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BUNDLES OVER CONFIGURATION SPACES

F. R. COHEN, R. L. COHEN, N. J. KUHN AND J. L. NEISENDORFER

Let F(Rn, k) be the configuration space of ordered sets of k
distinct points in R". F(Rn, k) is acted upon freely by the symmetric
group on k letters, Σk. In this paper we calculate the order of the vector
bundles

{„,*: F(R", k) XΣt Rk - F(R", k)/Σk.

Applications to the study of iterated loop spaces of spheres are also
discussed.

1. The study of the stable homotopy type of the spaces QnSn+r has
received much attention in recent years [2,8,13]. The starting point for
this study was Snaith's stable descomposition [18]:

Q»Sn+r ^s V

where F(Rn, k) + is the configuration space of k ordered distinct points in
Rn together with a disjoint basepoint, Srik) is the fc-fold smash product of
Sr with itself, Σk is the symmetric group of k letters, and where " — s"
denotes stable homotopy equivalence.

The space F(Rn, k)+ /\ΣkS
μk) is clearly the Thom complex of the

r-fold Whitney sum of the vector bundle

ξΛy. F(R\ k) X^Rk - Fipr, k)/Σk.

If M(i;n k) is the associated Thom spectrum, then Snaith's theorem gives
an equivalence of spectra

where Σ°° is the stabihzation functor which assigns to a space its associ-
ated suspension spectrum.

If φnk is the stable order of ξnk (i.e., φnk is the smallest integer such
that ΦΛffc{njk is stably trivial) then we have the obvious periodicity

This, together with Snaith's theorem gives clear interrelationships amongst
the stable homotopy types of the spaces Ω,nSn+r as r varies.

The case n = 2 is well understood by the work of F. Cohen,
M. Mahowald, and R. J. Milgram [5], who proved that φ2k = 2 for all k.
The resulting periodicity in the homotopy type of the associated Thom
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spectra was used by M. Mahowald [13] and R. Cohen [8] to construct new
infinite families in the stable homotopy ring π*.

It is the purpose of this paper to compute the orders φnk for general n
and k. Our main result can be stated as follows. Let

where p denotes an odd prime, and where ρ(m) is Adam's vector field
number: ρ(m) = the number of positive integers < m that are congruent
to 0,1,2, or 4 mod 8.

THEOREM 1.1. // w^0mod4, then Φn^k — cιnk. Furthermore, if
n=0 mod 4, then ank \ φnΛ and φnk \ 2ank.

REMARKS. 1. The bundle ξn2 is easily seen to be stably isomorphic to
the canonical line bundle over R ? " " 1 , so the fact that φn2 = 2p(n~l) is the
classical result of Adams [1].

2. Using the Atiyah-Hirzebruch spectral sequence converging to the
KO-theory of F(Rn, p)/Σp9 S. W. Yang computed the order of ξnp, and
proved that ank \ φnk [20].

3. The conjecture that Φnk — ank was made by Yang, Mahowald, and
F. Cohen.

The essential idea in the proof of 1.1 is to notice that the classifying
map

of ξn k factors as a composition of maps, one of which is the natural
inclusion

ιn.

where QX - l im,^^ ΏmΣmX, and where Ω^5W denotes the component of
ΏnSn containing maps of degree k. We then study the order of in localized
at a prime/?, using the results of F. Cohen, J. Moore, and J. Neisendorfer
[6,7,15] and of Toda [19].
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material in this paper.
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2. Proof of Theorem 1.1. Our first object is to identify the classify-
ing maps of the bundles ξnk. This is done easily by recalling first that
F(R°°, k) = limn^ooF(Rn, k) is a contractible space, acted upon freely by
Σk9 and therefore F(R°°, k)/Σk = BΣk. For a proof of this, see for
instance [14].

Thus the bundle

ξxy. F(K°, k) XΣR
k - F(K», k)/Σk = BΣk

is classified by the map

fk:BΣk-+BO(k)

induced by the regular representation of Σk in O{k). Moreover, since the
bundle ξnk is the pull-back of ξ^^ under the inclusion F(Rn, k)/Σk C

°, k)/Σk, ξnk is classified by the map

fny. F(R\ k)/Σk C F(R°°, k)/Σk = k
fk

The stable order φn k of ξ,n k is the order of the class determined byfnk

in the abelian group [i^R", k)/Σk, BO]. In order to determine φnk we
first recall some of May's iterated loop space machinery [14].

Recall first the "approximations"

an: CnX^2nΣnX

of [14]. CnX is a filtered space which approximates ΩnΣnX in the sense
that an is a weak homotopy equivalence if Xϊs connected. For X = S°,

and the map an: UkF(W, k)/Σk -> Ώ"S" takes F(R", k)/Σk to Ώ"kS
n.

Now consider the map

β: UBO(k) ->BOXZ
k

which includes BO(k) into BO X {k} in the obvious manner. Let
η: QS° -> BO X Z be the infinite loop map induced by the map S° ->
BO X Z which sends 0 to the basepoint in BOX {0} and 1 to the
basepoint in BO X {1}. We then have

LEMMA 2.1. The following diagram homotopy commutes for all positive
integers n and k.
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F{R", k)/Σk C
j

->BOX Z
v

where *[-k] translates components by -k.

Proof. This follows directly from May's iterated loop space machin-
ery, and an explicit proof is found in [4].

Note that the classifying map fnk: F(Rn, k)/Σk -> BO = BO X {0}
C BO X Z of ξn k is the composition obtained by going along the top and
then down the right-hand side of the diagram in Lemma 2.1. Now since η
is a map of infinite loop spaces, and therefore like in is an i/-map, Lemma
2.1 implies that the power of p in the prime factorization of φnk is
bounded by the order of the localization at p of in E [ΩQS"7, QQS0].

PROPOSITION 2.2. For a prime p, let inp\ QQS"P) -> Q0Sfp) be the
localization of in. Then in [ Ω Q S ^ , Q0S^p)] the order of in p dividespq, where

ifp is odd
2

p(n - 1) ifp = 2andn ^ 0 m o d 4

p(n - 1) + 1 ifp — 2andn Ξ θ m o d 4 .

Notice that Theorem 1.1 is a corollary of Proposition 2.2 in view of
Yang's results [20] (see the second remark following the statement of
Theorem 1.1), and the fact that if k < p, F(R°°, k)/Σk = BΣk is homology
/7-equivalent to a point.

Proof of 2.2. We prove Proposition 2.2 in several cases.

Case \.p odd and n odd (say n — 2m + 1).
Recent results of Selick [17], Cohen, Moore and Neisendorfer [6,7],

and Neisendorfer [15] imply that the identity element

1 fz ΓQ2^+Io2m+1 o2m+lr<2m+ll

has order pm. Since in is an i/-map, the result follows in this case.
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Case 2. p = 2, n odd.

To verify this case we shall use the Kahn-Priddy theorem [10]:

THEOREM 2.3. There exist maps s: QRP°° -> Q0S° and j : Q0S° ->
QRP°° such that when localized at the prime 2, s <> j is a homotopy
equivalence.

In [16], Segal gave a proof of this theorem in which he showed that
when restricted to Ω^Sn C Q0S°, j factors through a map j n : ίl^S" ->
QRPn~K In [3], Caruso, Cohen, May, and Taylor also gave a proof of the
Kahn-Priddy theorem, obtaining Segal's factorization, and in which ex-
plicit formulae for the mapsyrt, j \ and s are given.

In any case, using the proof and the formulae in [3] of this theorem,
N. Kuhn verified that the mapsyrt and j are one-fold loop maps [12]. The
fact thaty is an i/-map actually follows immediately from Kahn's work in
[11]. Using these results, we shall consider the following homotopy com-
mutative diagram of spaces localized at 2.

<2oS°

QRPn~ι C QRP°

where (s ° j)~λ is a homotopy inverse to s o j . Since s is an infinite loop
map, andy deloops once, s ° j and therefore (s o j)~ι are maps of loop
spaces. Thus the order of in (localized at 2) divides the order of the
identity of QRPn~\ which Toda showed to be 2p(n~l) when n is odd [19].
This proves the proposition in this case.

Case 3. n = 2m.

Consider the following fibration of James [9].

This fibration yields the classical EHP sequence in homotopy groups.
Apply Ω 2 m - 1 to this fibration and consider the following diagram.
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T

where T is twice the identity map, and [/, /]' = Ω2m[/, /], where [/, /]:
5 f 4 w ~ 1 -» S2m is the Whitehead product of the identity with itself.

LEMMA 2.4. In the above diagram we have
(a) both squares commute,
(b) the lower triangle commutes, and
(c) i2m o [/, /"]' is null homotopic.

Proof. The commutativity of the two squares is obvious, and the
commutativity of the lower triangle follows from the standard fact that
the Hopf invariant of [/, /] is 2. Similarly, the fact that i 2 w ° [ί, if = 0
follows from the standard fact that the Whitehead product [/, i] stabilizes
to zero.

COROLLARY 2.5. There exists a map g: Ω 2 m S 2 m -> Ω^m~ ι5 ί 2 m~ 1 so that
T — [/, /] ' o h + e o g.

Proof. By the lemma, A o (7 1—[/,/]'o A) is null homotopic, and
therefore T - [i, /] ' o A lifts to a map g: Ω 2 m 5 2 m -> S2m~x satisfying the
required property.

We are now ready to prove the proposition in this final case. Localiz-
ing at 2, we have that

ι2m

= 2p{2m-2)(i2m o [ i , / ] ' oh + i2moeog)

by 2.5, and which equals 2 p ( 2 m ~ 2 ) (/ 2 m _ 1 o g) by 2.4 part c and the fact
that / 2 m_i — Hm ° e- ^ u t 2 p ( 2 w~ 2 )/ 2m-i i s n u ^ homotopic by the result in
case 2. We may therefore conclude that

Similarly, localized at/? odd and using the result of case 1, we obtain
that 2pl(n~~X)/2]i2m is null homotopic, and therefore so is pί{n~l)/2]i2m
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Thus we have proved the proposition when p is odd, and summarizing the
results in/7 = 2, we have:

2 P ( « - i)|Λ = 0 if n is odd,

2P(n-2)+i^ — Q if w i s even,

and 2p ( f l )ιΛ = 0 if n is even.

The last equation follows from the first since i2m factors through i2m+λ.
Notice that if n = 2mod 8, ρ(n — I) = p(n — 2) + 1 and therefore

2P(»-i) / n = o. If n = 6mod8, p(n - 1) = p(n) so 2p ( n~1 )/ I I = 0. Thus if
n iΞθmod4, 2p ( w" 1 )/M is null homotopic. If n = 0mod4, ρ(w - 1) =
p(« — 2) so 2 p ( n ~ I ) + I / M = 0.

This completes the proof of Proposition 2.2, and therefore of Theo-
rem 1.1.
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