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ON THE IMAGE OF THE GENERALIZED GAUSS MAP
OF A COMPLETE MINIMAL SURFACE IN R4

CHI CHENG CHEN

The generalized Gauss map of an immersed oriented
surface M in Λ4 is the map which associates to each point
of M its oriented tangent plane in G2A9 the Grassmannian
of oriented planes in R\ The Grassmannian G2)4 is naturally
identified with Q2, the complex hyperquadric

j[zi, z2, z3, z4] Σ zl=θϊ in P3(C) .

The normalized Fubini-Study metric on PB(C) with holomorphic
curvature 2 induces an invariant metric on Q2 = G2A, which
corresponds exactly to the metric on the canonical represen-
tation of S2(V vΎ) x S2(l/ VΊF) in R« as {Xe R* \ x\ + x\ + x\ =
(1/2), x\ + xl + x\ — (1/2)}. The product representation above
allows us to associate with any map g in Q2 two canonical
projections gu 02 In the case where g is complex analytic
map defined on some Riemann surface SQ9 the projections
glf g2 are complex analytic also. Detailed treatment can be
found in the recent work of Hoffman and Osserman.

The study of the image of the Gauss map of a complete minimal

surface in R* was motivated in one way to generalize a classical

theorem of S. Bernstein [1], and was initiated by Osserman [7, 8, 9] .

And the value distribution of the generalized Gauss map of a complete

minimal surface in R4, due to the product representation of Q2, can

therefore be studied in a similar manner. In fact, results t reat ing

the case in Rs have been extended to t h a t in R4 by Chern [3],

Osserman [9], Hoffman and Osserman [5]. Very recently, Xavier

[10] has made a remarkable improvement in the study of the case

in Rz. Therefore i t ' s quite natural to extend i t to the case in R4,

which will be shown in the following theorem.

THEOREM 1. Let S be a complete minimal surface in R4 with

g its generalized Gauss map and glf g9, the corresponding projections.

Then S must be a plane if

( i ) both gx and g2 omit more than 6 points, or

( i i ) one projection is constant and the other omits more than

4 points.

Proof. Let S be given by

( 1 ) X:S0 >R4

9
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where So is a Riemann surface. Its generalized Gauss map can be
expressed by

(2) flr = [Λ(C),Λ(C),Λ(C),Λ(C)]

where

(3) Λ ( Q = 2|£*

with ζ a local complex parameter. And the projection glf g9 are
expressed by

φt — i ^ ? ^i ~ lφ2

The induced metric is given by

( 4 )

(5) ώ^-j-l/Pα + lΛΓXl + lα

where /(ζ) = φγ — iφ^ For detailed explanation, see Osserman [9].
Without loss of generality, we may assume So to be simply

connected. Combining our hypothese in (i), (ii) with the Koebe
uniformization theorem and the Pieard's theorem, we may assume
further that So is the unit disk D = {ζeC| | ζ | < 1}.

A crucial lemma used by Xavier [10] can be adapted easily in
our case as:

LEMMA. Let Oι: D-*C-{0, α}(α Φ 0), gt = D >C- (0, b}φΦ0)
be holomorphic functions. Then

for any a = 1 - 1/fc, fc 6 Z+ and 0 ^ p < 1/2, wftere ζ = ξ + ΐ^

Now we proceed our proof. Suppose S is not a plane. Under
the hypothese in (i) or (ii), we may assume that both gt and g? are
holomorphic.

For the case (i), suppose gγ omits alf •••, aδ in C and #2 omits
bl9 , 66 in C. Consider the function

( 6 ) ft - ^;/-2/2) π ( Λ - «i)-α π to - &3 r
α .

ί = l J - l

where α = 1 - 1/fc wi th 10/11 ^ α < 1 and p = 5/12α.
For t h e case (ii), suppose g1 constant and g2 omits blf •••, δ4 in

C. And consider t h e function
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( 7 ) h = g'J-2/p Π (gt - &3 r* ,
3=1

where a = 1 - 1/k with 10/11 ^ a < 1 and p = 3/4α.
In both cases, using the same arguments in [10], we can see

that from one hand, essentially due to a theorem of Yau [11, Th. 1].

(8) \h\$L*(S0)

and from the other hand, by direct calculation, we get

(9) \h\eL*(S0)

which is impossible. •

Next we shall extend a theorem of Gackstatter [6] on complete
abelian minimal surfaces in /?3 to those in R\

THEOREM 2. Let S be a complete abelian minimal surface in
i?4, and g its generalized Gauss map. Then S must be plane if
either

(a) one projection, say glf omits more than 4 points and the
other projection g2 omits more than 3 points, or

(b) g1 is constant and g9 omits more than 3 points.

Proof. By a complete abelian minimal surface S in R\ We
mean that S can be constructed out of a meromorphic differential
fdζ and two meromorphic functions gl9 g9 on a compact Riemann
surface M with the metric

(fc' = I£Ji( l + | f lr1|
2)(l + \g?\2)\dζ\2

which never vanishes. And the construction is made in the sense
of L. Bers [2] such that the immersion is given by the formula

(10) x = Re I -£(1 + g,g2, ΐ(l - gxg2\ g, - g2, -ίfa + g2))dζ
J 2t

on a covering space M over M — {p\ds2(p) = c°} as long as (10) is
well-defined. The boudary points to the metric ds2 are those finitely
many points pu , pr in M where ds2 = ©o.

By a rotation of S, we may assume that
( i ) both gι and g2 have only simple poles, and they don't have

poles in common,
(ii) the poles of gl9 g, don't fall into the boundary points pL,

• - -, pr, and hence,
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(iii) at each pole of gx or g2, f must have a simple zero,
(iv) / has no other zeros, and
(v) at each ph f must have a pole of order mά-^ 1.

Now suppose gλ is an JVΊ-sheet and g2 is an JV2-sheet branching covering.
Then by the Riemann relation for the differential fdζ, we have

(11) (Nt + N2) - ±mj = 27-2

where 7 is the genus of M.
And by the Riemann relation for g1 and g2, in case of non-

constant, we have

(12) Σ (k - 1) - 22Vi = 27 - 2

(13) Σ & - 1) - 2ΛΓ? = 27 - 2

where Σ ^ i ~ 1) a n ( i Σ ^ — 1) are the total branching orders of
gl9 g2, respectively.

Now suppose S is nonflat, i.e., gl9 g2 can't both be constant, and
that

(a) g1 omits 5 values alt , α5, g2 omits 4 values 6X, , 64 and
neither one is constant. Then clearly

(14) firΓ1{αv|l^v^B}c{p1, •• , p j ,

(15) ft-^ll^^Jcfo, .- ,p r}.

And (12), (13) can be written as

(16) Σ & - i) + 3-N; = 27 - 2 + Σ i ,

(17) Σ (i* - 1) + 2N2 = 27 - 2 + Σ 1

Comparing with (11), we get

(18) 2 Σ m i < Σ l + Σ l

which contradicts (14) and (15).
(b) gx constant and g2 omits 4 points blt , 64. Clearly (15) and

(17) still hold with N, = 0,N2> 0. From (11), (17), we have

(19) Σ m, < Σ 1

which contradicts (15). •

COROLLARY. If (a) g1 omits exactly 4 points and g2 omits exactly
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4 points, or
(b) gx constant and g2 omits exactly 3 points, then (a) r = 4,

md = 1 or (b) r = 3, my = 1, respectively. Further, in neither case S
can have flat points.

Proof. Note that p is a flat point of S if and only if g[(p) = 0
and g[{p) = 0. In case (a) comparing (11) with

Σ & - 1) + 2ΛΓ, = 2τ - 2 + Σ 1

and (17), we get r = 4, my = 1, ^ =Ξ 1, £2 = 1.
And in case (b) comparing (11) with

Σ (h - l) + Nt = 2τ - 2 + Σ i

and NL = 0, we get r = 3, my = 1, l2 = l D

For complete minimal surface with finite total curvature, it's
known [4] that M = M — {p^ , pr} and m i ^ 2. Thus, Theorem
2 and corollary together give an alternative proof of

THEOREM 3 {Hoffman-Osserman [5]). Let S be a complete minimal
surface in i?4 with finite total curvature. Then S must be a plane

if
(a) both gx and g2 omit more than 3 points, or
(b) #! constant and g2 omits more than 2 points.
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