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NOTES ON THE FEYNMAN INTEGRAL,
III: THE SCHROEDINGER EQUATION

G. W. JOHNSON AND D. L. SKOUG

In the setting of Cameron and Storvick's recent theory we show that
the solution of an integral equation formally equivalent to the Schroe-
dinger equation is expressible as the analytic Feynman integral
of a function on ^-dimensional Wiener space of the form F(X) =
exp{/o'0(ί - s, X(s) + I) ds}ψ(X(t\+ ?). Here Xis an Revalued con-
tinuous function on [0, /] such that Z(0) = 0, ? G R\ and ψ and θ(s, )
are Fourier-Stieltjes transforms.

1. Introduction. Let Lv

2[0, to] = Lv

2 denote the space of Revalued,
Lebesgue measurable, square integrable functions on [0, t0]. Let C[0, /0]
denote Wiener space, thaHs thejpace of R"-valued, continuous functions
X on [0, t0] such that Λ̂ O) = 0. In a recent paper [4], Cameron and
Storvick introduced a Banach algebra S of (equivalence classes of) func-
tions on Wiener space which are a kind of stochastic Fourier transform of
Borel measures on L\. (Precise definitions will be given in §2.) For such
functions they showed that the analytic Feynman integral, defined by
analytic continuation of the Wiener integral, exists. Further they showed
that functions of the form

(1.1)

are in S where they assumed that the "potential" θ: [0, tQ] X R" -> C
satisfies: (i) For each s in [0, / 0 ], θ(s, •) is the Fourier-Stieltjes transform
of an element σs of M(W), the space of C-valued, countably additive (and
hence bounded) Borel measures on R"; that is (( ,) denotes inner product
inR1')

(1.2) θ(s,U)=f cxp{i(U,V)}dσs(V).

(ii) For each Borel subset E of [0, t0] X R", σs(Eis)) is a Borel measurable
function of s on [0, t0]. Here E{s) denotes the ̂ -section of E. (iii) The total
variation || σ51| of σs is bounded as a function of s.

For the case v = 1 and under strengthened measurability assumptions,
Cameron and Storvick showed in [5] that the analytic Feynman integral of
functions F which are essentially of the form (1.1) gives a solution to an
integral equation formally equivalent to Schroedinger's equation. In [5]
Cameron and Storvick make use of the fact that F is in S. This was
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established by them in [4] using several intermediate spaces (9R/, S",
C31t", S"', 91L̂ , Sή'9 Sn) and some rather elaborate machinery. In our paper
[12] we substantially simplified the proof that F is in S and, in particular,
avoided the use of the intermediate spaces.

The main purpose of the present paper is to extend the results of [5] to
arbitrary dimension v and to do this in such a way as to avoid dependence
on the use of the machinery from [4]. This seems worthwhile: The physical
motivation for this theory is found in quantum mechanics, and, even in
keeping track of the probability amplitude for the position of a single
quantum particle in space, requires v — 3 dimensions. Multiple particle
systems require additional dimensions. The arguments of Cameron and
Storvick as given do not extend to more dimensions. Specifically, after
making a certain estimate, they obtain the function (/0 — s)~λ/1. This
function is in Lλ[0, to]9 and they use this fact to finish their argument. If
one attempts to extend their argument to general v, one encounters the
function (t0 — s)~v/2 which fails to be in LJO, /0] for all v >: 2. We use a
different summation procedure for some conditionally convergent in-
tegrals that enter into the discussion, and this enables us to replace certain
estimates with actual calculations. By doing this and proceeding very
carefully in certain places, we are able to obtain the result for arbitrary v.
(A sketch of the relationship between the summation procedures used here
and in [5] will be given in §6 below.)

We obtain our results under somewhat less stringent conditions on θ
than are employed in [5]. (i) above is unchanged, (ii) is replaced by the
equivalent but formally weaker assumption that for each Borel subset B of
R", σs(B) is Borel measurable as a function of s on [0, t0]. We show in
Corollary 3.1 below that | |σj | is measurable as a function of s and then
(iii) is replaced by the weaker assumption that || σs || is in LJO, t0]. Now in
their Schroedinger equation paper [5] (but not in their earlier paper [4]),
Cameron and Storvick have v — 1, and, rather than casting their hypothe-
ses in terms of a family of measures {σs: 0 < s < t), they work with a
complex-valued function of two variables h(s,u) which, for each s in
[0, to]9 is a function of bounded variation on R. They require h to be Borel
measurable as a function of two variables. If one restricts attention to the
case v — 1 and recasts our assumptions above in terms of a function of
two variables A, we are requiring that h(s0, ) be of bounded variation for
every s0 in [0, /0] and that h(s, u0) be a Borel measurable function of s for
every u0 in R. This of course does not imply that h is Borel measurable as
a function of 2 variables (See example 21, pp. 142-144 of [7].) The key to
this weaker measurability assumption is Corollary 3.2 below which shows
that θ(s,u) is Borel measurable as a function of two variables even when
h is not.

It has recently been shown [9] that the study of the Banach algebra S
and of the Banach algebra ^(H) of Fresnel integrable functions [1, 2, 17]
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are "equivalent". When the results of [9], especially Theorem 3 and
Corollary 1, are combined with the results of the present paper, one sees
immediately that the solution to our integral equation can also be ex-
pressed as a Fresnel integral. When θ(s, U) = Θ(U) is independent of s
(that is, θ is time independent), related results are well known [2; Theorem
3.2], but for θ dependent on s, this result seems to be new.

2. Definitions and preliminaries. Let v be a positive integer and let
mv denote ^-dimensional Wiener measure. A subset A of C[0, /0] is said
to be scale-invariant measurable provided pA is Wiener measurable for
every p > 0. It is easy to see that the class S of scale-invariant measurable
sets forms a σ-algebra. A set TV in § is said to be scale-invariant null
provided mv{ρN) — 0 for every p > 0. A property which holds except on
a scale-invariant null set is said to hold scale-invariant almost everywhere
(s-a.e.). For a rather detailed discussion of scale-invariant measurability
and its relation with other topics see [11].

Let F be a complex-valued function on C[0, t0] which is s-a.e.
defined and scale-invariant measurable and such that the Wiener integral

J(λ) = [
JC'[09

exists as a finite number for all λ > 0. If there exists a function /*(λ)

analytic in C + = (λ G C: Re λ > 0} such that /*(λ) = /(λ) for all

λ > 0, then /*(λ) is defined to be the analytic Wiener integral of F over

C[0, /0] with parameter λ, and, for λ in C + , we write

F(X)dmp(X)=J*(λ).

Let q be a real parameter (q ¥=0) and let F be a function whose
analytic Wiener integral exists for λ in C + . If the following limit exists,
we call it the analytic Feynman integral of F over C[0, t0] with parameter
q and we write

/

anf -* -> ranw\ -* -»

q F{X)dmv{X) = lim / F{X)dmv(X)
C'[0,t0] λ - - i * JCp[0,t0]

where λ approaches —iq through C + .
The Banach algebra S consists of functions F on C[0, t0] expressible

in the form

F(X) =/exp|/ 2 J\J(S)3XJ(S)\ dσ(V)

for s-a.e. X = (xl9... 9xy) in C[0, t0] where σ is an element of M(LV

2), the
space of C-valued, countably additive Borel measures on Lv

2, and the
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integrals JQ° Vj(s) dxj(s) are Paley-Wiener-Zygmund integrals [16, or 12,
or 13]. Letting | | J F | | = | |σ| | , the total variation norm of σ, Cameron and
Storvick show that S is a Banach algebra and that the analytic Feynman
integral exists for every F in S [4; Theorem 5.1]. (Actually the elements of
S are equivalence classes [F] of functions which are s-a.e. equal to an F as
above. In certain arguments [9] it is important to distinguish between the
functions and the equivalence classes. However this distinction is not
especially important in this paper, and so we follow the usual convention
and blur the distinction between functions and equivalence classes.)

3. Some measurability results. The first 3 general measurability
results below, especially Theorem 3.1, are perhaps of some independent
interest. They were discovered in conjunction with this paper, and, indeed,
they will be used several times in what follows. We omit the rather
straightforward proofs of these results as it is anticipated that they will be
included in a semi-expository paper on this subject which is in preparation
[10]. There are some related results in the literature [3, 6, 14, 15], and it
would not be too surprising if these results themselves appear somewhere.

LEMMA 3.1. Let (Y, %, γ) be a σ-finite measure space and let (Z, 2 ) be
a measurable space. For γ-a.e. y, let σ be a C-valued, countably additive
measure on (Z, X) of finite total variation. Suppose that for every B E %,
o (B) is a ^-measurable function of y. Then for every E in the product
σ-algebra ̂  X 2 , oy(E{y)) is a ^-measurable function of y.

LEMMA 3.2. Let the assumptions of Lemma 3.1 be satisfied. Then for
any bounded, C-valued, ty X % measurable function φ(y, z) on Y X Z,

jφ{y,z)doy{z)

is a ^-measurable function of y.

THEOREM 3.1. Let the assumptions of Lemma 3.1 be satisfied and
suppose, in addition, that \\σy\\ < h(y) E LX(Y, ty, γ). Then if μ is defined
on% X%by

(3.1)

μ is a C-valued, countably additive measure onty X % with | |μ | | < IIΛII lβ

Furthermore, if φ(y, z) is bounded and ^ X % measurable, then
j z φ(y, z)dσy(z) is in LX(Y, ^ , γ), and we have

(3.2) / \ίφ(y, z)dσy(z)]dy(y) = / φ(y, z)dμ(y, z).
JYIJZ J JYXZ
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We will find the following corollary useful. It is clear that related
more general results can be proven.

COROLLARY 3.1. Let {σs: 0 < s < /0} be a family from M(W) such that
os(B) is a Borel measurable function of s for every B in %(RP), the Borel
class ofW. Then | |σj | is a Borel measurable function of s.

Proof. Let C0(R", C) be the space of C-valued continuous functions on
R* which vanish at oo. Let/be in C0(R", C). The function fR»f(V) dσs(V)
is a Borel measurable function of s by Lemma 3.2; to see this, let
(Y, % Ύ) = ([0, tQ], ®([0, t0]), Lebesgue measure), (Z, 2) - (R*, «(R')),
a n d φ ( j , F ) = / ( F ) .

Let D be a countable dense subset of the unit ball of (C0(W, C), II II00).
Recall that the dual of the Banach space (C0(R"),C) is isometrically
isomorphic to M(W). Hence

I M = S U P f(V)dσs(V) :fGD\.

Thus | |σj | is the supremum of a countable number of Borel measurable
functions of s and so is itself Borel measurable.

DEFINITION 3.1. Let § be the set of all C-valued functions on
[0, t0] X R" of the form

(3.3) θ{s, U) = [ exp(i(U, V)) dσs(V)
J

where {σs: 0 < s < t0] is a family from M(W) satisfying the following 2
conditions:

(3.4a) For every B G ̂ (W), σs(B) is Borel measurable in s.

(3.4b) Iklle^fo,^].

Let % denote the subset of % obtained by replacing condition (3.4b)
by the condition:

(3.4c) There exists M > 0 such that ||σj < M for all s in [0, t0].

REMARK 3.1. In [12], θ was a C-valued function on [0, /0] X R given
by

θ(s, u) = I exp(iuv) dσs(v)
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where {σs: 0 < s < t0} was a family from M(R) satisfying

for every E in φ([0, /0] X R) = Φ([0, ί0]) X «(R),

σ5( Z?(j)) is Borel measurable in s, and

(3.4b)' \\as\\<h(s)eLι[0,ίo],

while in [4] the corresponding conditions were (3.4a)' and (3.4c) with
v — 1. Note that Lemma 3.1 and Corollary 3.1 now allow us to replace
conditions (3.4a)' and (3.4b)' by the simpler conditions (3.4a) and (3.4b).
In particular we see that if θ is in § and is given by (3.3) then || σ̂  || is Borel
measurable in s (Corollary 3.1). The next corollary will show that θ is
Borel measurable as a function of 2 variables.

COROLLARY 3.2. Let θ: [0, /0] XW ^C be given by (3.3) where {σs:
0 < s < r0} is a family from M(R") satisfying (3.4a). Then θ is Borel
measurable.

Proof.. We will use Lemma 3.2 with (7, % γ) = ([0, t0] X R",
®([0, ί0] X W), Lebesgue measure), (Z, %) = (W, %(W)) and φ(s, U, V)
= exp(/(t7, F>). Given (5, U) in [0, /0] X R", let σ(5 ̂  = σ5. Certainly
% u)(β) = σs(^) i s a Borel measurable function of (s, U) for every B in
®(R"). Also φ is bounded and ®([0, /0] X R') X Φ(Rr) measurable. The
desired measurability now follows immediately from Lemma 3.2.

REMARK 3.2. Corollary 3.2 and Lemma 3.2 will yield the measurabil-
ity properties that we will need as we continue. For example, let θ be in %
and for λ > 0 and fin W let G: [0, ί0] X C[0, t0] -> C be defined by

G(s, X) = θ(s9λ~ι/2X(s) + ξ).

Then it follows readily from Corollary 3.2 that G is Borel measurable.

PROPOSITION 3.1. Let ψ be in M(W); that is

(3.5)

wΛere φ is in M(W). Let ξ E W be given. Then the function

(3.6)

15 ΪΠ 5 .
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Proof. We seek a measure σ = σ^in M(Lv

2[0, t0]) such that for s-a.e. X
in C[0, rol

+ I) = / expί* 2 f\(S) dXj(Λ do(V).

Let φ^in M(W) be defined by

for B e ®(R"). Let Φ: R" -» L^([0, ί0]) be defined by

Φ(ϊ/)(j) = £/=(«„. . . , « , ) ,

i.e., Uj(s) = Uj for 0 < s < ί0. We claim that σ = φ^° φ~ is the desired
measure. For let p > 0 be given. We need to show that for m"-a.e. X in
C[0, t0]

But

ψ(pX(t0) + I) = / expί/ 2 /%(*) </px7-(j)l dσ(V).

4<{pX(t0) + ?) = J^expjί 2

expj/p 2 Jc/ίo)«y
R " I 7 = 1

= / «pίip 2 ί\dxj(s) + /(I, t/>} dφ(U)

= / e x ί i l{ y = 1

Now using the Change of Variable Theorem [8, p. 163] this last expression
equals

/ expί/pi f\(s) dxj(s)\ dσ(V)
JL2[O,to] { j = x

 J0 J

as desired.

REMARK 3.3. Let θ(s, U) be in §. Then, by the ^-dimensional version
of Theorem 1 of [12], f(X) = fpθ(s, X(s)) ds and exp(/(f)) are in
S = S(U2[0,t0]).
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PROPOSITION 3.2. Let θ be in § and be given by (3.3). Let g: [0, *0] ->
[0, t0] be Borel measurable and be such that h ° g G LJO, t0] where h(s) =
| |σ j | . Then θx(s9 U) = θ(g(s)9 U) belongs to §.

Proof. Let τ5 = σg(s). Let fie®(Ry). τ5(5) is a Borel measurable
function of s since σ g ( 5 )(5) is the composition of two Borel measurable
maps. Also || τs \\ — \\ σg(s) \\ = h(g(s)) is in L^O, /0] by assumption. Hence

θγ(s9 U) = β(g( j) , ί7) - /^exp(/<t/,

is in S.
The following corollary follows immediately from Remark 3.3 and

Proposition 3.2.

COROLLARY 3.3. Ifθ(s, U) is in § then θγ(s, U) = θ(t0 - s, U) is in §

and sofx{X) = /o

/o θ(t0 - s, X(s)) ds and exp(/,(-?)) are in S.

PROPOSITION 3.3. Let {σs:_0 <s < t0] be a family from M(RV) satisfy-
ing (3.4a) and (3.4b). Let f(s, U) be any C-valued, bounded, Borel measura-
ble function on [0, t0] X R". For B in ®(R") let

rs(B)=(f{s,U)dσs(U).
JB
JB

Then {τs: 0 < s < ί0} w α family from M(RV) satisfying (3.4a) and (3.4b).

Proof. Clearly τs is in M(R") for 0 < s < /0. Given 5 in ®(R"),

is Borel measurable in 5 by Lemma 3.2. Also || τs \\ < II / II ̂  II σs \\ E Lj[O, / 0 ] .

REMARK 3.4. Let θ in § be given by (3.3) and let / and τs be as in
Proposition 3.3. Then

θf(s9U) = [ exp(i(U,V))dτs(V)

is in % by Proposition 3.3. Also one clearly has

(3.7) θf(s9 U)=ί exp(/<t7, V))f{s9 V) dσs(V).
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Taking a fixed £ in R", letting f(s, V) = exp(/(K, £)), and applying
Proposition 3.3 and Remark 3.4, we obtain the following corollary.

COROLLARY 3.4. Let θ be in §. Then for fixed I in W we see that

θ^(s, U) = θ(s, U+ξ)=f exp(/(t7 +?, V)) dσs(V)

is in §.

COROLLARY 3.5. Let θ be in § and let I be in W. Then θx{s, U) =
θ(t0 - 5, U + I) is in § and so g(X) = /o

/o θ(t0 - 5, X(s) + | ) ds and
exp( g( X)) are in S.

4. The expansion of the analytic Feynman integral of F. In this
section we will obtain a useful series expansion (in terms of integrals over
finite-dimensional spaces) for the analytic Feynman integral of the func-
tion

(4.1) F(X)ΞΞF{tQ9&X)

9(to-s9X(s)+ξ)ι

where ψ G M(W) is given by (3.5), θ E § is given by (3.3) and I E W.
First we write F(X) = Σ ^ = o ^ ( ^ ) w h e r e

= Fn(t091 X) =jϊ[fy(to ~ s, X(s) + I) ds^(X(t0) + I).

Now we know from Proposition 3.1 and Corollary 3.5 that the functions

and

axe in S. Let \^= τ and oΐo^= σ be the associated measures in M(LV

2).
Since S is a Banach algebra, Fn(X) is also in S with associated measure
(l//i!)(σ* *σ)*τ. Now | |FJ | < ( l/« !) | |σ | |Ί lτ | | and so Σ£ IIFJI < oo.
Hence it follows [4, Theorem 5.4] that F is in S and that

P Fn(X)dm\X).
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Thus to get our desired series expansion we will work with

U Fn(X)dm*(X).

Let λ > 0 be given for now. We seek an expression for the Wiener
integral Jσ[0 ,o] Fn(λ~ι/2X) dmv{X). The measurability questions that
arise in the course of this discussion are easily resolved by using Lemma
3.2 and Corollary 3.2. Now for n > 1

(4.2)
-[o, t0]

/ \f
JC*[0,t0]lJ0

ί \f

Π p
= 1

 J0

= ^I f fπ
; l ! 'C[0,<0] '[0>ίo]"[_/=i

•'CIO, <

Jcio,to][j=i

ί0) + I) dsdm'(X)

Xψ(λ~1/2f (/0) + I) dsώn'(X)

Xψ(\-χX(t0) + I) dm"{X) ds

where

(4.3)

= {s = (su...,sn) e [ 0 , ί o ] " : 0 < s , < s 2 < • • • < s n < t o ) ,
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and the use of the Fubini Theorem is justified since

331

/ / [π i '

K'c'io,to][j=i

n

π *_ I I Ψ l ldί= $+± f
n ! J\P.t0]'

π
y-i

n!
< oo.

Now applying a basic Wiener integration formula we see that the
right side of equation (4.2) equals

Π
-v/2

X
7 = 1

<ίί/ί : dsί
n+l

- 2
7=1

where ί£+i = 0, ^w + 1 = /0, 50 = 0 and of courseJ7,' = (u'jΛ9 u'j2,...,u'jv).
Now making the substitution U. - λ~ι/2Uj + | for j = 0, l | . . . ,Λ + 1,
and then making use of (3.3) and (3.5) we finally obtain

(4.4)
C"[0,t0]

n+1

π
7 - 1

-"/2

2



332 G. W. JOHNSON AND D. L. SKOUG

n+\

= ί Π
-v/2

xf aφ{i(U0,V0))dφ{V0)

"r " ^ o ds

where of course, so = 0, sn+x — J o , j n d t ^ + 1 = | . One can easily justify
integrating first with respect to UQ9 Ul9 etc. in the above expression. We do
this next; ignoring, for the time being, the integrations with respect to
σ , . . . ,σ , φ and ?. That is we consider the expression

(4.5)
7 = 1

-v/2

exp{/(ί/0, Fo>

-λ||£/2-C/,

- x \\ϋn - ϋ n . x /0 dUr - dUn

and integrate, first with respect to Uθ9 then with respect to £/,,..., and
finally with respect to Un.

To carry out the integrations with respect to the Uj's we need the
following formula whose 1-dimensional version was stated in [12, Lemma
4 ] : F o r λ > 0 ,

(4.6)
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First we use this formula to carry out the integration with respect to
Uo. We obtain

i(U0, Vo)\ dΰ0

J

To integrate with respect to Uλ9 we first take the expression
exp{—(5Ί — 50)||^)||2/2λ} outside the integral and apply formula (4.6)
again to calculate

i(ϋx, Vx + Vo)\ dϋλ

£ϋ!|
2λ

We continue this for a total of (n + 1) integrations, using formula
(4.6) each time, and expression (4.5) becomes

exp

Foil2

(s3 - s2)\\V2 + Vx

(to ~ *n F 0 | | 2]}

= cxp\i(lVn+Vn_x +¥,)

2λ 7=0 7 = 1

Vj, Σ vk

J_
2λ

Σ Σ
/=0 7=0

+ i&Vn
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Using this result and (4.3) we finally have that for λ > 0,

(4.7) / Fn{λ-χ/2X) ώn'(X) = Γ<">(/0,1; λ),JC'[0, t0]

where

= ( ί Σ Σ (2-δjJ)(t0-slχvJ,vι)
1=0 j = 0

One can show without much difficulty that Γ(ί !)(/0, £; λ) continues to
exist for Re λ > 0 (λ φ 0), that T(n\t0, | ; λ) is analytic in C + = {λ e C:
Re λ > 0} and that limλ^_/9 Γ

(")(ί0, ϊ ; λ) = Γ ( n ) (ί 0 ,1; -iq). In making
the limiting arguments necessary to verify these assertions, it is helpful to
keep in mind that the integral in the definition of Γ( ί ί ) is, at this point,
being thought of as an iterated integral. It is also useful to note that for all
λ such that Re λ > 0 (λ φ 0), and | in R" we have

|Γ<«^0,I;λ)|</Δ^Π K

IIΦll f π ii ι u - H Φ l l Γ r ' ° ι ι i i Λ Γ
n J[Q,t0]" j = i ' n [JQ 1

< 00.

Thus for n > 1 we have established that

(4.8) ΓU FΛ(X) dm»{X) = Γ<->(/0,1; -iq),
JC[0, t0)

It is straightforward to show that

(4.9) p F0(X)dm>(X)=(
JC[0,t0]

 JR
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Hence, for F given by (4.1), we have the following series expansion for
the analytic Feynman integral of F,

(4.10)

Γ" F(t0,1 X) dm*(X) = 2 Γ<">(/0,1; -iq)
Cv[O,to] n = 0

V ί ί 1 l

= 2J I I e x P ] γ~-

n I

y y (2 - s )(t -
1=0 7 = 0

5. An alternate expansion of the analytic Feynman integral. In
working with Schroedinger's equation there is another form for the nth
term of the series (4.10) which is easier to work with; we obtain this
alternate form next.

As in [4,12], let μ be defined for E in ®([0, t0] X R") by

(5.1)

We_want to use Theorem 3.1 to rewrite the expression in (4.10) for
Γ(n\t0, ξ; -iq) in terms of integrals with respect to μ. For the purpose of
applying Theorem 3.1, let (7, % γ) = ([0, to]

n, ®([0, tQ]n)9 Lebesgue mea-
sure), and (Z, 2) = (R"", %(Rnv)). Given ΐ= (su... 9sn) in 7, let σ(Ji ^ }

= σ̂  X - Xσ ί ; Note thatσ ί ;

which is in L^O, to]
n) since | |σj | is in LJO, t0]. To show that Theorem

3.1 is applicable, it remains to show that for every B in ®(Rni;),
(σS] X X α P ) is a measurable function of (su... ,sw).

1 Let e={BG ®(RΛ"): (σS] X X σs)(B) is measurable in
(sl9...9sn)}. β contains the measurable rectangles because σ (J?f ) is mea-
surable in si for every 5 f in ®(R"), / = 1,2,...,«. It is easy to show that β
is closed under finite, disjoint unions and so contains the algebra & of
finite, disjoint unions of measurable rectangles. Further one sees easily
that β is a monotone class. Hence, by the Monotone Class Theorem [8, p.
27], 6 D σ(ffi). Therefore 6 = «(R') X X®(R") = ®(RΛί/).
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Theorem 3.1 now tells us that if we let

for E in <$>([0, to]
n X R""), then μ0 is a C-valued, countably additive

measure of finite total variation; and, for every bounded Borel function

Φ(ΐ, V),

(5 2 )

= f Φ(s,V)dμo(s,V)
J[0,t0)"XR"*

=t _» _ _

where V = (F,, . . . , Vn) and V} = (Vj „ vj2,... ,Vj „). In particular, formula
(5.2) holds for

ι=o j=0

ι + vo)\dφ{vo).

Thus we can write

(5.3)

=4
n I

Xexp\^-
/=0 y=o

/<|, FB + + F, + Fo> d{oSχ X Xσ,J(F)
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7 (/>
J[O,to]"XW" \JRV

2 Σ (2-«,.ι)(fo-*/)α?,2 Σ
/=0 7=0

Finally, to write Γ ( n ) in terms of μ, we will show that μ 0 = μ X Xμ.
Since μ0 and μ X Xμ are both measures on <&([(), to]

n X R""), it
suffices to show that they agree on sets of the form Ex X XEn where
each Ej is in ®([0, ί0] X R"). But

μ o ( £ , χ...χEn)=( {oS) X • X α J ( ( £ , X X E j ^ " " ^ ) ds
y [ 0 < 0 ] π

- / (σ,, X XαJ(£f"» X •

[0, t0}"

ds

7 = 1

as desired. Hence Γ ( π ) may alternately be written as

(5.4) T^{to,ί;-iq)

= [ Φ(s, V)d(μ X Xμ){su Vx; • • • ;sn, Vn)

Jjf
exp 2qi Σ Σ (2 - 8J

1=0 7 = o

</(μx xμ)(*i,?i; ^^J^φ(^»)
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We can also of course now rewrite (4.10) as

(5.5) Γfq F{t091; X) ώn'(X) = 1 Γ<">(/, ϊ ; -iq)
JCv[0,t0] n = o

Iqi
Σ Σ (2-a/i/)(/0-ί/)<Fy,κ/>

/=0 ι = 0

Since the series expansions (4.10) and (5.5) play a key role in the next
section it will be helpful to summarize the main facts in one place in the
notation that we will use as we continue.

The series expansion has so far been written in terms of tQ and ξ; but
what has been done for fixed t0 and ξ can equally well be done for any
(/, U) in [0, /0] X R". From this point on, we will regard q as an arbitrary,
but fixed, nonzero real number, and so, we will eliminate q from our
notation.

THEOREM 5.1. Let ψ G M(W) be given by (3.5). Suppose that θ is given

by (3.3) and satisfies (3.4a) and (3.4b). For (t,U) in [Q,t0] X R\ let

(5.6) F{X)=F(t9U;X)

f{t - 5, X(s) + U) ώ}ψ(f(0 + U)9

and let

(5.7) Γ(r, U) = Γfq F(t9 U; X) dmv(X).

Then

(5.8) Γ ( / , t 7 ) = 1 Γ<π>(/,t7)
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where

(5.9)

-if J-

d°,{Vχ) ' dσaft) dφ{V0) di

Σ Σ (2-δΛ/)(/-,/)(^,F/>

and where Δ n ( 0 = {s G [0, / 0 ] " : 0 = so<sι< • • < sn < t < /0}. Fur-
thermore, we have the inequality

and so the series (5,8) converges absolutely and uniformly on [0, t0] X R".

REMARK 5.1. It is not really necessary to change the Wiener space in
(5.7) every time t is changed. Actually

CanL
T(t,U)=H

JC[0, t0]

since f or λ > 0

exp[
Cv[0,t0]

f Cθ{t - s9 λ-1/2f(s) + ϋ) ds\*(\-ι'2X{t) + ϋ) dmv{X)

- ( expί Cθ(t - s, \-ι/2X(s) + U) ds)
Jcv[o,t) l ; o )

ϋ)dmv

t{X)

where mv

t denotes Wiener measure on C[0, /].
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6. A summation procedure. In §4, formula (4.6) with λ > 0, played
a key role. It is easy to show, via an analytic continuation argument, that
(4.6) holds for all λ in C + . But we will need a version of (4.6) for λ = -iq.
Since the integrand has constant absolute value one in this case, it is clear
that we will need a summation procedure. Let

(6.1) Γf(U)dU= lim f

whenever the expression on the right exists. Of course if/is in Lλ(W), it is
clear using the Dominated Convergence Theorem that

f(U)dU = ί f(U)dU.

Note that this is a different summation procedure than that used by
Cameron and Storvick in [5]. Recall that in the case v — 1 they used the
summation procedure.

(6.2) Γ°°f(u)du = lim f* f(u)du

whenever the expression on the right exists. One major advantage of using
the summation procedure (6.1) is its notational simplicity in higher
dimensions; i.e., for v > 1. Another advantage is that for many functions
of interest to us one can actually evaluate the integrals that occur on the
right side of (6.1) and thus replace certain estimates with actual calcula-
tions. It turns out that, for the specific functions under consideration in
this paper, the two summation procedures actually agree. However they
are not equivalent in general; we will discuss this question briefly in the
case v — 1. The results extend readily to higher dimensions.

First we note that the function/(w) = eiu serves as an example where
(6.1) exists but (6.2) does not. On the other hand if we put a very mild
growth condition on f(u) (to insure that / R \f(u) \ exp( — u2/2A) du < oo
for each A > 0), then the existence of (6.2) yields the existence of (6.1).
This fact will follow easily from the following lemma and its proof.

LEMMA 6.1. Suppose that f is integrable over [ — B\ B] for every B\

B > 0 and that lim5 B-*ooJ-B'f(u)du exists and equals some finite number

L. Then \imA^ jZ™n f{u)e~u2/2A du - L.

Proof. Without loss of generality assume that f(u) = 0 on (-oo,0).
First we observe that for each A > 0, /0~

>oc/(w)exp( — u2/2A) du exists
since for each B > 0 we have (integration by parts) that

(Bf(u)e-u2/2A du = e~Bl^A ίBf(t) dt+ ίB\ Γf(t) dt[^e-u2/2A du.
Jo Jo Jo | / 0 J A
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Because ]imB_^^ JQ f(t) dt — L, the right-hand side clearly has a finite
limit as B -> oo. Hence so does the left-hand side.

Next, proceeding formally we see that

lim
A-

'"'f{u)e-u2/2Adu= lim lim J*f(u)e-"^2A du

= lim lim f f(u)e~"2/2A du = lim f f(u)du = L.
B-^* oo A —* oo •'O B-* oo •'O

The third equality above follows from the Dominated Convergence Theo-
rem. The interchange of limits is justified since the expression

Γ°°f(u)e-u2/2Adu
JB

converges uniformly (as a function of A) to zero as B -» oo. To see this
note that for any 0 < B < Kwe (integration by parts) have that

)e~u^2A du = e~κ2/2A fKf(t) dt+ fK\ Γf(t) dt]^e-u2/2A du.
JB

Thus

CK
f { ) du

< e - * 2 H rκ

f(t} dt + s u p I ί"f^ J fκJL
\JB B£u£κ\JB \JB A

< sup \ff{t)dt
B<u<K \JB

d u

which is independent of A and goes to zero as B -» oo by the Cauchy
criterion.

PROPOSITION 6.1. Assume that the hypotheses of Lemma 6.1 are satis-
fied and that there exists a E [ 0,2) and positive constants M, N and R such
that \f(u) | < Nexp(M | u \a) for all \ u | > R. Then the left member below
exists and equality holds

lim ίf(u)e-u2/2Adu = f f(u)du = L.

The desired version of (4.6), namely Corollary 6.1 below, will follow
immediately from the next Lemma.
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LEMMA 6.2. For A > 0

(6-3) [-«f/2ir( J y-,,_,

1x ί e x p l lφ2

COROLLARY 6.1.

(6.4) [-/<

v/2

2qi

In order to prove Lemma 6.2, we will need the formula

( V \

- λ Σ {uι-zlf\dU= ( aφ[-λ\\U\\2]dU=(ir/λ)
forλ e C + andZ = (zl9...,z¥) EC".

This formula is familiar for λ > 0 and Z in R". The argument is
perhaps easiest to think about if one first extends to λ E C + , Z E R", and
then, finally, t o λ G C + , Z 6 C .

Proof of Lemma 6.2. For A > 0, and using equation (6.5) in the 4th
equality below we have

= expi

x

v/2

+ i W -
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= expi

X L e x p i 2 ( J , - * , _ , ) 2Λ

χ [ ι i φ ι 2 + . , ] A i

1 ιqA-{sj- Sj_λ

= exp 2(5y-5y_.)

X
/=!

quj__hl

iqA-{sj- Sj_x

v/2

X

X dUj

- Sj_x) - iqA

Xexp^
iqA2

A
2

X

Formula (6.3) now follows after some algebraic calculations.



344 G. W. JOHNSON AND D. L. SKOUG

LEMMA 6.3. For A > 0, t E [0, to]9 q ER(q¥=0), and I and V in
we have the inequality

(6.6)

2 ^ ( | , V)-A(t0 - t)\\V\\2 + iflr||2||2]/[2(/0 - t) - 2iqA]}\ <

Proof. The left side of (6.6) equals

( 6.7)
\

=

2(/0 - tf + 2qW

Now think of A, /, q and | = (ξ l 5 . . . ,£J as arbitrary but fixed jmd
regard the argument of the exponential as a function of V =
( ϋ , , ^ , . . . , ^ ) . A routine calculation shows that jits maximum occurs for
V — (q/(t0 — t))ξ. Substituting this value for V into (6.7) one obtains
exp{0} as desired.

7. The Schroedinger equation. We want to show that T(t, U) given
by (5.7) satisfies the following integral equation which is formally equiva-
lent to Schroedinger's equation:

(7.1) Γu, ξ) = (q/2πit) / I ψ(I/)exp« ——^ > dU
Jw { It J

f [q/2πi(t - s)]v/1 Γθ(s, U)T(s9 U)

iq\\ϋ-i\\2

We begin by finding an alternate expression for the^ first term on the
right side of (7.1); actually we will show it equals Γ(0)(ί, | ; -iq) as given by
(4.9).
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LEMMA 7.1. Let ψ in M(W) be given by (3.5). Then for (t, f) G
[0, t0] X R",

(7.2)

Proof. First note that when the limit exists we have

κr L Ί r
= ton

v ί/g i l t?-I l l 2 lit/II2! ,Λ
X e x p l — ϊ t ττ\du

Λ'*t f f/gilt? " I l l

We now apply Lemma 6.2 to the last expression above to obtain

-2qιA

where this last equality follows from Lemma 6.3 and the Dominated
Convergence Theorem, which establishes the necessary limits.

T H E O R E M J . 1 . Let θy ψ and Γ satisfy the hypotheses of Theorem 5.1.
Then for (t, | ) G [0, t0] X R", Γ(/, f) satisfies the Schroedinger integral
equation (7.1).
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Proof, We will prove this result by substituting the series expansion
(5.8) for Γ($, U) into the second term on the right side of (7.1) and show
that the resulting expression, which we will denote by H(t, £), equals

First we see that

(7.3) H(t,ξ) =f'Γ{q/2m(t-s)y/2θ(s,U)T(s,U)

I N

lim 2 Γ (B)(J, U)

WUW
2(t-s)

Here the existence of either member of the above equation implies that of
the other, and the same is true of the equations (7.4), (7.5), (7.8), (7.9) and
(7.10) to follow. Moreover we shall show that the second member of (7.10)
does exist, and hence all members of all these equations exist

Now inequality (5.10) implies that for 0 < s < ί,

Σ |Γ<->(

and so, applying the Dominated Convergence Theorem to (7.3) we can
write

(7.4)

N

H{t,ϊ) = f lim Urn 2 [ [q/2πi(t - s)Y/2θ(s,U)T(n)(s,U)
J A Λf >«•

v f ig III/-III 2 \\V\\
Xexp{ 2(t-s) --ΎT
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N

Σ
TV ->oo n =

/V

= Γ lim lim 2 ί [q/2vi(t - s)] v/2

347

X f exp(i(U, VnΛ

X

n I

1=0 7 = 0

</(μ X Xμ)( j , , F,; ; J B , FB) </φ(F0)

X e X P

ig l i t / - I I I
2(t-s)

where the last equality was obtained by substituting for θ and for Y{n)

using (5.9). Now applying the Fubini Theorem and then Lemma 6.2 to
(7.4) we obtain

(7.5) H{t, I) = f lim lim Σ ί ί f

n I

j-Σ Σ (2-
I L q ι

1=0 j=o

[q/2 ni{t - s) /2

v

XP

, Jfΐ

d(μX
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N

= Γ lim Urn 2 ί f [

|0 i
v/2

x

Mlf
- s) - 2iqA 2(t - s) - 2iqA

d(μX ' Xμ){Sι, Vλ;- ;sn, Vn) d<j>{V0) dσs{Vn+1) ds.

Next we want to interchange the order of the limits with respect to A
and N. We can justify doing this by finding a series independent of A
which is summable and dominates

(7-6)
n=0

ί f ί e x 4 ά 2 Σ (2 - «,,/)(* - s,XVj, v,)\

X
-iqA

(t - s) - iqA

v/2

A(t-S)\\Vn
+ι2(ί - s) - 2iqA

iqUtt-
2{t - s ) - 2iqA

d(μX Xμ){su Vx; • • • ;sn, Vn) dφ{V0) dσs{Vn+ι)
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But by (5.2) we can write (7.6) in the form

(7.7)
— iqA

(t - s) - iqA

v/2

ά Σ Σ (2 - «,.,)(* - T,

v JP
/(*-*) 2{t - s ) - 2iqA

iqWίW2

2{t - s) - 2iqA

dστχ{Vx) • • • dσTπ(Vn) dos{Vn+λ) d

where, as before,

KU) = {? = ( T , , . . . , τ j £ [ 0 , * ] " : 0 < T, < τ 2 < < τn < s < t}.

Using Lemma 6.3 and the fact that | —iqA/{{t — s) — iqA)\< 1, we see
that the series (7.7) is dominated by the series

n = 0

< 00.

Hence the interchange of limits is justified and so using Lemma 6.3 and
the Dominated Convergence Theorem, equation (7.5) becomes

(7.8) H{t,ί)=f lim 2 / / /

Σ Σ (2 - 8Jt,)(s - S / )<ζ,
/=o y=0

2qi

d(μX- Xμ)(Sι, Vχ- • • • ;sn, Vn) dφ{V0) dos(Vn+])ds.
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Now relabeling s as sn+ι in (7.8) and doing some algebra we see that

(7.9) H(tJ)=f Jim / / /

_L_ V V (2 — δ )(t~s)(V- F N

: 2 ^ ' / = o , =o

d(μX - Xμ)(slt Vλ; • • • ;sn,Vn) dφ{V0) dσ,mJVn+{) dsn+ι

IN „ „
ft __ f fsn+\ fsn fs2 f

= / Km Σ / / / •••/ / ( + I )
•/A yy—> 00 r\ ^Pf 0 0 0 R "

ί 1 n + 1 '
Xexp T - Σ Σ ( 2 -

29' ,=o /=o

doSn{Vn) dφ{V0) dsr . dsn doSnJVn+x)

where the last equality follows from equation (5.9).
Next we want to take the limit as N -> oo outside the integral with

respect to sn+ι. The Dominated Convergence Theorem will allow us to do
this if we can produce a dominating function independent of N which is
integrable with respect to 5Π + 1. But an argument much like that used to
establish (5.10) shows that

is such a function. Hence by the argument just made and the Fubini
Theorem
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(7.10)

*«.ϊ)=f/T' /7
' y V (l — ft V/- C V F V\

But careful examination of the series (7.10) shows that it is just the series
(5.8) (also see equation (5.9)) for Γ(ί, f) except with the first term missing.
From (7.10) and the statement concerning (5.8) immediately following
(7.10), the existence of H(t, ξ) follows, and thus the earlier expressions for
it also exist. Hence by (7.10), (4.9), and Lemma 7.1 we see that

H(t, ?) = T(t, ?) -

= T(t, ?) -

as desired.
A careful examination of the proof of Theorem 7.1 shows that we

have established the following useful corollary which will be needed in the
next section to obtain a uniqueness result.

COROLLARY 7.1. For n = 0,1,2,... and(t, I) G [0, t0] X R",

(7.11) r ^ ^ r , ! )

Xexpi -̂ -7 V" \ dUds

1 2(t-s) J
where T{n) is given by (5.9).

8. A uniqueness result. In this section we will show that Γ(f, ξ) is
the unique solution of (7.1) in β0 (see Definition 3.1). We will first
establish 2 lemmas.
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LEMMA 8.1. Let θ G % be given by (3.3) and let G be in go; that is, G is
of the form

G(s,U)= ( exp{i(U,V))dgs(V)

where {gs: 0 < s < /0} is a family from M(RV) satisfying: (3.4a), i.e., for
every B in ®(R"), gs(B) is Borel measurable in s, and (3.4c), i.e., there exists
Mo >0such that \\gs\\ < M0forallsin [0, / 0 ] . For (/, I) G [0, /0] X R" let

(8.1) (?•(/, ?) = f [q/2m(t - s)]v/1 Γθ(s9 U)G(s, U)

X e X p
| 2(t-s) \

Then G* is in β0. In fact the associated family {g*: 0 < t < t0} from M(R")
such that

(8.2) (?•(/, I) = / exp(/(i, F » dfg (F)
•'FT

satisfies

(8-3) ||g*|| < / H \\Ss\\ds ^ Mop bs\\ds.

Proof. We first claim that for every B G ®(R" X R"), (os X gs)(B) is
Borel measurable in s. To see this, let Q = {B G ®(Rr X R"): (σ5 X g,)( J?)
is measurable in s}. Quite clearly β contains the measurable rectangles
and is closed under finite disjoint unions and is a monotone class. It
follows from the Monotone Class Theorem [8, p. 27] that β = ^>(W) X
®(R") = %(W X R").

Now let ys = σs*gs, 0 < 5 < /0. Given 5 G 6i(R"),

= ί XB(U + ̂ )rf(σ5 X gj(f/, V).

We can now apply Lemma 3.2 to see that ys(B) is a measurable function
of 5. In applying Lemma 3.2, let (7, ^ , γ) = ([0, t0], ®([0, ί0]), Lebesgue
measure) and let (Z, 2 ) = (R* X R", ΦίR1' X R')). Associate with every
s G [0, t0] the measure σ, X gs on Z. Let ψ(5, U9 V) = χB(U + V). It now
follows from Lemma 3.2 and the formula for ys(B) above, that ys(B) is a
measurable function of s. Of course | | γ j | < | |σj | \\gs\\ and so llγ l̂l G
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Now note that 0(5, U)G(s, U) = /R,exp(/<[/, V)) dys{V). We sub-
stitute this expression into (8.1) and then use the Fubini Theorem,
Lemmas 6.2 and 6.3, and the Dominated Convergence Theorem to obtain

G (t,ϊ) = f[q/2<πi{t-s)γ/2Γ j txp(i(U,V))dys(V)

iqWU - I I I 2

2(t-s)

= / ' lim [q/2iri(t-s)]'/2f f cxp{i(U, V)) dys(V)

= / lim [q/2πi{t - sψ2

JOA^aoJie[(t-s)-iqA\

' 7) Λ( ί-s) | |F | | 2

i(t -s) + qA 2(t -s)~ 2iqA

Here the existence of each of the members of the above continued
equation follows from the existence of the last member.

Now applying Theorem 3.1, the family {ys: 0 < s < ί 0 } can be
combined with Lebesgue measure on [0, ί0] to produce a measure μ on
[0, /0] X *":
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For each t G [0, t0], the following formula clearly defines another measure
on [0, /0] X R":

dλt(s, V) = X [ ( M ] ( 5 ) e x p | ( f ^ I F I | j dμ(s, V).

Let g*(B) = λ,([0, tQ] X B) for B G <&(R"). Of course g* G M(W) and it
is easy to check that

(8.4) ||g || <||λ,|| < f \\ys\\ds < / ' flσj \\gs\\ds < Mof \\os\\ds.

Now for B G®(Rϊ;),

g*(B) = f χ (,)χ

and since the integrand is a Borel measurable function of (t9s9V), it
follows from the Fubini Theorem that g*(B) is a Borel measurable
function of t.

Now we have shown above that

We will finish the proof by showing that this last expression equals
/R,exp(/(|, V))dg*(Ϋ). Using the Change of Variable Theorem and The-
orem 3.1 to justify respectively the first and third equalities below, we can
write

/ exp(/<|, V)) dgf{V) = ί exp(/<ϊ, V)) dλt(s9 V)

= ί χIOlίI(*)βφ{/<?, V) + ( / ~ 2 l l I F " 2 } Ms, V)

,
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LEMMA 8.2. Let G and θ be as in Lemma 8.1. Further assume that

(8.5) G(t,ξ)=f[q/2m(t-s)y/2

•Ό

X / θ(s, U)G(s, C/)expi -^—. r— \ dUds
•Ίr [ 2 ( / - J ) J

for all (t, I) E [0, /0] X W. Then G(t, ί)=0on [0, /0] X R".

Proof. Let E = /o'° 11 σs \\ ds. It will suffice to show that

for /i = 0,1,2,..., and all r GJO, ί0]. For then ||gt\\ will be zero identi-
cally on [0, /0] and hence G(t, | ) will vanish identically on [0, /0] X W.

We first apply Lemma 8.1 to see that gt = g* and so for all t G [0, ί0],
using (8.4), we have that

(8.6) | |g || < f || or II llgJI ds
Jo

< Mo Γ | |σj | ds < Mo Γ° | |σj | ds = M0E.

Now using (8.6) and substituting into (8.4) we see that for all / G [0, to]9

IIall ^fwoj II&JI ώi ^ / Ί k J | M 0 / 5 1

σIaι

Continuing inductively we see that for any integer n > 2,

I^oΓΓ /" Π

THEOREM 8.1. Under the hypotheses of Theorem 5.1, Γ(/, | ) w
unique solution of equation (7.1) m §0.
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Proof. What we need to establish is that Γ is indeed in β0. For then it
follows that Γ is the only solution of (7.1) in % because if there were
another solution, say Γ1? their difference would satisfy equation (8.5) and
would thus vanish.

By Theorem 7.1 we know that Γ exists and satisfies (7.1). In addition
recall that T(t, | ) = 2^0T

in\t, f). We will first show that each Γ ( n ) is in
§0. Clearly Γ(0) belongs to % because

} d+{p)

= [ exp(i&V))dg?>(V)

where g,(0) is that element of Af(R") such that for each B e ®(R")

Clearly gj°\B) is measurable as a function of t. Also ||gf

(0)|| < | |φ | | . Next
using Corollary 7.1 and Lemma 8.1 we obtain that

where g,(1) is in M(W) and satisfies

Thus Γ(1) belongs to β0. Continuing on inductively we see that

where g{

t

n) is in M(RP) and satisfies the inequality

*Mf'fι ••/""' Π
•Ό "Ό

Thus Γ ( π ) is in % for n = 0,1,2,....



NOTES ON THE FEYNMAN INTEGRAL, III

Next let
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i, = Σ &<

for t G [0, ί0]. Note that for t G [0, ί0],

<">

oo [/'klH"

\ rt 1 Γ z /0

= ||Φ exp / \\σs\\ds\ < φ exp / llor ||̂ &
L 'o J IVo

In addition it now follows that for every B G ̂ (R y), ηt(B)
and so τ),(5) is measurable as a function of /. Finally

T(t,ϊ) = [ eφ{i(lV))dη,(V)

on [0, t0] X Rv since

f^xp{i(lv))dηt(V)~

< / exp(/(|,

00

^ Σ

»=o

which goes to zero as N -» oo. Hence Γ is in So.
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