ON THE IMAGE OF THE GENERALIZED GAUSS MAP OF A COMPLETE MINIMAL SURFACE IN R^4

Chi Cheng Chen

The generalized Gauss map of an immersed oriented surface M in \mathbb{R}^4 is the map which associates to each point of M its oriented tangent plane in $G_{2,4}$, the Grassmannian of oriented planes in \mathbb{R}^4 . The Grassmannian $G_{2,4}$ is naturally identified with Q_2 , the complex hyperquadric

$$\left\{ [z_1, z_2, z_3, z_4] \left| \sum_{k=1}^4 z_k^2 = 0 \right\} \text{ in } P^{3}(C) . \right.$$

The normalized Fubini-Study metric on $P^{s}(C)$ with holomorphic curvature 2 induces an invariant metric on $Q_{2} \cong G_{2,4}$, which corresponds exactly to the metric on the canonical representation of $S^{2}(1/\sqrt{2}) \times S^{2}(1/\sqrt{2})$ in \mathbb{R}^{6} as $\{X \in \mathbb{R}^{6} \mid x_{1}^{2} + x_{2}^{2} + x_{3}^{2} =$ $(1/2), x_{4}^{2} + x_{5}^{2} + x_{6}^{2} = (1/2)\}$. The product representation above allows us to associate with any map g in Q_{2} two canonical projections g_{1}, g_{2} . In the case where g is complex analytic map defined on some Riemann surface S_{0} , the projections g_{1}, g_{2} are complex analytic also. Detailed treatment can be found in the recent work of Hoffman and Osserman.

The study of the image of the Gauss map of a complete minimal surface in \mathbb{R}^3 was motivated in one way to generalize a classical theorem of S. Bernstein [1], and was initiated by Osserman [7, 8, 9]. And the value distribution of the generalized Gauss map of a complete minimal surface in \mathbb{R}^4 , due to the product representation of Q_2 , can therefore be studied in a similar manner. In fact, results treating the case in \mathbb{R}^3 have been extended to that in \mathbb{R}^4 by Chern [3], Osserman [9], Hoffman and Osserman [5]. Very recently, Xavier [10] has made a remarkable improvement in the study of the case in \mathbb{R}^3 . Therefore it's quite natural to extend it to the case in \mathbb{R}^4 , which will be shown in the following theorem.

THEOREM 1. Let S be a complete minimal surface in \mathbb{R}^4 with g its generalized Gauss map and g_1, g_2 , the corresponding projections. Then S must be a plane if

(i) both g_1 and g_2 omit more than 6 points, or

(ii) one projection is constant and the other omits more than 4 points.

Proof. Let S be given by

where S_0 is a Riemann surface. Its generalized Gauss map can be expressed by

(2)
$$g = [\phi_1(\zeta), \phi_2(\zeta), \phi_3(\zeta), \phi_4(\zeta)]$$

where

$$(\ 3\) \qquad \qquad \phi_k(\zeta) = 2 rac{\partial x_k}{\partial \zeta}$$

with ζ a local complex parameter. And the projection g_1, g_2 are expressed by

(4)
$$g_1 = \frac{\phi_3 + i\phi_4}{\phi_1 - i\phi_2}, \quad g_2 = \frac{\phi_3 - i\phi_4}{\phi_1 - i\phi_2}$$

The induced metric is given by

$$(5) ds^2 = \frac{1}{4} |f|^2 (1 + |g_1|^2) (1 + |g_2|^2) |d\zeta|^2$$

where $f(\zeta) = \phi_1 - i\phi_2$. For detailed explanation, see Osserman [9].

Without loss of generality, we may assume S_0 to be simply connected. Combining our hypothese in (i), (ii) with the Koebe uniformization theorem and the Picard's theorem, we may assume further that S_0 is the unit disk $D = \{\zeta \in C \mid |\zeta| < 1\}$.

A crucial lemma used by Xavier [10] can be adapted easily in our case as:

LEMMA. Let $g_1: D \to C - \{0, a\}(a \neq 0), g_2 = D \longrightarrow C - \{0, b\}(b \neq 0)$ be holomorphic functions. Then

$$\int_{\scriptscriptstyle D_{j=1}^2} \left[rac{|g_j'|}{|g_i|^lpha+|g_j|^{2-lpha}}
ight]^{\!p} d\xi dn < \infty$$

for any $\alpha = 1 - 1/k$, $k \in Z^+$ and $0 \leq p < 1/2$, where $\zeta = \xi + i\eta$.

Now we proceed our proof. Suppose S is not a plane. Under the hypothese in (i) or (ii), we may assume that both g_1 and g_2 are holomorphic.

For the case (i), suppose g_1 omits a_1, \dots, a_6 in C and g_2 omits b_1, \dots, b_6 in C. Consider the function

(6)
$$h = g'_1 g'_2 f^{-2/p} \prod_{i=1}^6 (g_1 - a_i)^{-\alpha} \prod_{j=1}^6 (g_2 - b_j)^{-\alpha},$$

where $\alpha = 1 - 1/k$ with $10/11 \leq \alpha < 1$ and $p = 5/12\alpha$.

For the case (ii), suppose g_1 constant and g_2 omits b_1, \dots, b_4 in C. And consider the function

(7)
$$h = g'_2 f^{-2/p} \prod_{j=1}^4 (g_2 - b_j)^{-\alpha}$$
,

where $\alpha = 1 - 1/k$ with $10/11 \leq \alpha < 1$ and $p = 3/4\alpha$.

In both cases, using the same arguments in [10], we can see that from one hand, essentially due to a theorem of Yau [11, Th. 1].

$$(8) |h| \notin L^p(S_0)$$

and from the other hand, by direct calculation, we get

$$(9) \qquad |h| \in L^p(S_0)$$

which is impossible.

Next we shall extend a theorem of Gackstatter [6] on complete abelian minimal surfaces in \mathbb{R}^3 to those in \mathbb{R}^4 .

THEOREM 2. Let S be a complete abelian minimal surface in \mathbf{R}^4 , and g its generalized Gauss map. Then S must be plane if either

(a) one projection, say g_1 , omits more than 4 points and the other projection g_2 omits more than 3 points, or

(b) g_1 is constant and g_2 omits more than 3 points.

Proof. By a complete abelian minimal surface S in \mathbb{R}^4 . We mean that S can be constructed out of a meromorphic differential $fd\zeta$ and two meromorphic functions g_1, g_2 on a compact Riemann surface \overline{M} with the metric

$$ds^{\scriptscriptstyle 2} = rac{|f|^{\scriptscriptstyle 2}}{4}(1+|g_{\scriptscriptstyle 1}|^{\scriptscriptstyle 2})(1+|g_{\scriptscriptstyle 2}|^{\scriptscriptstyle 2})|\,d\zeta\,|^{\scriptscriptstyle 2}$$

which never vanishes. And the construction is made in the sense of L. Bers [2] such that the immersion is given by the formula

(10)
$$x = \operatorname{Re} \int \frac{f}{2} (1 + g_1 g_2, i(1 - g_1 g_2), g_1 - g_2, -i(g_1 + g_2)) d\zeta$$

on a covering space \overline{M} over $\overline{M} - \{p | ds^2(p) = \infty\}$ as long as (10) is well-defined. The boudary points to the metric ds^2 are those finitely many points p_1, \dots, p_r in \overline{M} where $ds^2 = \infty$.

By a rotation of S, we may assume that

(i) both g_1 and g_2 have only simple poles, and they don't have poles in common,

(ii) the poles of g_1, g_2 don't fall into the boundary points p_1, \dots, p_r , and hence,

- (iii) at each pole of g_1 or g_2 , f must have a simple zero,
- (iv) f has no other zeros, and
- (v) at each p_j , f must have a pole of order $m_j \ge 1$.

Now suppose g_1 is an N_1 -sheet and g_2 is an N_2 -sheet branching covering. Then by the Riemann relation for the differential $fd\zeta$, we have

(11)
$$(N_1 + N_2) - \sum_{j=1}^r m_j = 2\gamma - 2$$

where γ is the genus of \overline{M} .

And by the Riemann relation for g_1 and g_2 , in case of nonconstant, we have

(12)
$$\sum_{g_1} (l_1 - 1) - 2N_1 = 2\gamma - 2$$

(13)
$$\sum_{g_2} (l_2 - 1) - 2N_2 = 2\gamma - 2$$

where $\sum_{g_1}(l_1-1)$ and $\sum_{g_2}(l_2-1)$ are the total branching orders of g_1, g_2 , respectively.

Now suppose S is nonflat, i.e., g_1 , g_2 can't both be constant, and that

(a) g_1 omits 5 values a_1, \dots, a_5, g_2 omits 4 values b_1, \dots, b_4 and neither one is constant. Then clearly

(14)
$$g_1^{-1}\{a_{\nu} \mid 1 \leq \nu \leq 5\} \subset \{p_1, \cdots, p_r\}$$
,

(15)
$$g_2^{-1}\{b_{\mu} \mid 1 \leq \mu \leq 4\} \subset \{p_1, \cdots, p_r\}.$$

And (12), (13) can be written as

(16)
$$\sum_{g_1 \neq a_{\nu}} (l_1 - 1) + 3N_1 = 2\gamma - 2 + \sum_{g_1 = a_{\nu}} 1,$$

(17)
$$\sum_{g_2 \neq b_{\mu}} (l_2 - 1) + 2N_2 = 2\gamma - 2 + \sum_{g_2 = b_{\mu}} 1.$$

Comparing with (11), we get

(18)
$$2\sum_{j=1}^{r} m_{j} < \sum_{g_{1}=a_{\nu}} 1 + \sum_{g_{2}=b_{\mu}} 1$$

which contradicts (14) and (15).

(b) g_1 constant and g_2 omits 4 points b_1, \dots, b_4 . Clearly (15) and (17) still hold with $N_1 = 0$, $N_2 > 0$. From (11), (17), we have

(19)
$$\sum_{j=1}^{r} m_{j} < \sum_{g_{2}=b_{\mu}}^{r} 1$$

which contradicts (15).

COROLLARY. If (a) g_1 omits exactly 4 points and g_2 omits exactly

4 points, or

(b) g_1 constant and g_2 omits exactly 3 points, then (a) r = 4, $m_j = 1$ or (b) r = 3, $m_j = 1$, respectively. Further, in neither case S can have flat points.

Proof. Note that p is a flat point of S if and only if $g'_1(p) = 0$ and $g'_2(p) = 0$. In case (a) comparing (11) with

$$\sum_{g_1 \neq a_{\nu}} (l_1 - 1) + 2N_1 = 2\gamma - 2 + \sum_{g_1 = a_{\nu}} 1$$

and (17), we get r = 4, $m_j = 1$, $l_1 \equiv 1$, $l_2 \equiv 1$. And in case (b) comparing (11) with

$$\sum_{g_2 \neq b_{\mu}} (l_2 - 1) + N_2 = 2\gamma - 2 + \sum_{g_2 = b_{\mu}} 1$$

and $N_1 = 0$, we get r = 3, $m_j = 1$, $l_2 \equiv 1$.

For complete minimal surface with finite total curvature, it's known [4] that $M = \overline{M} - \{p_1, \dots, p_r\}$ and $m_j \ge 2$. Thus, Theorem 2 and corollary together give an alternative proof of

THEOREM 3 (Hoffman-Osserman [5]). Let S be a complete minimal surface in \mathbb{R}^4 with finite total curvature. Then S must be a plane if

(a) both g_1 and g_2 omit more than 3 points, or

(b) g_1 constant and g_2 omits more than 2 points.

References

1. S. Bernstein, Sur un théorème de géometrie et ses applications aux équations aux dérivées partielles du type elliptique, Comm. Inst. Sci. Math. Mech., Univ. Kharkov, **15** (1915-17), 38-45.

2. L. Bers, Abelian minimal surfaces, J. d'Analyse Math., 1 (1951), 43-58.

3. S. S. Chern, *Minimal surfaces in an euclidean space of N dimensions*, Diff. and Comb. Topology, A Symposium in Honor of M. Morse, Princeton, Univ. Press, 1965, 187-198.

4. S. S. Chern and R. Osserman, Complete minimal surfaces in Euclidean n-space, J. d' Analyse Math., **19** (1967), 15-34.

5. D. Hoffman and R. Osserman, *The geometry of the generalized Gauss map*, Memoirs Amer. Math. Soc., No. 236 (1980).

6. F. Gackstatter, Über abelsche Minimalflächen, Math. Nachr., 74 (1976), 157-165.

7. R. Osserman, *Proof of a conjecture of Nirenberg*, Comm. on Pure and Applied Math., **12** (1959), 229-232.

8. ____, Minimal surfaces in the large, Comm. Math. Helv., 35 (1961), 65-76.

9. _____, Global properties of minimal surfaces in E^3 and E^n , Ann. of Math., (2) 80 (1964), 340-364.

10. F. Xavier, The Gauss map of a complete nonflat minimal surface cannot omit 7 points of the sphere, Ann. of Math., 113 (1981), 211-214. And Errata (to appear).

11. S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670.

 \Box

CHI CHENG CHEN

Received July 13, 1981. Work partially supported by FAPESP (BRAZIL), contract No. 11-Mate. 78/1105

Instituto de Matemàtica e Estatistica Universidade de São Paulo São Paulo-Brasil