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^-ADIC ANALOG OF HEINE'S HYPERGEOMETRIC
^-SERIES

NEAL KOBLITZ

Generalized complex analytic special functions of various
types, depending on a parameter 0<g<l, have recently been
studied by R. Askey, G. E. Andrews and others [1-3]. The
purpose of this paper is to discuss a p-adic analytic con-
struction which is analogous to the classical theory of E.
Heine's [7] ̂ -extension of the hypergeometric function.

In the theory of hypergeometric series one denotes (α)fc =
a{a + 1) (a + k — 1). The corresponding notation for g-series is
(α; q)k = (1 — α)(l — aq) -(1 — aq1""1). This "extends" the ordinary
(a)k in the sense that for a = qa, b = qβ we have l i m ^ (α; q)J(b; q)k =

In the complex analytic theory of g-extensions one takes 0 <
g < 1 and defines the g-gamma function as

( 1 ) Γq(x) = (1 - q)1-* (ql q):

and the g-hypergeometric functions as

± t χ q γ q γ
j=Q (g; ^)^( & i ; Q)J (&n; g) i

The functions Γq and m^n satisfy many relations which generalize
well-known identities for the ordinary gamma and hypergeometric
functions, and as q —> 1" we have Γq(x) —> Γ(x) and

" am \

/3« /

These g-identities, many of which go back to Euler, Jacobi, Heine,
Rogers, and Ramanujan, have applications to combinatorics, Lie
algebras, orthogonal polynomials, modular functions, and other areas.

We shall be especially interested in one identity, the following
variant of Heine's transformation rule for 2φt [8]:

( 2 , J' \ ,, .,„) . Wf' ' / Φ; ,, φ) .
\c J (c; Q)oo(c/ax; q)^ \ c/x J

If we set x — ?>, then the 2φL on the right becomes 1; and if we set
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a = qa, b = qβ, c = qr, and use (1) we obtain

Γ s(τ - a)Γq(y - β) '

which extends the well-known relation ^F^a, β, Ί; 1) = Γ{Ί)Γ(Ί—a —
β)IΓ{Ί - a)Γ(Ύ - β).

In the p-adic analytic theory we work in the p-adic completion
Ωp of the algebraic closure of Qp, and we take q = 1 + t, teΩp,
\t\p<l. We shall often assume that | t | p ' < p" 1 / ί p " 1 } , in which case
^ = exp (7log?) is well-defined for ΎeΩpf \Ύ\P < p"1'1*""/\t\p, i.e.,
on a disc strictly larger than the unit disc. In any case qr is
well-defined for ΎeZp whenever \t\p < 1.

In defining the p-adic analog of 2 ^ / α q, x), we shall take a,

b,ceΩp and suppose that α = ρα, b = qβ with — a = ao + aλp+ eZp,
— β — bo + hp-1 eZp. We shall usually further suppose that c is
not in the compact set qzp, and let ε = dist(c, qzή ~ minjeZ(\cqj — l\p)>0.

In this paper we shall prove identities analogous to (2) and (3)
for our p-adic 2φγ. In particular, we relate the p-adic hypergeometric
g-series to the ^-extension Γp>q [10] of Y. Morita's p-adic gamma
function Γp [12] and also to J. Diamond's p-adic log gamma function
Gp [4]. Then, in the special case c = q, when p-adic convergence
of the series for 2φι becomes subtler, we introduce a ^-extension of
Dwork's modified hypergeometric function [6], prove convergence
and a formula analogous to (3) under certain conditions, and for-
mulate a conjecture on the validity of these results without the
"nonsupersingularity" conditions.

1. In [10] we defined a p-adic analog of Γq by setting

(4) Γ,>(,(α) = lim(-1)- Π
JL —

Γp>q satisfies a functional equation, reflection formula and multipli-
cation formula analogous to the formulas satisfied by the ordinary
gamma function, and Γp>q approaches Morita's function Γp [12] as
g - 1 .

We now define a p-adic g-gamma function depending on a = qa,
b =z q?f and c £ qz* by setting

( 5 ) r J ° Φ l q]= f
\c/a c/b J n—a (c; q)n

THEOREM 1. The limit (5) exists, is symmetric in a, b, and is
continuous in a, b, c.
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Proof. Let An = (c/b; q)J(c; q)n. Then

An = lim (cqm; q)J(c; q)n = lim (c; q)n+J(c; q)m(c; q)n ,

which shows that the definition (5) is symmetric in α, 6. Next,

π
(cqn; q)kpN »—* «<£/<»+» 1 — cq3'

Since cq5 is bounded away from 1 and qkpN —>1 as N-+ °°, the last
product approaches 1 as i\Γ —> <x> uniformly in m and w. This shows
existence of the limit and its continuity as a function of α, 6, c.

It will also be useful to have a version of (5) which makes
sense when ceqzp. Now suppose ε = dist (c, qzή < \t\p (where we
allow ε = 0, i.e., ceqzή. Since ε < \t\p, there is a unique O^jo<p
s u c h t h a t \cq'° — l\p < \t\p. F o r a = qa, —a ~ a0 + aλp + , w e
define the modified symbol ( )* by (c/a; q)t = Π (X — (c/ά)Qj)> where
the product is over 0 <; j < k, p \ a0 +• j — j 0 . We then define

( 6 ) Γ*l C

t r q) = l i m ^lb; ff , a, be qz?, d i s t (c, q'p) < \t\p .\c/a c/b J »-~« (c; g)J

THEOREM 2. The limit (6) exists, is symmetric in α, 6, αwd is
continuous in a, b, c. If a = gα, b — qβ, c = qr e qzp, then

(7)
e/a c/b ' 7 ΓPtq(7 -

a - β)

where Γp,q is the function (4). Now suppose c £ qzp but still \cqj° — l\p<
\t\p. Set a' = qaQa, b' — qb«b, cf = q^c, where —a = ao + a1p+ ,
— β = 60 + δiP + . For simplicity suppose jQ ^ α0, i 0 ^ &o

β

π e' cΊaΎ.«>

f , v (1 * / «o + δ 0 ^ Jo

(1 — c Ja b %f a0 + o0 > j 0 -

Proof. Existence, symmetry and continuity are proved just as
in Theorem 1. By continuity, it suffices to prove (7) when a—— n9

β = -m and 7 = 1. Let Πί denote Πy,pw Then the left side of
(7) is
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by (6), and the

ff (1

right

- ?0.

side

NEAL

is (see

( l - g
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J1 ~q5)

(1 - qi)

(4))

0 Π' (1 - q')

Π ' (1 - ?') Π ' (1 - Q')
l j

Π' (1 - 90

To prove (8), by continuity it suffices to take — a = ?ι = α0

', — /3 = m = δ0 + pm'. The left side equals

Π / c c/ab

Ac I a φ; Q

Π ( 1 - Π
if

1 if α

(1 - c

Π (l-βv
ί<TO'

c c/α&

c/α c/6 ;

/ c' c'/a'b'

(Note: if we had j 0 < a0 or j 0 < δ0, then ε(a, b) would be a slightly
more complicated expression; in any case, we shall later be interested
in c for which j 0 = p — 1.)

This completes the proof of Theorem 2.

2. We now proceed to #>-adic hypergeometric g-series. Let
q — 1 + t, a = qa, b = ĝ  be as before. Suppose cgqzv. We define

2Φi,P\ . g

whenever the sum converges.

L E M M A . If \t\p < p-11^-^, then

=° (c; q)k(q; q)h

(0; q)k{q; q)k

0 as k

uniformly in a,b.

Proof. Since for any n ^ 1 we have

- qn+j

1 -
n n + k - 1

k
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it follows (passing to the limit as n—>a) that |(α; q)k/(q; q)k\p ^ 1,
and similarly |(6; q)J(q; q)k\p tί 1. Hence it suffices to show that
(<?; ?)*c*/(c; <?)fc—> 0. If |c | p > 1, then |(c; <?)&!? = |c|J, and the assertion
follows because (q; q)k clearly approaches 0 as k —•> oo. Suppose
\c\p<Zl. We show that (q; q)k/(c; q)k —> 0. Let ε = dist (c, qzp) > 0.

Case (i). ε Ξ> jί^.
Since

ε if p | i + 1 ,

ε/p if p \ j + 1 ,

while |1 — cqj\p ^ ε, it follows that

TT 1 q° . π

— cq3

Case (ii). ε < \t\p.
Choose kQ ^ 0 so t h a t | 1 — cqk°\p = ε. We set

c= π - cqj

and we use the fact that

cqko+5\p = | 1 - max (ε, |1 - qj\p)

(here equality holds in the non-archimedean triangle inequality
because strict inequality would mean that ε = [1 — qj\9>\l — cqko+%,
contradicting the definition of ε). Thus,

o^j<k l — cq3

which approaches 0 as k

Π
l-q'

- cqk«+ί π

This completes the proof.

T H E O R E M 3 . Let q - 1 + t, \t\p < Then 2Φι
a b

converges and is continuous for a, beqzv, c£qz», \x\p^\c
satisfies the following transformation rule for xeqzp;

;q,x)

p. 2φltP
φltP

( 9 )
lab \ I c c/ax

20i p j ^? c / α α ; = Γp ( <
1 \ c / \c/α c/x

In particular, for x — b this gives

a b/x

(10)
a b

ί f β/αδj =
c c/ab

c/a c/b
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Proof. Since \c/ax\p — \c\p for a, xeqz*>, t h e lemma ensures

convergence and continuity of each of the series in (9). Theorem

1 ensures convergence and continuity of Γp ( ? °clx'iV' B y c o n "
tinuity, it suffices to prove (9) for a = q~n, b — q~"m

1 x = q~\ i.e., to
prove that

eqk

k=o (cqι; q)k(q; q)k

But these are finite sums and finite products, and the formal identity
in Q(q9 c) follows from Heine's classical identity (2), which becomes
the same as (11) when we set a = q~n, b = q~m

y x = q~ι. (Of course,
this identity is initially over the complex numbers, but it gives an
identity of elements of Q(q, c).) This completes the proof.

REMARK. If a = qa, b = qβ, a, β e Zp, and c = qr, 7" g Zp9 then it
is easy to verify that

l i m l o g . Γ J ' ;q) = Gp(7) + GP(Ύ - a - β)
ff-i \c/a c/b I

- GP(Ύ - a) - G,(Ύ - β) ,

where Gp\ ΩP\ZP —> Ωp is J. Diamond's p-adic log gamma function [3].
As a corollary of Theorem 3, we then obtain the following relation
of Diamond [5]:

log, Fp(a, β, 7; 1) - GP{Ί) + GP{Ί - a - β) - Gp(7 - α)

- Gp(7 - 0), ΎeΩp\Zp, a, βeZp .

Here

3. We now want to extend the definition of 2^1>3) to certain
α, &, c with c e qzp, in particular with c — q. The case c = g will be
the g-extension of Dwork's [6] p-adic analytic continuation Θ(α, β; x)
of the series

F,(a,β,l;x)= Σ

Suppose that a ~ qa, b — qβ, —a = a0 + aφ + e Zp, —β —
hp + eZp, \cq*° - l | p < 1*1,, 0 ̂  i0 < P, and α' = gα°α, 6' =
c' = gioc. Note that in the definition that follows we make a
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shift in argument x κ> cx/ab so that Theorem 3 involves evaluation
at x = 1 rather than at x — c/ab.

DEFINITION.

Σ \a, (l)j\θy Q

(12)

la b

a b \ .. ^+1 I c

ab

' , a?

if the limit exists.
Note that if cgqzp and \x\p<Zl, then the limit (12) exists, and

a b \ la b^ cxλ I /a'
(13) ^% ; ? , 0,P

\c / . \ c
The above definition of 2φ*p is a natural g-extension of Dwork^s

hypergeometric functions in [6].

THEOREM 4. Let \t\p < j r 1 ^ - " , αwώ ίeί &<zqzp x gz^ x D,
where D = {c\\c — q\p < \t\p}, be the largest set on which the limit
(12) exists and is continuous in a, b, c. Then for a, 6, ce 3?

lab \ I c clab
(14) 2φtJ q, 1 = ε(α, &)Γ* . ' _

\ c / \Φ Φ

where Γ$ is defined in (6) and e(a, b) is defined in Theorem 2.

Proof. Note that j0 = p - 1 for c 6 D. If α, 6, c € gzp x gz*> x
(D\qzp)f then we use (13) with a? = 1 together with (10) and (8) to
obtain (14). Since qz? x qzp x (D\qzp) c & is dense, the theorem
follows.

We now look more closely at the case c — g.

THEOREM 5 (Dwork [6]). Let

3=0

and let

Σ

Suppose that
( 1 ) £ ( i ) ( 0 ) = 1, i ^ O ;
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(2) \B"(j)/B^([j/p])\p ^ 1, i, j ^ 0;
( 3 ) B^(j+ lpN)/B^\[j/p] + lp^) = B^(j)/B^([j/p]) mod p",

i, 3, I ^ 0.
Further suppose that the B{ί)(j) depend continuously on parameters
#i, '- ,ameΩ™ and satisfy (l)-(3) for au , am e SaΩ™. Let Rcz
S x {x e Ωp\\x\p <* 1} be the subset on which

(15) \Flί](xpk)\p = 1 for all i, k ^ 0

("nonsuper singularity condition"). Then

f(x) = li

exists and is continuous on R.

REMARKS. 1. If, as in our case below, we have \B{ί)(j) — lo\p < 1
for some 0 <; lQ < p, i.e., if the B{i)(j) have residue classes in the
prime field, then (15) need only be verified for k = 0.

2. This formulation of Theorem 5 is somewhat different from
Dwork's. Dwork further assumes that for some fixed r: B{ί+r)(j) =
B{ί)(j) for all i, j. In that case (15) is only a finite set of conditions,
the set of x satisfying (15) (the "nonsupersingular" x) is quasi-con-
nected, and Dwork shows that f(χ) is analytic there. We do not
want the periodicity condition, but we do want the continuous
dependence on parameters. An examination of Dwork's proof in [6]
shows that the same proof applies without any changes at all under
our assumptions in Theorem 5.

T H E O R E M 6. Suppose that \q — l\p < p - 1 ( * - χ ) , and set

B-\o) = B-\j; a, b; q) = J^M^JΪL. (JL)J

(q q)) \ab/

for a = qa, b = qβ, — a = aQ + aγp + e Zp, —β = bQ + bxp + e
Zp. Define a{i) and β{i) by -a(i) = a, + ai+1p + , -β{i) = bt +
bi+1p+ •••, απd let aw =qpia{i), bw=q^w. Let B{ί)(j)=Bw(j; a[ί),
6(i); gpί). Then B{i)(j) satisfies conditions (l)-(3) o/ Theorem 5.
Suppose \x — l | p < 1. Γfee^ condition (15) feoίcZs i/ α^d (mẐ / i/ â  +
h < P for all i, i.e., i/ a^d o îτ/ ΐ/ ί/iere is ^o carrying when —a
and —β are added.

Proof. Condition (1) is trivial. It suffices to prove conditions
(2) and (3) for i = 0; then the conditions for i will follow by replac-
ing α, 6, q by a{ί), b{i\ qp\ Setting j = i0 + pjlf 0 <> jQ < p, so that
[j/p] = λ» we have
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(o;

(α'ί ί%

where we recall that

; g)?

(o;

if io ^ «o

if j 0 > α0

(α; ?)? = Π (1 - aqk) .
Qύk<jv\k

Since \q/ab\p == 1 and = \k + α | p \t\p9 it follows that

1 J - JO === ^Oy «/0 == ^0 1

-̂  |j) 1 J - ^ o \ J O = ^o ?

\PJ\

This proves (2).
To prove (3) it clearly suffices to take I — 1. For simplicity we

further assume that j0 <£ α0, j0 ^ δo; the other cases are treated
similarly. Then, since both sides of (3) are p-adic units, it suffices
to prove that

(16) (α; q)f+PN(b; ; q)Γ

(a;q)f(b;q)f(q;q)Up
(ab)*

N

By continuity, we may suppose that a = q~n, b = q~m. Now

Π (1 — aqk)
(α; ; q)* _

But (l-g f c)/(l~g f c +^) = l m o d p ^ if p|ifc. Since also {arbfyN~ιj{abyN

is of the form {qz)pN for some ί)-adic integer z (namely, z = —a —
/3 + α' + β')f it follows that the left side of (16) is a product of
terms which are all congruent to 1 modp^, as desired.

Finally, suppose \x — 1 | P < 1 , and let P be the maximal ideal
(open unit disc) in Ωp. We have

Σ aMbw

-ί !2 ίί mod P

I mod P

at
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Hence \F^(x)\p = 1 if and only if at + bt < p.

THEOREM 7. Suppose that the conditions of Theorem 6 hold with
\x — l\p < 1 and at + h < p for all i. Then the limit (12) exists
and

q j \q/a q/b

where Γ* is defined in (6).

Proof. Existence and continuity in a, b of the left side follow
from Theorems 5 and 6. It then suffices to verify (17) for a = q~n,
b = q~m. In that case both sides involve finite sums and products,
and the proof is very similar to that of Theorems 2 and 3.

REMARK. Theorem 7 is a g-extension of Theorem 2 in [11].

Conjecture. Theorem 7 holds without the condition that at +
bt < p for all i. If a0 + 60 ^ P> then the factor ε(α, 6) defined in
Theorem 2 must be inserted on the right. If a + β is a nonpositive
integer, we require that both a and β be nonpositive integers
{otherwise the limit (12) would give 0/0).

REMARKS. 1. The proof of Theorem 7 shows that the conjecture
holds whenever one of a or β is a nonpositive integer (and the
other can be any p-adic integer).

2. Using Diamond's method in [5], one can prove the conjecture
under a fairly weak assumption: that the p-adic absolute value of

the partial sums grows strictly slower than pN.
qv ' * '

In addition, Theorem 7 and the conjecture can be generalized to

2φi,P(
a q, l ) for c Φ q. In our context, Diamond's method involves

letting z £ qz* approach c e qzp and estimating the difference between
the ratio on the right in (12) (with x == 1) and the same ratio with
c replaced by z.
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