
( 4 ) The algebras 3JlL \ ^[ and 3KL | j ^ are unitarily equivalent

and the equivalence is implemented by a unitary operator in WL.

Proof. The proof of the equivalence of the first three state-
ments is similar to (and, in fact, easier than) that in 3.4. It should
be noted that in case Ru is unitary, the statements ^£[ = R%^€2

and P^χ — RuP^2Rt are equivalent. To show that the fourth asser-
tion is equivalent to the other three we shall show that statement
(1) implies (4) and then show that (4) implies (3).

Using the fact that Ru is a unitary operator the following com-
putation shows that ^=RU^: ^ Γ = ^ C θ Lδ^£l=Ru^^2 Q LδRu^€2=
Ru^ίθ RuLδ^f2=-Ru(^f2θ Lδ^f2)=Ru^Γz'. Clearly then the restric-
tion Lψ\^[ equals RuLφ\J^Rΐ for each Lψ in WlL and the result
follows.

For the final implication, let U be a unitary operator in WL

such that mL\J^= UmL\J^ϋ*. Then J7J^ = ^ and P^JJ is a
partial isometry in WL with initial space J?l and final space J?\.
Hence P^x and P^ 2 are equivalent projections in WL.

The following example shows that there exist full pure S+-
invariant subspaces that are not unitarily equivalent by a unitary
in 31. Because of the existence of such subspaces, it is impossible
to represent all S+-invariant subspaces in the form Rvs\Z+, L\X))
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as in the generalization of Beurling's theorem in [6].

EXAMPLE 3.6. Let X be the 3 point space: X = {xQ, xl9 x2). We
shall treat X as a measure space with counting measure. The
transformation τ will be the cyclic permutation of X defined by
τ(xt) = xi+1(i = 0, 1), τ(x2) = &0 We shall write the Hubert space
L\Z x X) as /2(Z x X) since everything in sight is discrete. Because
τ is measure preserving, the Radon-Nikodym derivative Jn is no
longer necessary. For example, (Lδf)(k, x) = f(k — 1, τ"1^), for / in
/ 2(Zx X). If C g Z x J , </2(C) will denote the subspace of /\ZxX)
consisting of those functions / such that f(n9 x) = 0 for (%, x) £ C.
Finally recall that Z+ is the set of nonnegative integers.

To construct subspaces that are not unitarily equivalent in 31,
let B = (Z+ x X)\{(0, ô)} and let ^ = /2(Z+ x X) and ^£2 = /\B).
Clearly ^ x and ^y£2 are 8+-invariant subspaces and one can easily
check that they are both pure and full. Finally, it is not difficult
to show that m19 the multiplicity function for the subspace ^*C, is
the function m^Xt) = 1, i = 0, 1, 2. However the second subspace
has multiplicity function m2 with values m2(x0) = 0, m2(x1) = 2, m2(x2) —
1. By Theorem 3.5, there is no unitary operator Ru in 91 such that

4* Two-sided invariant subspaces* Following the motivation
provided by Beurling's theorem, the next objective is to use the
information from Theorem 3.5 to obtain a complete set of para-
meters for labeling the invariant subspaces. At this level of gener-
ality this is a very difficult problem. The next theorem shows that
when the transformation τ is also assumed to be ergodic and freely
acting, the two-sided invariant subspaces are parameterized very
conveniently in terms of certain subsets of Z x X.

In this section we shall assume that the transformation τ
generates an infinite group, thus excluding periodic transformations.
We shall also assume that both τ and τ~ι are ergodic transforma-
tions so that if τ{E) £ E and τ~\E) £ E for some measurable set
E in X then either E or its complement X\E is a set of measure
zero. This is equivalent to the assumption that the group generated
by T is an ergodic group [7, p. 195]. It should be noted [1, p. 596]
that ergodicity implies that the group generated by τ is freely
acting in the sense that no (nonzero) power of τ is the identity on
any piece of X of positive measure. The formal definition is that
for every integer n Φ 0 and every measurable set E of positive
measure, there exists a measurable subset E0Q E such that τn(E0) Π
Eo = φ and μ(E0) > 0. It is well known that 8 and 9ΐ are factors
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when τ is ergodic (and freely acting) [8].
We shall need the following notation. If T is any bounded

linear operator on L\Z x X), we can decompose T into an infinite
(operator) matrix [Tnk] where Tnk is defined by

(Tf)(n, x) = ( Σ Tnkf(k, ) W

each Tnk is a bounded operator on L\X). For example, if we let
/ denote the identity operator on L2(X), then the operator Rδ has
as its associated matrix

ϊ o
1 I

where the string of identity

operators is on the first subdiagonal. We shall let 2ft denote the
weakly closed algebra WlL V WlR generated by 2ftL and %RR. In the
description of the invariant subspaces for the algebra 2+ V 3t+, we
shall need to know the form of the operators in the commutant
of 2ft. This form has been computed by Singer in [10] under the
assumption that X is a finite measure space and τ is measure
preserving. Elementary modifications of his work show that the
following results are valid in our setting as well.

PROPOSITION 4.1 (cf. [10, Lemma 2.4]). // T is an operator in
3ft', the commutant of 2ft, with associated matrix [Tiά\, then

ιφp i — 3 where φά e L°°{X) ,

0, i Φ j .

COROLLARY 4.2 (cf. [10, Corollary 2.4]). The algebra 2ft = 2ft̂ V
2ft R is a maximal abelian self ad joint algebra in £f(Jj\Z x X)),
the bounded operators on ZΛ

The theorem we are about to state shows that there is a one-
to-one correspondence between two-sided invariant subspaces and
measurable sets in Z x X which are invariant for two very simple
maps on Z x X. These maps, λ and p, are defined as follows:

X(n, x) = (n + 1, τx)

and



468 MICHAEL MCASEY

p(n, x) = (n + 1, x)

where, recall, τ is the invertible ergodic measurable transformation
on the space X with quasi-invariant measure μ. Although we shall
state Theorem 4.3 with the assumption that τ has no wandering
set, this condition is not necessary. In fact if τ has a wandering
set then the σ-algebra for the measure space X must be atomic
and X then consists of a countable number of atoms. The space
L2(Z x X) becomes essentially /2(Z x Z) and the theorem can be
proved in this case also.

THEOREM 4.3. Let τ he as described at the beginning of this
section and assume also that τ has no wandering sets. The subspace
^/Z is invariant for S+V3l+ if and only if ^/f = L2(B) for some
subset B of Z x X which is invariant for both λ and p.

Proof. Observe that the theorem is trivial in case Λ% =
L\Z x X) or ^€ = {0}. Therefore we shall assume ^ is a non-
trivial subspace and produce the set B. The first and most impor-
tant step in this portion of the proof is to show that the subspace
^ is right-pure. Using the right-handed version of Proposition
3.3, we may write ^ — . ^ φ ^ ^ where ^ C is right-reducing and
^/^ is right-pure. Since ^ = Π n i o ί i ^ > it is clear that ^fίx is
invariant under S+V31+. We show that ^ g is the zero subspace
and hence ^// — ̂ ^ is right-pure. Since ^ x is right-reducing,
P ^ is in 3T = 2. Since ^ is S+-invariant LδP^χL% ^ P//χ. If
equality holds, then P^ί commutes with Lδ and hence P.,/x is m

31' Π £' = (31VS)' = {CI}, the scalar multiples of the identity. Since

tsfZi is not all of L2(Z x X) by hypothesis, ^-£[ must be the zero
subspace.

Before considering the case that LδP/flLf S P^l9 we show that
P^fl = LlE for some indicator function 1̂  on X. Since ^€x is 2+ V
3ΐ+-invariant, P^χ is in WL Π WR = W, by Proposition 3.1. By
Proposition 4.1, P ^ has a matrix representation [Pi5\ where P i 5 = 0
for i Φ j and Pu is multiplication by an L°°-function for each j .
Since P ^ is a projection, it follows that P3j is multiplication by an
indicator function 1E. on X Thus (P^J){n, x) = lE%(x)f{n, x) for /
in I/2. But since ^/^ reduces 3ί, P^ί commutes with Rδ. Hence for
any / in U and integers n and m, l^w(ίc)/(w—m, x) = (P^1R?f)(n, x) =
{R™P^J){n, x) = l̂ Λ_TO(cc)/(w — m, x) (a.e.). From this it follows
that En = J^m for all % and m (up to a null set) and so P ^ = L1/;

with E = En.
Now consider the case that LδP^Jj^ S P ^ Γ We have Lly, =

P //χ > LδPriL* = LJj1/2Lΐ = Ll£..T-i = Llr(Jsr). Thus m(E\τ(E)) > 0.
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But E\τ(E) is a wandering subset (of positive measure) contra-
dicting our hypothesis. So we conclude that ^ί = {0} and ^ is
right-pure.

Let J?" = ^ Q Rδ^£ be the (right) wandering subspace for
Rδ and let P#. be the projection onto J^. The right-handed version
of Lemma 3.2 shows that Pjr is in WR. Since ^ and Έίb%Λ? are
both 2+-invariant (and hence reduce WlL by 3.1), ^ ^ ^ n ί β ^ ) 1

reduces %JlL so that P^ is in SKI. Thus P^ lies in 2ft'. By Proposi-
tion 4.1 and the remarks in the preceding paragraphs, there exists
a sequence of sets {En} in X such that (P^-f)(n, x) = lEn(x)f(n, x)
(a.e.) for / in L\

We now show that Λ€ = L2(J5) where 5 = U?=-oo ^ x •#» with
Z(n) equal to the set {n, n + 1, n + 2, •}. Clearly J ^ = Σ~=-°° θ
L\{n} x JEJ. This is a direct sum since ({n} x j&j Π ({m} x 2?J =
Φ, n Φ m. Since ^ ^ is a pure subspace, we have

n) x

Note that B is clearly invariant for p. To see that JB is invariant
for λ, let (n, x) be in JB. Observe that x(n, x)eB if there is an
element in the subspace ^ whose support contains X(n, x). Let /
be a function in ^ whose support contains (n, x). Then Lδf is in
^/έ and (Lδf)(X(n, x)) - (LJ)(n + 1, τx) - Jϊ\τx)f{n, x) Φ 0 (a.e.)
since J^ is nonzero (a.e.).

To complete the proof, l e t ^ f = L2(i3) for some set BQZ x X
invariant for λ and ,0. We need to show that supp Tf, the support
of Tf, is contained in B for any T in S+V3ΐ+ and / in L\B). This
is clear for T in 20̂  so we need only show that the supports of
Lδf and Rδf are contained in B. Suppose (n, x) is an element of
the support of Lδf so that 0 Φ (Lδf)(n, x) = Ji'\x)f(n — 1, τ^x) =
Jϊ\x)f{χ-\ny x)). Thus f(X-\n, x)) Φ 0 so that λ-χ(^, a?) is in J5.
But this implies (τι, $) is in 5 by invariance of B for the map λ.
Similarly, the support of Rδf is contained in J5.

REMARK 4.1. A nearly identical "left-hand" proof can be con-
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structed by showing that ^£ is left-pure in case τ has no wander-
ing sets. The same proof allows us to obtain the pure invariant
subspaces for the algebras 9ΐ+ V $JlL and S+ V SK̂ . These subspaces
are of the form L\B) where B is ^-invariant in the case of the
algebra 3ΐ+ V SJiL and λ-invariant in the other case.

(2) In the proof of Theorem 4.3 we produced a sequence of sets
{£r

Λ}̂
)

=_00. Using the definition of Rδ and the fact that the subspace
&~ is wandering for Rδ it follows that the sets {En} are pairwise
disjoint (up to a null set). In case the union \JneZE» is almost
all of X, the subspace in question is not only right-pure but also
right-full. This is a consequence of Proposition 3.1.

(3) It can also be shown as a consequence of ergodicity that
when X is a space with a finite invariant measure, the sequence
{En} forms a partition of X. Thus two-sided invariant subspaces in
this case are both full and pure. In addition, under these hypo-
theses on X, an alternate and illuminating proof of this last fact
can be given.

PROPOSITION 4.5. If μ is a finite invariant measure on X,
then any nontrivial S+ V $ϊ+-ίnva,riant subspace is both (left) full
and pure.

Proof. Observe first that under the current assumptions on μ
and r, the algebras 8 and 9ΐ are finite factors. Decompose ^<£ into
^£i®^C as in Proposition 3.3. To show ^ is pure we need to
show κ^£1 = {0}. Let P be the projection onto ^fx and observe that
P is in £' since ^ C is left-reducing.

We assert also that P is in S. To prove this we show Pe
St'(=8). Clearly P commutes with 3KΛ and so we need only show
that P commutes with Rδ. Note that RδPRf is the projection onto
the subspace ΐft+^H = 3t+PL2. By the right-invariance of ^ and
since 3t+ £ £', ΐfϊ+PL2 £ PL2. Hence the projection RδPRf is domi-
nated by P. But RδPRf and P are equivalent projections in 91.
(In fact, if we let U = RδP, then U is a partial isometry in 31,
UU* = RδPRf, and U*U = P.) Since 31 is a finite von Neumann
algebra, it follows that RδPRt = P. This shows that P commutes
with 31 and hence lies in 8. Thus P is in S f] £', the center of the
algebra S. Since 8 is a factor, P must be either the zero operator
or the identity. Since ^ is not L2, P Φ I and so P = 0. Hence
^€γ is the zero subspace.

To prove Λ€ is full, let ^4^ = ynύQL%^4€. A proof nearly
identical to the one above shows that the projection onto Λ" lies
in the center of S. Since ,yί^ Φ {0}, we must have ,,A^ = L\ZxX)
and hence ^ # is full.
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5* An example* In this section an example will be given to
show how Theorem 4.3 can fail when the transformation τ on X is
periodic. For this example let X be the space consisting of n points
{x0, xl9 , a?ft_J for n ^ 2. Just as in Example 3.6 where n = 3,
let τ be the permutation of X defined by τ(xt) = xi+1(i Φ n — 1) and
τ(xn~i) — %o- Observe that since τ is periodic we have

(L?/)(fc, x) - f(k - n, τ-*x) = f(k - n, a) = (Λ?/)(fc, a)

for / in /2(Z x X), so that L? = J2J. In particular LS is in the
center of 2 (and 91) and hence 8 and 91 are not factors as in the
previous section.

To show that Theorem 4.3 fails in this situation, we shall con-
struct a subspace Λ€ contained in /\Z x X) such that Λ £ is
invariant for the algebra S+V9l+ but ^ is not of the form s\B)
for any subset B oi Z x X. (Observe that the other half of 4.3 is
always valid. Namely, if B is invariant under the transformations
λ and p, then s\B) is S+ V9ΐ+-invariant.)

Let Θ be a finite Blaschke product with zeros {alf , ak} in
the punctured unit disk (i.e., 0 < \at\ < 1, i — 1, 2, ••-,&); thus θ
has the form θ{z) - Π U (|α.l/α) («• - «)/(l - ^ ) Let Lu = ί(Lj)
be the unitary operator defined by θ and the operator Lj via the
functional calculus. Let Σ*U ̂ ^fc be the power series for θ. Since
the power series converges absolutely, the series Σ?=o ak(L")k con-
verges in norm to the operator Lu. Observe that α0 is not zero
since the function θ does not vanish at the origin. Observe also
that since Ln

δ is in the center of S+, it follows, again by the func-
tional calculus, that Lu is in the center of 2+. Define the subspace
^/ί to be L / ( Z + x I ) . Since Lu is in the center and / 2 ( Z + x I ) is
a two-sided invariant subspace, Λ€ is also a two-sided invariant
subspace. We shall show that Λ€ Φ S\B) for any set B.

For any subspace ^V £ /\Z x X), let Ef= [J{χe X |/(0, x)Φθ}.
Then JBO^ is the support set supp{/(0, ^ife^V}. In case the sub-
space is s\Z+ x X), this support set is all of X. Since

(L./X0, a) = Σ α*(L?*/)(0, x) = Σ aJ(-nk, τ~nkx)

= αo/(O, a?)

for any function / in / 2 ( Z + x I ) , it follows that E/ = Xalso. Now
if ^ = /\B) (for some 5 £ Z x X), we must have B = Z+ x X
since ^ ^ is a two-sided invariant subspace (and hence B must be λ
and p invariant). Thus /2(Z+ x X) = LU/2(Z+ x X). Since Lu is
unitary, we must also have Lt/2(Z+ x X) = /2(Z+ x X) which is
clearly impossible for the unitary operator Lu constructed above.
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Hence ΛS Φ /\B) for any B £ Z x X.
To obtain more examples, perhaps an exhaustive collection, we

note that with appropriate modifications, the finite Blaschke product
could be replaced by any nonconstant inner function θ with non-
vanishing zeroth Fourier coefficient. Additionally, the subspace
s\Z+ x X) could be replaced by certain other subspaces of the
form /\G). Again the subspace Θ(L^)/2(C) would not have the form
/\B) for a subset B Q Z x X.

6* Concluding remarks* An interesting feature of the alge-
bras we have been considering is that they can be developed from
several different points of view. For example, in § 2 of [6] it is
shown how the algebras 2 and 91 may be represented as the left
and right von Neumann algebras associated with a Hubert algebra.
(In fact it is this representation that motivates our notation here.)
In §1.9.2 of [3], Dixmier introduces crossed products using a matri-
cial construction. We show that the algebras studied here can be
similarly represented. As a corollary, it is easily seen that 2+ and
3t+ are algebras of lower triangular matrices.

In this section we assume that X is a finite measure space and
τ is measure preserving. The transformation U defined by the
equation (Uf)(x) = f(τx) is a unitary operator on L\X). This
operator normalizes L°°, the algebra of multiplication operators on
L2(X). In the following proposition, we use the term "crossed
product'' to refer to the algebras constructed by Dixmier in [3,
§1.9.2].

PROPOSITION 6.1. The algebras 2 and 9i are the left and right
crossed products determined by L°°(X) and (the group of automor-
phisms generated by) U.

Proof. As noted earlier, L\Z x X) may be identified with
Σ^co0ί/2(X). This identification is implemented by the map W
which takes a function / in If(Z x X) to the sequence of functions
{ΰn)neZ where gn(x) = f(n, x). It is convenient to write g(n) for gn.
Using this notation we have (WLδW*g)(n) — Ug(n — 1). Thus the
matrix representation for WLδW* is

0

0

u
0

u u

0
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Likewise (WLφW*g)(ri)~ φ-g(n) so that the associated matrix is

0
φ

ψ
ψ

o
•J

(In the notation of [3], WLδW* = ϋx and WLΨW* = Φ(φ).) It is
now clear that W&W* is the crossed product of L°°(X) and ϋ. The
description of 9ΐ is, of course, similar and is left to the reader.
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