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ESTIMATES OF MEROMORPHIC FUNCTIONS
AND SUMMABILITY THEOREMS

A. A. SHKALIKOV

The main goal of this paper is to prove the following
theorem.

Tueorem 1. Let L be an unbounded operator in a
Hilbert space 9, having a discrete spectrum {1,}CG = BrU
P,., where Br={1:|A|= R}, P,,,={ARea=0, [A]>1, [Im2=
h(Red)? >0, —co < q<1}, and for some y < oo, L7 '€Eaqy.
Also let the estimate

d2— L)y =Cd*a, &), 2€G
hold outside the domain G’ = BpUP,,;, and for some ¢ > 0,
»>0
2 1=a@) S de?

12515t

provided ¢ is sufficiently large.

Then L€ A(a, 9) for any « > max0, p — (1 — q).

Besides, if the numbers a or % can be chosen arbitrarily
small and p— (1 —¢q) >0, then a =p — (1 — q) is admissible.

Introduction. Let L be an unbounded linear operator in a
separable complex Hilbert space  with domain of definition 2(L)
which is dense in §, having a discrete spectrum o(L). Let {e;}5,
be a sequence consisting of bases in the root subspaces of L, where
e; is a root vector corresponding to the eigenvalue A;. To each
vector x € § we associate its Fourier series > (z, ¢f)e; with respect
to this system (not necessarily convergent), where {¢}} is a system
which is biorthogonal to {e;}.

We write Le o/ (a, M, ) if for an arbitrary vector x in IR,
where I is some linear manifold in §, the Fourier series >, (x, ¢})e;
is summable in § to =z by the Abel method of order &« with paren-
thesis.

If we suppose that L has no associated vectors and all its eigen-
values {\;} lie in the sector 4, = {\:|arg )| =< 7/20, 1/2 < 0 < oo}
then the Abel method of summability of order a(o =< ) consists in
replacing the series >, (, ef)e; by series

(1) w(t) = 3 54, ede; ;

it is required that for any ¢ > 0 after possible recombination of
its terms and appropriate use of parenthesis (not depending on 2z ¢
M, or t > 0) this series converges in $ and its sum u,(t) converges
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toxin $ ast— +0. The branch of the function \* in (1) is selected
so that »* > 0 if » > 0. In the general case, when there do exist
associated vectors, the factors for the vectors e¢; in the series (1)
are defined by calculating the integral

_Lge-m(u — L)y“zdx
277

along a contour which surrounds a corresponding eigenvalue (see
[9], where the Abel method was first introduced).

By o, we denote the collection of all compact operators A, for
which ) s?(A) < «, where s;(A) are eigenvalues of operator (4A4*)"2,
and by o. the collection of all compaect operators.

The following result combines those of many authors.

THEOREM. Let L be an unbounded operator in a Hilbert space
9 having a discrete spectrum {\;} CG = By U 44, where Bp = {\:
IN SR}, 4y = {\:]arg M| £ w/260}, and its inverse operator L€ oy
for some ¥ < 6. If the estimate

IO — L)™' < Cd™'(n, G), MNEG

holds outside the domain G, where d(\, G) is the distance between
N and G, then

(1) the system of root wvectors of operator L is complete in the
space 9.

(2) Les(a, D), if ae(v,0).

M. V. Keldysh [6], [7] proved the first assertion in the case
L=U+ V)H, where H=H*>0, Veo. Subsequently, the
Keldysh method was generalized by many authors, in particular,
in a similar form the first assertion was proved by S. Agmon [1],
by I. C. Gohberg and M. G. Krein [3]. The second assertion is
much stronger. In [9] V. B. Lidskii proved, that Le o (a, 2/(L),
9), if ae(v,6). Recently V. I. Macaev noticed that, indeed, the
second assertion holds.

In many cases the spectrum of operator L lies asymptotically
in an arbitrarily small sector A,, i.e., the number # may be chosen
arbitrarily large. Such cases occur for some differential operators
and are valid for operators which can be represented in the form
L=+ V)H, where H>0 and Veo.. In this situation the
interval for « is equal to (7, ). For applications (see [9]) the
most important case is when the order of summability ¢ =1. In

! This note is reported in the appendix to the book [5]. The appendix is written
by M. S. Agranovich.
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this connection it is highly important to clear up the general con-
ditions under which the interval for a can be extended. Indeed,
it can be extended if the spectrum of operator L lies asymptotically
not only in an arbitrarily small sector but in some domain which
is bounded by parabolas, lines, or hyperbolas.

The following theorem, which can be considered as the continua-
tion of the previous theorem, formulates the exact result.

THEOREM 1. Let L be an unbounded operator in a Hilbert space
9, having a discrete spectrum {\;} CG = B U P,,, where By = {\:
INZR}L P,={N\Rex=0, [M>1, [ImA[ = h(Rer)? >0, —oo
<qg < 1}, and for some ¥ < o, L™ ea,. Also let the estimate

I(In — L) = Cd7*(\, G)y, NEG
hold outside the domain G' = Bz U P,,,, and for some a >0, p >0

22 1 =un) £ at?
1Tst
provided t is sufficiently large.
Then Le 7 (a, ) for any o > max0, p — (1 — q).
Besides, if the numbers a or h can be chosen arbitrarily small
and p — (1 —q) >0, then o = p — (1 — q) 18 admissible.

Some results about extension of the interval for a were obtained
by V. B. Lidskii [10], by V. E. Katznelson and M. S. Agranovich
(see [2]). All these results dealt with operators which can be
represented in the form of a weakly perturbed self-adjoint positive
operator, and the proofs of the appropriate statements used the
specific properties of those operators.

Theorem 1 includes and generalizes these results. For its proof
we use another more general method, where new estimates for
meromorphic functions play the basic role. These estimates have
independent significance; the following theorem formulates the
relevant result.

THEOREM 2. Let F(\) be a meromorphic function of finite order
Y in the sector A, and its poles {\;} lie in the domain P,, = {\
Rern>0, M >1, [Imrx|<h(ReN), h >0, —co < q<1}. Also let
the estimate |F(\)| < C hold on the boundary of the domain P,,,
and for some a >0, p >0
> 1 =a) £ at?

1251=t

provided t is sufficiently large.
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Then there exists a sequence 1, < 1, < -+ < 1, — oo, such that
the estimate

[F(\)| = Cexp (gah |\ P~477)

holds for all |N| =7, NEP,,, where the constants C, o do mot
depend on N, a, by, if 0 < h < hy and h, is any fixed number.

In the case when the function F(\) is meromorphic in the whole
complex plane and has the finite order v, and when its poles {\;}
are scattered in the sector A, 0 > 7, n() < at? and |F(\)| < C on
04, one can obtain, using the well-known theorem of Titchmarsh
(see for example [1], p. 278), the following estimate

[FQV)| = Cexp [P, e >0, IN] =74, vedy,

where 7, <7, < --- < 7,—oco. This estimate was used by V. B.
Lidskii [9] for his summability theorem.

We note that in the case when {\;} are concentrated close to
the real axis, namely, in some domain P,,, ¢ <1, Theorem 2 gives
a much sharper estimate.

Proof of Theorems 1 and 2. In this section we will denote

1. 4y = {\:arg |\ < 7w/26},

2. P,h,=0MRex>0, |0 >1, [Im\|<hRer), h >0, —co<
g <1},

3. Ph,={:Rern>0,|A>1,0<|Imr <hRer),h >0, —oo
<q <1}

4. Bk, r)={N N —2]Z 7}, BO, ) = B,.

If the sequence {)\,} lies in the upper half-plane (Imx, > 0)
and

i Im»x,

—_—t 0o,
ST T

then the product

SN — Ay |14 A2
B/\': Zn n
) Elx—xnlthi

converges and is called Blaschke product for the sequence {i,}.

We will start with the proof of the Theorem 2. The estimates
of Blaschke product will play the main role in proving this theorem.
First we will establish several lemmas.

LEMMA 1. Given any number ¢ >0 and complex numbers a,,
®oy =+, Oy, there is a system of circles in the complex plane, with
the sum of the radit not greater than 2¢N, such that for each
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point 2 lying outside these circles one has the imequalities
2 —a,|=ke, n=1,---,N,

if the mumbers a, have been enumerated in increasing order of
|z — a].

Proof. This lemma is essentially equivalent to H. Cartan’s
well-known theorem about estimating from below the modulus of a
polynomial, and its proof can be obtained by following the proof of
Cartan’s theorem (see [8], Chap. 1, §7).

Let E be a set in the complex plane and suppose, that for any
r sufficiently large the set E N B, may be covered by a system of
circles, such that the total sum of their radii is not greater than
07, where the number 6 does not depend on » and 0 <6 < 1. The
number o, which is the minimum of such 6, we will define as the
linear density of the set F.

LEMMA 2. Let {\;} be a sequence in the complex plane, such
that for all t sufficiently large
Sl=an)Zat.

12,1t

Given any number 0 < 6 < 1, there exists the set K of linear
density =0, such that for all z€ D one has the inequalities

(3) PRSI NS I

4a
if the numbers \, have been enumerated in order of increasing
lz - )}klo

Proof. Let A, -+, \;, be the points of the sequence {\,} lying
in the circle B,.. From the inequality =n(t) < at, (¢ > t,) it follows
that k, < 2ar. Fix any 6, 0 < 6 < 1. According to Lemma 1 (in this
lemma we put ¢ = d/4a) there exists a set K, which consists of the
circles with total sum of the radii < 2¢k, < 6r, such that for all
2 € E, one has the inequalities

(4) e—nl =k k=12 ky,
4a

if the numbers \,, ---, A, have been enumerated in order of increas-
ing |z — Nl
By the inequality () < at, we conclude |\,| = k/a for all A\, €
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B,.. Consequently, if |z| < », then

(5) PR S L1 E S Ty A IS TS AT S
2 2a

Let G, = B\E,, G = U,>,,G., E =C\G, where by C we denote
the complex plane. According to (4), (5), the inequalities (3) hold,
if ze @, for all » > ¢, consequently, they hold for zeG@G, i.e., for
ZEH.

Evidently, B, N EC E,; therefore the set B, N E may be covered
by a system of circles with sum of the radii < 6. Hence the linear
density of the set E is not greater than 6. Thus Lemma 2 is
proved.

LEMMA 3. Let the sequence {\.} lie in the domain P;h, and

S 1=un@k) < at

12, 1=t

provided t is sufficiently large.

Given any number 0 < 6 < 1 there exists a set E, such that its
linear demsity <06 and for all » € PH\E one has the inequality

|B(M)| = exp (—oahd ™ [N]), Me PL\E,

where the function B(\) is defined by (2), and the constant o does
not depend on \, a, h,d, if 0 < h < h, and h, is any fired number.

Proof. Denote » = ¢t + iy, N, = &, + iv,. Then

BOY|~ M=l oy (= ) 4 (4 )
B = T =g = el
) 4py
— 1 —_—k .
I+ |x—>»klz)

Taking into account that v < Ap?, v, < hptf, [N — N| 2 |28 — ),
¢ <1, we obtain

e AR p g > AR e (o, — 1) + pI°
B <TI(1 < 1
| B —l:!;I1< +|7\,-—)\,k]2>_ kl.I—l * [N — A [? )
oo 4h2#2q oo 4h2#q
< 1 .
s (0 + AL I (0 2

According to Lemma 2, there exists a set E such that its linear
density £ 6 and for all A€FE one has the inequalities (3) after
enumerating the sequence {\,} properly. Hence, if A e P,;\E, then
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—2In|B(\)|
< (1 + ) + {1 + SR ) o
(6) = atn(1+ ML)+ ain(1 + SR

Sw [ 198a 42 — g)(4a) iy ] i
2 + 6@t | 3t + A(da)This

< In(l + C.a?h?0~£%) + In(l + Coa® %0 *h*pe) + Cyahd =t
+ C,ah**15=1 st < Cahd~'pt < Cahd™ |\ |7,

1/2

where the constant C does not depend on A, @, h,d, if 0 < h <h,
and h, is any fixed number. We note that in (6) the following
estimates were used:

© widw - °° T o
il 5 1 t A 1.
Sx/z 0%? + w? @0 - arcig 1/2 < 2 @37
gw wdx - l—gwl/z—qa—l da Sco dx :l
2 0TIt o T 0% L 27 - @dr? 0l/2=05-10%"9 L §972
@ [(“797 dy S°° da ]
< 32“’[81/2 o2 + ol2=g5=1 ¢
< @7 + 1 W0 = 2—4¢ 9 gyr-ag-
l1—g¢q 1—g¢q

The estimates (6) prove Lemma 3.

LEMMA 4. Let the sequence {\;} lie in the domain P,, and

(7) > 1=ma)Z at?.
12l <t

Then there exists a holomorphic function A(\) in the domain
P, .., such that

(a) 4A(n) = 0 for all points of the sequence {\,}, and N\, is an
s-multiple root of A(N), if it is repeated in the sequence s times.

(b) 4N £1, if N€ P,

(e) given 6 >0 there exists a set FE, such that its linear
density < 0 and for N € P,,;\E one has the estimate

(8) IAO\:)! = exp (—gahﬁ—ﬁ!xlp—(l—q)) ,

where the constants o, 3 > 0 do not depend on N\, a, h,d, if 0 < h <
hy and h, 18 any fixed number.
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Proof. Let us consider the function p(\) = [A'77 + 31l — q)i +
], It is easy to verify, that provided ¢ is sufficiently large,
the function p(\) maps the domain P,,, inside the domain Pj,,
i.e., o(P,, )P 4, where ¢ =1 — (1 — q)/p, b/ = 6ph. Hence, the
sequence {o,} = {o(\,)} lies in the domain P, and furthermore,
according to (7), we have

1= > 1
loqi =t 1 3k (e—1 a4 TP st
< 3 1= > 1< 2at.
12, 1P=2t 12,1 =2L/pe1/D

According to Lemma 3, given any number ¢, > 0, there exists
a set E, such that its linear density < 6, and for e P/;\E one has
the estimate

(9) |B(0)| = exp [—agahd*[p]"],

where B(p) = II(p — p,)(p — p»)"". Evidently, |B(o)| < 1 if Im p>0.
Taking into account that o7'(p; ) D P, ., We find that the function
4\) = B(p(\)) is holomorphic in the domain P,., and satisfies condi-
tions (a) and (b). By virtue of (9), we have

[A(\)| = exp (—oahd [N + Bh(1 — @)i + T|?7)
= exp (—o,ahd ' NP7,

if vep (P u)\o(E)D P,,\07 (). Thus, the proof of Lemma 4
will be complete if we show that the set p~'(&) has the linear density
<Co¥¢, where the constants C > 0, @ > 0 do not depend on a, k, 9,.
Then, supposing é = Cé'%, we will obtain the estimate (8).

It is sufficient to show that if the set I has linear density
<e < 1, then its image &) under the map £(\) = A" has the linear
density < Ce”’, where £’ = min(x,1) and the constant C does not
depend on e&.

For any # sufficiently large, there exists circles B(z, ¢;), such
that they cover the set M N B, and >, < er. If ¢ < |2z, then

[(z; + g,6) — 25| < |2:"|(A + ee™z7t) — 1]

10
0 = Cela|™

by virtue of the simple inequality |[(1 + 2)" — 1| £ C.(k)|2|, which
holds for |z|=<1. If |z, <e, then B(z,¢)C B(0, 2,) C B(0, 2r¢).
Taking into account (10), we find that the set £(IR) N B(0, »*) may
be covered by circles with the sum of the radii not greater than
(2re)" + G, 3l e |z = @re) + Cor ' Xie; = Cor(e” + o).

This means that the set £(IR) has linear density < 2C.,e*’, where
k" = min (x,1). Hence Lemma 4 is established.
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LEMMA 5. Let the sequence {\;} lie in the domain P,, and

11) 2 1=mn() < at”,

12,15t

provided t is sufficiently large.
Then outside the domain P,,, one has the estimate
(12) ‘ VO")‘ g CeXp (—lx‘pﬂ): €> 0: A GC\Pq,zh ’

where the function V(\) is the canonical product for the sequence

{d

13 Vo) = Ii[l(l—%>exp<—£—;—+ e ;”M> v =[p].

Proof. If +N€ P, N, €P,, then there exist the constants
C,, C, depending only on h, q, such that

(14) v =N 2 ClImn| = CG N .

If —\neP,,, then the estimate (14) holds for ¢ =1, and con-
sequently (14) holds for all A€ P, ,,.

It follows from condition (11), that |n...]| = a “?kV?. Taking
into account that

N
2k =

k=1

iZN"+1 if =+ —1
2lnN, if £k = -1,

we obtain the estimate

Ao N”) > "SI L
Mk%mlnlexp<hk * + UNY = kZ=1 i +
v v n(21d]
e Ry N
(15) VA =1 k=1
> —2C, 3 M@ M )" Inn@ (N )
i=1
= —C, 3 NIV = —Co N [Pln ]
s=1
Further, using (14), we have
5 mft- 2]z GG
12p1<212] N 1251<2121 [N |

> n(zml)m-;-clczmq—l > —CynJln|n] .

Since
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/\Jv _ oo Ns

b

ln(l - ——) +—_ e+
21>2121 A \,k YN} 12, >2120 s=0F1 SN,

we finally get the estimate

A A A
Lo o (s )
;xkgl;[zm l( Ny exp + T VAL

A
oo 1 ‘ )\' )s
= — |
1k|>2{1| < ; 1YL,
= 00 e (=35 5H]))
'Ik >2 [Z] )\, /\Jk
Y = 0, e (=23
- [1k1>m( g
- _ RN
= XD ( 2 121 >2[A, A >
)\; p+s/2
= ex < —_— >
- p 11L>>2m N

= Ce eXp("‘]NIp—H ’

if ¢ > 0 is chosen, such that p + ¢/2 < v + 1, and || is sufficiently
large. The estimates (15)-(17) prove Lemma 5.

REMARK. According to Titchmarsh’s theorem, there exists a
sequence 7, < 7, < --- < 7, — oo, such that the estimate (12) holds
not only for » e€C\P,.,, but also for |\| = 7,.

LEMMA 6.2 Let the function f(\) be holomorphic in the sector
Ay = {ilargn| < w20, 6 =1/2}, let f have mo zeros imside this
sector and let the order of its growth be o < . Then for any
given 0 > 0 inside the sector Ay., one has the estimate

(18) [ f(M)] Z exp (—o [T, N el IV >1,

where the constant o does not depend on .

Proof. 1If the function +r(z) is holomorphic in the circle (2] <1
and has no zeros in this circle, then its modulus satisfies the
inequality ([8], Chap. 1, §6):

c[zi

— 2]
where ¢ = 247%(0)In max,, <, [4(z)|. The function z(z) = (£—1)(p+1)™"

nly@)| =z ———, 2] <1,

2 A similar lemma (unpublished) was obtained by another method by G. V.
Radzievskii.
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maps the right half-plane into the unit circle, and as |p¢] — « we
have asymptotically (x = |¢|e)

pr—1
g+1 _ VIpPE+1—2[¢fcos ¢
1 |g=1 Vgl + 14 2[p¢lcosg — 1V [P + 1 — 2[p¢fcos ¢
gt 1

_ ¢l —cosg + 00
2cos ¢ + O(|p]™)

Hence, the function ¢(z), which is holomorphie, bounded and
has no zeros in the right half-plane, satisfies the inequality

—Cl¢|

(19) Inlg(p)| = W:

if pedy, lpl>1.

Suppose that § > p. Then 6 — ¢ > p for some 7z > 0. In this
case the function f(\)exp(—\’~*) is holomorphic and bounded in
the sector 4,. If n=p"%, then the function g(x)= f(¢?) exp (— pi=/?)
satisfies (19) and one has the estimate

(20) InlfO)] = —a NP Nedos IN]>1.

In case < p we consider the function fy(\)=f(\) exp (—e***2\*?),
which is holomorphic and bounded in the sector A%.,, = {\: —
7/2((1/0 + 20) + ¢) < arg N < w/2(1/(p + 20) — ¢)} C 4o, if 1/(0 + 20)—
1/6 < ¢ <1/60 — 1/(p + 26). All sectors A;,, cover the sector A,
when ¢ changes in the indicated limits. Therefore, it is sufficient
to show that the function f(\) satisfies (18) in every sector A%.,,.

The function pg(\) = (e™***\)*** maps the sector 4%,, into the
right half-plane. Then the function g(y) = fi(e ***2u"¢*¥) is holo-
morphic and bounded in the right half-plane, and hence its modulus
satisfies (19). From this inequality we obtain

(21) Infn) = —o|NfH, Nedyis N> 1.

The inequalities (20), (21) prove Lemma 6.
Now let us go on to the proof of Theorem 2.

Proof of Theorem 2. Let F(\)=F,(\)(F,(\)™*, where F,(\), F,(\)
are holomorphic functions of finite order < v in the sector 4, and
{r.} are the zeros of the function F,(\). According to Lemma 4,
there exists a function 4(\), which satisfies the condition (a)-(c) of
this lemma. By V(\) we denote the canonical product (13) for the
sequence {\,}. Let us consider the funection
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F.(\)
GO\ = F(\)4 s
\) W4 = 500 —=r(N)
where
() AN
s(\) = Bk Py(\) = Voo

The function G(\) is holomorphic in the domain P,,; we want
to show that it has growth of finite order in that domain. Let
Z, = P,;, N B,, where r, are the numbers that were mentioned in
the remark after Lemma 5. According to Lemma 5 and Titchmarsh’s
theorem, we have

l6(\) exp (=N o2y, = C, [9(N) €xp (=N ) |52, = €,

if v > max(v,6), and the constant C does not depend on k.
By virtue of the maximum principle, we have the functions
s(\) exp (—\) and +(\) exp (—\") are bounded in the domain P,,,
i.e., the functions ¢(\), «¥(\) have finite order < 7’ in the domain
P,,.. By inequality (12) we find that the function g¢(\) has order
=< 7" in the domain 4,. As soon as ¢(\) has no zeros in the sector
A4, we conclude from Lemma 6 that the function ¢7*(\) has order <7’
in sector Ay.;,, 6 > 0. Hence, the function G(\) has order <7’ in
domain P,,,.
For nedP,,, we have the inequality |G(\)| < C, insofar as

[ F\) lopg,, = Gy |40 lop,,,, = 1.

Using the Phragmen-Lindelof principle (see, for example [8],
chap. 1, §14), we have |G(\)| < C for all ne P,,,. Hence, according
to Lemma 6,

(22) [F(\M) | = Cl4(W) [T = Cexp(—oahd™?|N[07"),

if ne P,,,\E, where the set E has linear density < §; the constants
C, o, B3 do not depend on A, a, k, §, and one can choose ¢ arbitrarily
small.

Obviously, if the set E has linear density < 1/2, then there
exist numbers 0 < »r, <7, <1l-- <7,— o, such that the circles
[n] = #, do not interesect the set E. Then, the assertion of theorem
2 follows from the estimate (22).

Essentially, Theorem 1 may be considered as a corollary of the
Theorem 2.

Proof of Theorem 1. Fix the number «, such that p—(1—¢)<a.
All eigenvalues of the operator L, except for a finite number, lie
in the sector 4,,,¢& > 0. Without loss of generality, we suppose
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that there are no eigenvalues of the operator L outside the sector
Aa+$'
Let x€$. Consider the integral

w () = _1_§ eI — L)"zdn, t >0,
2wy Ir

where the contour I" is the boundary of the sector 4,.. Since
(W — L)™|| £ C|In|™ for nel’, the function w,(f) is correctly defined
for all ¢t > 0. For the proof of the theorem we have to show that

(a) the function u,(t) can be represented in the form (1) and
the series (1) converges in § after some rearrangement of paren-
theses not depending on ¢ and .

(b) lim,.. u,(t) = @.

It follows from Leoy, that (\] — L)™ is a meromorphic func-
tion of order < v (see, for example, [9]). According to Theorem 2,
there exists a sequence 7, < 7, < +++ < 7, — oo, such that for |\| =
7, one has the estimate

(23) IM — L)7*|| = exp (—oah|N]P~*"2),

where the constant ¢ does not depend on a, h, 0 < b < h,.
Let K, ={n:ir, £ INE 1)y &, =4,..NK,. It follows from
estimate (23), that for any t >0 (a > — (1 — q))

(24) u () = is e (D — L)~wdn ,

Lt "0

and the series converges in 9.

Calculating the integrals in (24), we obtain the assertion (a).
We note also that in the case when either a, or % can be chosen
arbitrarily small and » — (1 — ¢q) > 0, the assertion (a) is valid for
a=p—(1—gq).

As was mentioned before, under assumption |[[(In — L)' =
Cd*(\, 4,4.), the assertion (b) was proved by V. B. Lidskii [9] for
any xe€ 2(L), and by V. I. Macaev (see [5]) for any x€ 9.

We note only that (b) is valid for x, which can be represented
as a finite linear combination of eigenvectors of the operator L,
and all such z are closed in §. Consequently, the assertion (b) is
valid for all =, if |Ju,(?)|| < C|/z|, where the constant C does not
depend on ¢, 0 < ¢ <1. But this fact may be proved also by using
the ideas from a theorem of E. Hille about the generation of holo-
morphic semi-groups (see [4], §12.8).

As was shown in [9], the summability theorems have an impor-
tant role in solving some nonstationary differential equations. The
applications of Theorem 1 to such problems will be considered by
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the author in a subsequent paper.
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