ON THE IMAGE OF THE GENERALIZED GAUSS MAP OF A COMPLETE MINIMAL SURFACE IN R^{4}

Chi Cheng Chen

Abstract

The generalized Gauss map of an immersed oriented surface M in R^{4} is the map which associates to each point of M its oriented tangent plane in $G_{2,4}$, the Grassmannian of oriented planes in R^{4}. The Grassmannian $G_{2,4}$ is naturally identified with Q_{2}, the complex hyperquadric $$
\left\{\left[z_{1}, z_{2}, z_{3}, z_{4}\right] \mid \sum_{k=1}^{4} z_{k}^{2}=0\right\} \quad \text { in } \quad P^{3}(C) .
$$

The normalized Fubini-Study metric on $P^{3}(C)$ with holomorphic curvature 2 induces an invariant metric on $Q_{2} \cong G_{2,4}$, which corresponds exactly to the metric on the canonical representation of $S^{2}(1 / \sqrt{2}) \times S^{2}(1 / \sqrt{2})$ in \boldsymbol{R}^{8} as $\left\{X \in \boldsymbol{R}^{6} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\right.$ $\left.(1 / 2), x_{4}^{2}+x_{5}^{2}+x_{8}^{2}=(1 / 2)\right\}$. The product representation above allows us to associate with any map g in Q_{2} two canonical projections g_{1}, g_{2}. In the case where g is complex analytic map defined on some Riemann surface S_{0}, the projections g_{1}, g_{2} are complex analytic also. Detailed treatment can be found in the recent work of Hoffman and Osserman.

The study of the image of the Gauss map of a complete minimal surface in \boldsymbol{R}^{3} was motivated in one way to generalize a classical theorem of S . Bernstein [1], and was initiated by Osserman [7, 8, 9]. And the value distribution of the generalized Gauss map of a complete minimal surface in \boldsymbol{R}^{4}, due to the product representation of Q_{2}, can therefore be studied in a similar manner. In fact, results treating the case in \boldsymbol{R}^{3} have been extended to that in \boldsymbol{R}^{4} by Chern [3], Osserman [9], Hoffman and Osserman [5]. Very recently, Xavier [10] has made a remarkable improvement in the study of the case in \boldsymbol{R}^{3}. Therefore it's quite natural to extend it to the case in \boldsymbol{R}^{4}, which will be shown in the following theorem.

Theorem 1. Let S be a complete minimal surface in \boldsymbol{R}^{4} with g its generalized Gauss map and g_{1}, g_{2}, the corresponding projections. Then S must be a plane if
(i) both g_{1} and g_{2} omit more than 6 points, or
(ii) one projection is constant and the other omits more than 4 points.

Proof. Let S be given by

$$
\begin{equation*}
X: S_{0} \longrightarrow \boldsymbol{R}^{4} \tag{1}
\end{equation*}
$$

where S_{0} is a Riemann surface. Its generalized Gauss map can be expressed by

$$
\begin{equation*}
g=\left[\dot{\phi}_{1}(\zeta), \phi_{2}(\zeta), \phi_{3}(\zeta), \phi_{4}(\zeta)\right] \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{k}(\zeta)=2 \frac{\partial x_{k}}{\partial \zeta} \tag{3}
\end{equation*}
$$

with ζ a local complex parameter. And the projection g_{1}, g_{7} are expressed by

$$
\begin{equation*}
g_{1}=\frac{\phi_{3}+i \dot{\phi}_{4}}{\phi_{1}-i \phi_{9}}, \quad g_{2}=\frac{\dot{\phi}_{3}-i \phi_{4}}{\dot{\phi}_{1}-i \dot{\phi}_{2}} \tag{4}
\end{equation*}
$$

The induced metric is given by

$$
\begin{equation*}
d s^{2}=\frac{1}{4}|f|^{2}\left(1+\left|g_{1}\right|^{2}\right)\left(1+\left|g_{2}\right|^{2}\right)|d \zeta|^{2} \tag{5}
\end{equation*}
$$

where $f(\zeta)=\phi_{1}-i \phi_{2}$. For detailed explanation, see Osserman [9].
Without loss of generality, we may assume S_{0} to be simply connected. Combining our hypothese in (i), (ii) with the Koebe uniformization theorem and the Picard's theorem, we may assume further that S_{0} is the unit disk $D=\{\zeta \in C| | \zeta \mid<1\}$.

A crucial lemma used by Xavier [10] can be adapted easily in our case as:

Lemma. Let $g_{1}: D \rightarrow C-\{0, a\}(a \neq 0), g_{2}=D \longrightarrow C-\{0, b\}(b \neq 0)$ be holomorphic functions. Then

$$
\int_{D_{j}=1} \prod_{2}\left[\frac{\left|g_{j}^{\prime}\right|}{\left|g_{i}\right|^{\alpha}+\left|g_{j}\right|^{2-\alpha}}\right]^{p} d \xi d n<\infty
$$

for any $\alpha=1-1 / k, k \in Z^{+}$and $0 \leqq p<1 / 2$, where $\zeta=\xi+i \eta$.
Now we proceed our proof. Suppose S is not a plane. Under the hypothese in (i) or (ii), we may assume that both g_{1} and g_{2} are holomorphic.

For the case (i), suppose g_{1} omits a_{1}, \cdots, a_{6} in C and g_{2} omits b_{1}, \cdots, b_{8} in \boldsymbol{C}. Consider the function

$$
\begin{equation*}
h=g_{1}^{\prime} g_{2}^{\prime} f^{-2 / p} \prod_{i=1}^{6}\left(g_{1}-a_{i}\right)^{-\alpha} \prod_{j=1}^{6}\left(g_{2}-b_{i}\right)^{-\alpha} \tag{6}
\end{equation*}
$$

where $\alpha=1-1 / k$ with $10 / 11 \leqq \alpha<1$ and $p=5 / 12 \alpha$.
For the case (ii), suppose g_{1} constant and g_{2} omits b_{1}, \cdots, b_{4} in C. And consider the function

$$
\begin{equation*}
h=g_{2}^{\prime} f^{-2 / p} \prod_{j=1}^{4}\left(g_{2}-b_{j}\right)^{-\alpha}, \tag{7}
\end{equation*}
$$

where $\alpha=1-1 / k$ with $10 / 11 \leqq \alpha<1$ and $p=3 / 4 \alpha$.
In both cases, using the same arguments in [10], we can see that from one hand, essentially due to a theorem of Yau [11, Th. 1].

$$
\begin{equation*}
|h| \notin L^{p}\left(S_{0}\right) \tag{8}
\end{equation*}
$$

and from the other hand, by direct calculation, we get

$$
\begin{equation*}
|h| \in L^{p}\left(S_{0}\right) \tag{9}
\end{equation*}
$$

which is impossible.
Next we shall extend a theorem of Gackstatter [6] on complete abelian minimal surfaces in \boldsymbol{R}^{3} to those in \boldsymbol{R}^{4}.

Theorem 2. Let S be a complete abelian minimal surface in \boldsymbol{R}^{4}, and g its generalized Gauss map. Then S must be plane if either
(a) one projection, say g_{1}, omits more than 4 points and the other projection g_{2} omits more than 3 points, or

Proof. By a complete abelian minimal surface S in \boldsymbol{R}^{4}. We mean that S can be constructed out of a meromorphic differential $f d \zeta$ and two meromorphic functions g_{1}, g_{2} on a compact Riemann surface \bar{M} with the metric

$$
d s^{2}=\frac{|f|^{2}}{4}\left(1+\left|g_{1}\right|^{2}\right)\left(1+\left|g_{2}\right|^{2}\right)|d \zeta|^{2}
$$

which never vanishes. And the construction is made in the sense of L. Bers [2] such that the immersion is given by the formula

$$
\begin{equation*}
x=\operatorname{Re} \int \frac{f}{2}\left(1+g_{1} g_{2}, i\left(1-g_{1} g_{2}\right), g_{1}-g_{2},-i\left(g_{1}+g_{2}\right)\right) d \zeta \tag{10}
\end{equation*}
$$

on a covering space M over $\bar{M}-\left\{p \mid d s^{2}(p)=\infty\right\}$ as long as (10) is well-defined. The boudary points to the metric $d s^{2}$ are those finitely many points p_{1}, \cdots, p_{r} in \bar{M} where $d s^{2}=\infty$.

By a rotation of S, we may assume that
(i) both g_{1} and g_{2} have only simple poles, and they don't have poles in common,
(ii) the poles of g_{1}, g_{2} don't fall into the boundary points p_{1}, \cdots, p_{r}, and hence,
(iii) at each pole of g_{1} or g_{2}, f must have a simple zero,
(iv) f has no other zeros, and
(v) at each p_{j}, f must have a pole of order $m_{j} \geqq 1$.

Now suppose g_{1} is an N_{1}-sheet and g_{2} is an N_{2}-sheet branching covering. Then by the Riemann relation for the differential $f d \zeta$, we have

$$
\begin{equation*}
\left(N_{1}+N_{2}\right)-\sum_{j=1}^{r} m_{j}=2 \gamma-2 \tag{11}
\end{equation*}
$$

where γ is the genus of \bar{M}.
And by the Riemann relation for g_{1} and g_{2}, in case of nonconstant, we have

$$
\begin{align*}
& \sum_{g_{1}}\left(l_{1}-1\right)-2 N_{1}=2 \gamma-2 \tag{12}\\
& \sum_{g_{2}}\left(l_{2}-1\right)-2 N_{9}=2 \gamma-2 \tag{13}
\end{align*}
$$

where $\sum_{g_{1}}\left(l_{1}-1\right)$ and $\sum_{g_{2}}\left(l_{2}-1\right)$ are the total branching orders of g_{1}, g_{2}, respectively.

Now suppose S is nonflat, i.e., g_{1}, g_{2} can't both be constant, and that
(a) g_{1} omits 5 values $a_{1}, \cdots, a_{5}, g_{2}$ omits 4 values b_{1}, \cdots, b_{4} and neither one is constant. Then clearly

$$
\begin{align*}
& g_{1}^{-1}\left\{a_{\nu} \mid 1 \leqq \nu \leqq 5\right\} \subset\left\{p_{1}, \cdots, p_{r}\right\} \tag{14}\\
& g_{2}^{-1}\left\{b_{\mu} \mid 1 \leqq \mu \leqq 4\right\} \subset\left\{p_{1}, \cdots, p_{r}\right\} \tag{15}
\end{align*}
$$

And (12), (13) can be written as

$$
\begin{align*}
& \sum_{g_{1} \neq a_{\nu}}\left(l_{1}-1\right)+3 N_{1}=2 \gamma-2+\sum_{g_{1}=a_{\nu}} 1 \tag{16}\\
& \sum_{g_{2} \neq b_{\mu}}\left(l_{2}-1\right)+2 N_{2}=2 \gamma-2+\sum_{g_{2}=b_{\mu}} 1 \tag{17}
\end{align*}
$$

Comparing with (11), we get

$$
\begin{equation*}
2 \sum_{j=1}^{r} m_{j}<\sum_{g_{1}=a_{\nu}} 1+\sum_{g_{2}=b_{\mu}} 1 \tag{18}
\end{equation*}
$$

which contradicts (14) and (15).
(b) g_{1} constant and g_{2} omits 4 points b_{1}, \cdots, b_{4}. Clearly (15) and (17) still hold with $N_{1}=0, N_{2}>0$. From (11), (17), we have

$$
\begin{equation*}
\sum_{j=1}^{r} m_{j}<\sum_{g_{2}=b_{\mu}}^{r} 1 \tag{19}
\end{equation*}
$$

which contradicts (15).
Corollary. If (a) g_{1} omits exactly 4 points and g_{2} omits exactly

4 points, or
(b) g_{1} constant and g_{2} omits exactly 3 points, then (a) $r=4$, $m_{j}=1$ or (b) $r=3, m_{j}=1$, respectively. Further, in neither case S can have flat points.

Proof. Note that p is a flat point of S if and only if $g_{1}^{\prime}(p)=0$ and $g_{2}^{\prime}(p)=0$. In case (a) comparing (11) with

$$
\sum_{g_{1} \neq a_{\nu}}\left(l_{1}-1\right)+2 N_{1}=2 \gamma-2+\sum_{g_{1}=a_{\nu}} 1
$$

and (17), we get $r=4, m_{j}=1, l_{1} \equiv 1, l_{2} \equiv 1$.
And in case (b) comparing (11) with

$$
\sum_{g_{2} \neq b_{\mu}}\left(l_{2}-1\right)+N_{2}=2 \gamma-2+\sum_{g_{2}=b_{\mu}} 1
$$

and $N_{1}=0$, we get $r=3, m_{j}=1, l_{2} \equiv 1$.
For complete minimal surface with finite total curvature, it's known [4] that $M=\bar{M}-\left\{p_{1}, \cdots, p_{r}\right\}$ and $m_{j} \geqq 2$. Thus, Theorem 2 and corollary together give an alternative proof of

Theorem 3 (Hoffman-Osserman [5]). Let S be a complete minimal surface in \boldsymbol{R}^{4} with finite total curvature. Then S must be a plane if
(a) both g_{1} and g_{2} omit more than 3 points, or
(b) g_{1} constant and g_{2} omits more than 2 points.

References

1. S. Bernstein, Sur un théorème de géometrie et ses applications aux équations aux dérivées partielles du type elliptique, Comm. Inst. Sci. Math. Mech., Univ. Kharkov, 15 (1915-17), 38-45.
2. L. Bers, Abelian minimal surfaces, J. d'Analyse Math., 1 (1951), 43-58.
3. S. S. Chern, Minimal surfaces in an euclidean space of N dimensions, Diff. and Comb. Topology, A Symposium in Honor of M. Morse, Princeton, Univ. Press, 1965, 187-198.
4. S. S. Chern and R. Osserman, Complete minimal surfaces in Euclidean n-space, J. d' Analyse Math., 19 (1967), 15-34.
5. D. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Memoirs Amer. Math. Soc., No. 236 (1980).
6. F. Gackstatter, Über abelsche Minimalfächen, Math. Nachr., 74 (1976), 157-165.
7. R. Osserman, Proof of a conjecture of Nirenberg, Comm. on Pure and Applied Math., 12 (1959), 229-232.
8. -, Minimal surfaces in the large, Comm. Math. Helv., 35 (1961), 65-76.
9. - Global properties of minimal surfaces in E^{3} and E^{n}, Ann. of Math., (2) $\mathbf{8 0}$ (1964), 340-364.
10. F. Xavier, The Gauss map of a complete nonflat minimal surface cannot omit 7 points of the sphere, Ann. of Math., 113 (1981), 211-214. And Errata (to appear).
11. S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670.

Received July 13, 1981. Work partially supported by FAPESP (BRAZIL), contract No. 11-Mate. 78/1105

Instituto de Matemàtica e Estatistica
Universidade de Sāo Paulo
Sāo Paulo-Brasil

