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REALIZING CENTRAL DIVISION ALGEBRAS

R. S. PIERCE AND C. VINSONHALER

Let D be a finite dimensional division algebra over the rational field.
We consider the question: for which primes p is D isomorphic to the
quasi-endomorphism algebra of a /?-local torsion free abelian group G
whose rank is equal to the dimension of D? We show that D can be
realized in this way for exactly those primes p such that Qp ® D is not a
product of division algebras.

1. Introduction. The question "which finite dimensional algebras

over the field of rationals Q can be realized as quasi-endomorphism

algebras of finite rank torsion free groups?" was first posed in [3]. The

answer "all such algebras" came two years later in [6] as a corollary to

Corner's Theorem: If R is a reduced, torsion free ring with rank R — n<

oc, then R is isomorphic to the endomorphism ring of a torsion free group

G of rank In. Corner also showed that it is not always possible to realize

such a ring by the endomorphisms of a group of rank less than In.

However, in [12] Zassenhaus showed that if R is free as an abelian group,

then the group G could be chosen to have rank n. Butler [5] showed that

the same result is true under the weaker hypothesis that R is locally free.

It follows from the theorems of Zassenhaus and Butler that every n

dimensional rational algebra is the quasi-endomorphism algebra of a

group G of rank n. This paper considers the question of what occurs when

G is required to be /?-local, that is qG — G for all primes qφ p.

Problem. For a finite dimensional, rational divison algebra D find all

primes p such that there is a pΛoodl group G with rank G — dimension D

and with D isomorphic to the ring of quasi-endomorphisms of G.

Our main result is that such a group G exists for exactly those primes

p such that Qp <8> D is not a product of division algebras.

§§2, 3, and 4 of the paper set up some machinery that is used to

construct groups with the required properties. The ideas described in these

Sections are variations on standard themes, but for convenience, the

proofs of the needed results are sketched. The main theorem is proved in

§5.

NOTATION. The symbols Z, <2, Fp, Zp, and Qp respectively denote the

ring of integers, the field of rational numbers, the prime field of order p,
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the ring of /?-adic integers, and the field of /?-adic numbers. All groups
under consideration are abelian and torsion free. Usually they have finite
rank. Groups are generally denoted by G or H. The unadorned symbols Θ
and Horn denote the tensor product and homomorphism functors in the
category of abelian groups. The applications of these functors in other
categories are distinguished by the usual subscripts. The expression E(G)
denotes the endomorphism ring of G, that is, Hom(G, G) with the usual
ring structure. The prefixes rank and dim indicate the Z module rank and
Q space dimension.

The expression QG can be interpreted as Q ® G or the divisible hull
of G. In both cases, we consider G as a subgroup of QG such that G is full
in QG, that is, if z E QG, then there is a natural number n such that
nz E G. We write QE(G) for the quasi-endomorphism ring of G. Form-
ally, QE(G) = Q ® E(G). Alternatively, QE(G) can be identified with
{φ £ E(QG) I nφ E E(G) for some natural number n). From both view-
points, QE(G) is a rational algebra, and we will always consider E(G) as a
full subring of QE(G).

If ^ is any group (or ring), the expressions X or Xp will denote the Zp

module Zp ® X, except as noted in §4. We will consistently identify X
with the subgroup 1 ® X C X. The identification of G with a subgroup of
G is accompanied by an identification of E(G) with a subring of £f(G):
every φ E £(G) extends uniquely to a Zp module endomorphism of G,
namely 1 ® φ.

The letter D will always denote a rational division algebra that is
finite dimensional over Q. In order to avoid uninteresting anomalies,
assume that dim D > 1. Since D is torsion free and divisible, the Zp

algebra D is actually a (^ algebra. In fact, D = Zp ® D = Qp ®Q D. As
we noted above, E(D) — QE(D) will be considered as a subring of

2. Constructing groups. If D — QE(G) is a division algebra, then
QG is a non-zero left D space, so that rank G = dim βG > dim D. Our
interest is in groups G such that rank G = dim Zλ In this case, D and QG
are isomorphic as left D modules. Moreover, with a rational adjustment,
the isomorphism will map the identity element I of D into G. These
remarks lead to the following special case of a theorem due to J. D. Reid
[11].

PROPOSITION 2.1. If QE(G) is isomorphic to the division algebra D such
that rank G = dim Z), then G is isomorphic to a full subgroup G' of D with
the identity 1 of D in G'; and E(G) = R(G') = {d(ΞD\dG' C G'} is a full
subring of D.
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This result permits us to restrict our attention to certain subgroups of
D. It is convenient to introduce notation for this class. For each prime /?,
denote by Tp(D) the set of subgroups G of D such that (1) R(G) = {d G
D I dG C G} is a full subring of A (2) G is/?-local, and (3) 1 G G.

In case G G 1^(2)) also satisfies QE(G) = A we will say that G
p-realizes A and Z) is/^-realizable if it is/^-realized by some G.

The conditions (1), (2), and (3) do not guarantee that every G in
Tp(D) satisfies QE{G) ~ D. However, condition (1) implies that QE(G)
contains a sub algebra that is isomorphic to D.

LEMMA 2.2. // λ is the left regular representation of D in E{D), then
λ(D) C QE(G)forallGETp(D).

Proof. If d G A then md G R(G) for some natural number m.
Consequently, mλ(d)(G) = λ(md)(G) C G. Thus, λ(d) G QE(G).

It follows from this lemma (by dimension counting) that a group G in
Tp(D) will ^-realize Z) if and only if QE(G) = λ(Z>). It is this condition
that we must satisfy. Usually, λ(D) will be identified with A so that our
aim is to construct G G Tp(D) such that QE(G) = D.

The proof of the principal result in §5 is based on a familiar
connection between the quasi-equality classes of groups in Tp(D) and the
left ideals of D. (See [4] and [8].) For the reader's convenience we describe
this correspondence and sketch the proofs of its properties.

For each G G Tp(D), let L(G) = d{Zp® G), the maximal divisible
subgroup of G.

LEMMA 2.3. If G G Tp(D), then L(G) is a left ideal of D.

Proof. Since G is a left R(G) module, G is a left R(G) module. The
facts that L(G) is fully invariant in G and is divisible imply that L(G) is a
left QR{Gγ = D module.

Groups G and H such that QG = QH are quasi-equal if mG C H and
mH C G for some natural number m. If G and H are quasi-equal, then
QE(G) = QE(H). Thus, we can limit our attention to quasi-equality
classes of groups.

LEMMA 2.4. // G, H in Tp(D) are quasi-equal, then L(G) = L(H).

Proof. Without loss of generality, it can be assumed that mG C ί ί C G
for some natural number m. In this case, d(G) — d(rnG) C d(H) C d(G).
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Lemmas 2.3 and 2.4 show that G -» L{G) induces a mapping from
quasi-equality classes in Tp(D) to left ideals of D. We will construct an
inverse of this mapping.

Let S be a full Zp order in D: S is a full subring (with identity) of D
that is finitely generated (hence free) as a Zp module. For each left ideal L
of Z>, define G(L) = (S + L) Π Zλ Recall that Z) is identified as a
subgroup of D.

LEMMA 2.5. If L is a left ideal of D, then G(L) G Γp(D).

Proof. Since L is a left ideal of z5, it follows that S C R(G(L)). Thus,
R(G(L)) is full in Zλ The remaining conditions in the definition of Tp(D)
are obviously satisfied by G(L).

If S and 5' are full Zp orders in Z), then S and S" are quasi-equal
because they are full and finitely generated. Consequently, (S + L) Π Z)
is quasi-equal to (5 ' 4- L) Π Z); and up to quasi-equality, the definition of
G(L) is independent of the choice of S.

THEOREM 2.6. The correspondences G -> L(G) αrcd L ~* G(L) induce

inverse bijections between the quasi-equality classes of groups in T (D) and

the left ideals of D.

Proof. The equality L(G(L)) — L for a left ideal L of D is a
consequence of G(L) — S + L, since £ is a finitely generated Z^ module.
Clearly, G(Lf C S + L and S C G(L)\ The inclusion L C G(L)~ =
G(L) + S is obtained by an easy calculation, using the observations that
S is full in D and S = S + pk S. To show that if GG Tp(D), then
G(L(G)) is quasi-equal to G, it is sufficient to prove that G is quasi-equal
to S + d((j). Indeed, D/G is a torsion group and G/G is torsion free, so
that (G Π D)/G — 0. the structure theory for finite rank torsion free Zp

modules (see [7]) implies that G — N θ d(G)y where N is a finitely
generated Zp module. Since S is also finitely generated, it is clear that
S + d(G) is quasi-equal to N θ rf(G).

More complete proofs of Theorem 2.6 can be found in [4] and [8].
The^-rank, dimF G/pG, of a group G E Γ^Z)) is related to the Qp

dimension of L(G) in the following way.

COROLLARY 2.7. // G e Γ^D), /Λew rΛ̂  /?-rawfc o/ G ώ dim D -

^ L(G).
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Proof. Using the notation of the proof of Theorem 2.6, we have
^ G/pG = dimF G/pG = dimF (TV Θ d(G))/(pN θ </((?)) =

dimF N/pN — dim Z> — dim^ L(G). See also [8], Lemma 1.2.

PROPOSITION 2.8. IfG E Γ ^ D ) , rΛe/i £>£(G) = { φ E £(£>) | Φ(L(G))

The statement of this proposition tacitly identifies E(D) with a
subring of the g^-endomorphisms of D. We follow this custom in the
remaining sections of the paper.

Routine calculations show that if φ E E(D) satisfies mφ(G) C G for
a natural number m, then Φ(L(G)) = Φ(d(G)) C d(G) = L(G). Con-
versely, if φ(L(G)) C L(G), then mφ(S + L(G)) C S + L(G) and
mφ(G(L(G))) C G(L(G)) for a suitable m. A detailed proof of Proposi-
tion 2.8 can be found in [4].

3. The domain of definition. In [11], Reid showed that the condi-
tion QE(G) = D, a division algebra, is satisfied if and only if G is strongly
indecomposable and irreducible. When D is an algebraic number field, it
was shown in [10] that G is strong indecomposable if and only if D is the
smallest domain of definition for L(G).

DEFINITION. A left ideal L of D is defined over the subalgebra A of
the algebra D (and A is a domain of definition for L) if there is a set
{w, I / E /} C.A such that L = 2iξΞίDur

THEOREM 3.1. If D is a finite dimensional division algebra over Q and
G GTp(D)9 then QE(G) - D if and only if D is the smallest domain of
definition for L{G).

Proof. Assume that there is a proper subalgebra A of D and a set
{ut I / E /} C A such that L(G) = Σι(EίDur Since D is a finite dimen-
sional division algebra, so is A. Thus, if D is viewed as a right D space and
a right A space, then λ(D) = ^ ( ΰ ) C EA(D). Moreover, if φ E EA(D\
then φ E £i(2)) and Φ(L(G)) = ΣifΞ*Φ(Du,) = ΣifΞ/Φ(D)u, C IιGίDuι

= L(G). By Proposition 2.8, β£(G) D ^ ( D ) and hence QE(G) φ D.

Conversely, assume that D is the smallest domain of definition for
L(G). To show QE(G) = Z), it is sufficient by Proposition 2.8 to show
that if φ E E(D) satisfies φ(L(G)) C L(G), then L(G) is defined over
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A = [d E D I φ(cd) = φ(c)d for all c E D). That is, L{G) C N = Σ ZH/,,

where the sum is over w7 E A Π L(G).

Every non-zero element of Z) has a representation w = Σ y = 1 « y c y ,

αy G ^ c ; G ΰ , in which r is minimal. The minimality of r guarantees

that α7 φ 0 and cy ^ 0 for ally. If L(G) φ TV, then there exists w E L(G)

— TV such that the number r in a minimal representation w = Σr

J=ι ajc} is

as small as possible. Denote w' = a{λc\λw = 1 + Σr

J=2βjd/ ^ L(G), where

βj = a\xaj E Qp and dy = c'^Cj E Z). Since φ E £(£>), it follows that
r

Δ(c) — Σ β;{φ(c)dj — φ(cd )) = φ(c)w' — φ(cw') E L(G)

for all c E £>. If φ(cί/7) = Φ(c)ί/y for all c G f l , then d}<ΞA for 2 <y < r,

w' E >4 Π L(G), and w E Dw' C TV, contrary to hypothesis. Thus, r > 2

and there exists c £ D and y > 2 such that e = φ(c)dJ — φ(cd;) Φ 0.

Without loss of generality, assume thaty = r. The minimal property of r

guarantees that dre~ιΔ(c) and

A — 1

w' - ^ " ^ ( c ) = 1 + 2 βj{dι ~ dre'ι(φ(c)d/ - φ(c^ 7)))

are members of iV. Hence w' E TV and wGJV. This final contradiction

completes the proof that L(G) is defined over ^4.

It is useful to have a criterion for determining when D is the smallest

domain of definition of a left ideal. The following simple result is

sufficient for our needs.

COROLLARY 3.2. If L is a left ideal of D such that {x E D\Lx C L) is

the center of D, then QE(G(L)) = D.

Proof. By Theorems 2.6 and 3.1, it is sufficient to note that if L is

defined over the subalgebra A of Z), then A — D. In fact, if x E D

centralizes A9 then Lx = D(A Π L)x — Dx(A Π L) C L, so that x be-

longs to the center of D by hypothesis. Since D is a finite dimensional

division algebra over ζ), so is A. Thus the Double Centralizer Theorem

([9], Theorem 12.6) yields the desired conclusion A — D. (In the notation

of [9], CD(A) = Z(D)9 soD = CD(Z(D)) = A.)

To verify the hypothesis of Corollary 3.2, it is helpful to note that if

L — De, with e2 — e, then Lx C L if and only if ex — exe.

4. The structure of Dp. We next consider the structure of the

algebra Dp. As before Z(D) = F, and / will denote the ring of integers in

F. If pJ = i γ ( 1 ) P£{k) is the factorization of p into powers of distinct
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prime ideals in /, then there are exactly k non-equivalent (normalized)

extensions vλ9...,vk of thep-adic valuation vp to F. Furthermore, if Ft is

the completion of F in the ϋΓtopology, then,

(1) Qp® F-Fx+ - +Fk (as algebras).

A discussion of this material can be found in [9] (in particular, see Lemma

18.1 and Proposition 18.2).

LEMMA 4.1. Let D be a finite dimensional division algebra over Q with

Z(D) = F, J the ring of integers in F, p a prime and pJ = Pe(l) Pe(k)

the factorization of p in J. Then

Dp = Qp®D^Fx®FD+ +Fk ®FZ),

where Qp® F^ Fx + +Fk as in (1).

Proof. Since Dp is a finite dimensional semisimple Qp algebra, Dp —

Bx + - - - +Bh where each Bt is a simple, finite dimensional Qp algebra.

Moreover, Fλ + +Fk ^ Qp ® F ^ Z(Dp) = Z{Bλ) + + Z ( 5 7 ) .

Hence, l — m and without loss of generality, Ft = Z(Bt). Let p,: Dp -> Bi

be the z'th projection, and Όι - pz(l ® D), Ft - pχ\ ® F). Then Dι is a

central simple Fi algebra that is isomorphic (as an F algebra) to D, Ft is a

subfieldof Z(5,) and

DtZ(B,) = Pi(l ® D) Pi(z(Dp)) D P l ( l ® D) Pi(Qp ® l)

By [9], Lemma 12.4a, any /) basis of Dt is a Z(Bt) basis of 5 r Thus

Bj ^ Z(Bt) ®F; Z), - % ® F D. The lemma follows.

By Lemma 4.1, the left ideals of Dp are direct sums of left ideals in the

Ft ®FD. We therefore focus our attention on the latter algebras, adopting

the simpler notation F — Fέ for some /, and D — F <8>FD. The assumption

that D is central over F implies that D — F ®FD is a central simple F

algebra (see [9], Proposition 12.4b). Thus, D ~ Aίr(C), where C is a central

division algebra over F and r is a divisor of the degree n of D. If r — 1,

then D is a division algebra. Hence, we assume that r > 1. In this case,

there exist matrix units {etj \ 1 < /, y < r) C i3 with e/y eΛ/ = 0 iί j Φ k

and £/7ey/ — e,/. Moreover, i) contains a subalgebra that can be identified

with the division algebra C. Consequently, C centralizes all of the matrix

units etJ and D = Θ 1 < / 7 < r C^/y. For calculations it is often convenient to
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represent the elements of D as r by r matrices. Let w,, w2,... ,us be an F

space basis of C, where s = (n/r)2, and w, = 1.

LEMMA 4.2. ΓAere w α//>?/te set T C F^cΛ /A<tf ifK=F(T) C / ,

{ e / 7 | ι < ι , y < r } U { M Λ | 1 < A : < J } CAT®/). ΓAWS, K® D =

where B = ®]^k<s Kuk is a central division algebra over K and FB — C.

This lemma is obvious because the elements en and uk are finite linear

combinations of the elements of D with coefficients in F.

Henceforth, let T, K, and B have the meanings that were attached to

them in Lemma 4.2.

LEMMA 4.3. If X is a subset of F that is algebraically independent over

K, then X is algebraically independent over K ®FD.

Proof. If /!,, μ2,...,/xw are distinct monomials that are products of

elements from X9 then this sequence of elements is linearly independent

over K by assumption. Let w l v . . , w m G ί ® F ΰ be such that μxwx

+ + μ w w m = 0. We can write wt — Σ* = 1 OL^XJ with atJ E K and

Λ:,,. .. ,xk a linearly independent subset of D. Then Σjjμ^a^Xj = 0 implies

Σ"L\ l*Ί<Xij — 0 for 1 < y < k by a standard property of tensor products

over fields. Thus, atJ = 0 for all /, j 9 and w, = = wm — 0.

We can now prove the key lemma of this section.

LEMMA 4.4. If I <t<r, then there is a left ideal LofD such that

(a) dim^L = tn2/r, and

(b) // x E D satisfies Lx C L, then x E F.

Proof. Since F has infinite transcendence degree over i% there is a set

X = {α/yΛ, E / | 1 < / < t, 1 <y < r - t, \ < k < s] that is algebraically

independent over K. Define afJ — Σs

k=x oίiJkuk E: C, y — [alf], and e =

(o J) E Mr(C) = D, where ^ is the / by / identity matrix. Note that e2 = e.

Let L — De,di left ideal of Zλ By definition, L is a direct sum of t minimal

ideals of Mr(C) (generated by the non-zero rows of e). Hence the F

dimension of L is t(n/r)n. Suppose that x E D satisfies Lx C L, that is,

ex = exe. The assumption that x E D implies that the matrix entries of x

are in B C K®FD. If

21
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is partitioned like e, then the condition ex — exe takes the form

0 0 / \ 0 0

or ξl2 + γ£ 2 2 ~ £nY + T^2iϊ I* follows from Lemma 4.3 that £1 2 = 0,

ξ2] = 0, and γ£ 2 2 = £ π γ . If £„ = [xΛ l], £ 2 2 = [yjk]9 then £ n γ = γ£ 2 2 im-

plies ΣJ= 1 *Alflfy = Σ ^ Ί 0,7.yy*. Using Lemma 4.3 again, it follows that

xhι = 0 if Λ ̂  i, j ^ = 0 if k Φj9 and xl7fl/y = aljyjj for 1 < / < ί,l < y <

r - /. Thus, Σ*=i 0Lijk{xξiuk - ukyn) = 0, so that *„!/* = w^ y y for all k

by Lemmas 4.2 and 4.3. Therefore, xu — * — x/r — yu — = yn_un_n

and this element is in the center F of C That is, i G F , since F Π D = F.

5. Realizing division algebras. In this section we apply the machin-

ery developed in §§2, 3, and 4 to determine for which primes p a central

division algebra D of degree n over an algebraic number field F is

/^-realizable.

NOTATION. Using Lemma 4.1 and the subsequent discussion, we can

assume that,

(l)Qp®F=Fλ+ •• +F,,and

(2) Dp = Qp ® D = Mr(l)(Cι)+ +M r W (Q),

where for each /, r(i) is a positive integer and Cι is a central division

algebra over /). If we let d — dim^ F and dι — dim^ Fι9 then d — Σf= i ^

and dn2 = Σf=1 dt(n/r(i))2r(i)2

9 so that n/r(i) is the degree of C, over F r

DEFINITION. A set of positive integers {/, | 1 < / < k) is said to be

applicable for i)^ provided that for each /, 0 < /; < r(z), and for at least

one /, 1 < ^ < r{i).

Note that this definition subsumes r(i) > 1 for some /.

THEOREM 5.1. If D is a central division algebra of degree n over an

algebraic number field F and p is a prime^ then D is p-realizable if and only

if Dp is not a direct product of division algebras. In this case, if Dp ^

θf=i M (/)(C/) w*th r ( 0 — 1 and Ct a division algebra, then for each

applicable set of integers {tt\ 1 < / < / : } there is a p-local group G of rank

dn2 andp-rank Σf=I d^^/r^) such that QE(G) = D.

Proof. If Dp = Cj + +Ck is a product of division algebras, then

the only left ideals of Dp have the form L — Σ / G / C / 9 where / is some

subset of {1,... ,/c}. By Lemma 4.1, each such L is defined over F, and D

is not j^-realizable by Theorem 3.1.
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The rest of the theorem is a consequence of Lemma 4.4, using the

results of §§2 and 3 (explicitly, Theorem 2.6, Corollary 2.7, and Corollary

3.3).

It is clear from Corollary 2.7 and (2) that every G E Γ (Z>) has/?-rank

of the form Σf=1 d // /w
2/ r(O f°Γ some applicable set of tr If ti = 0 or r(/)

for each /, then L(G) is defined over F, so that G will not /?-realize Z> in

these cases. Thus, the result on /7-ranks in the theorem is optimal.

REMARK. The proof of the theorem can be refined to show that for

each admissible /?-rank, there are continuum many pairwise non-quasi-iso-

morphic groups G E Γp(D) of that/?-rank such that QE(G) — D. Indeed,

G and H in T (D) are quasi-isomorphic if and only if there is a non-singu-

lar linear transformation φ of D such that φ(L(G)) — L(H) (see [3],

Theorem 5.25). The estimate of the number of G that ^-realize D therefore

follows from the observations that EQ(D) is countable and that the

transcendence degree of Fι over F is the cardinal number of the continuum

for each /.

COROLLARY 5.2. Let D be a central division algebra over F of degree

qeθ) . . . q*ir\ where qλ,... ,qr are distinct primes. If D — Dλ ®F ®FDr is

the primary decomposition of D {that is, Dt is a central division algebra over

F of degree #f ( / )) then for any prime p, D is not p-realizable if and only if

none of the Di are p-realizable.

This is clear from Theorem 5.1, since

Dp = Qp®D = {Fλ+ •••+£,) ®FD
k

= Π {Fi®FDχ)®ϊι ®FXF,®FDr),
1=\

and Dp is a product of division algebras if and only if for each / < / < A:,

1 < y < r , Fι®FDj is a division algebra (see [9], Theorem 14.4 and

Proposition 13.4).

The result in Theorem 5.1 can be formulated in terms of the local

invariants of the division algebra D. Given a (normalized) valuation v of

F, let FΌ denote the completion of F in the i -topology, and DΌ = Fv ® F /).

For each such v9 there is a monomorphism INV^: B(FV) -» Q/Z of the

Brauer group of Fυ to the rationals mod Z. If v is non-archimedean, then

INVy is surjective. When v is archimedean, then the image of INV^ is

(1/2)Z/Z or 0 in the respective cases that v is real or complex. The

elements I N V ^ ΰ J are called the local invariants of D. They determine
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the algebra D uniquely to within isomorphism. The order of ΪNYυ(Dv) is
the Schur index of Dv. In particular, DΌ is a division algebra if and only if
the order of INV^Z^) is equal to the degree of D. By using this
observation and some standard facts about local invariants (see [9] Chapter
18), we can deduce some interesting implications of Theorem 5.1.

Since INVυ(i3t;) is zero for almost all normalized valuations v (see [9],
Proposition 18.5), the hypotheses of Theorem 5.1 are satisfied for almost
all primes p. Thus, Theorem 5.1 implies the following result.

COROLLARY 5.3. Let D be a finite dimensional central division algebra

over an algebraic number field. Then for almost all primes p, D is p-realiz-

able.

The local invariants satisfy the general reciprocity law: Σ
= 0. Conversely, given elements cv E Q/Z such that cΌ = 0 for almost all
ϋ, cv E (1/2) Z/Z if v is real archimedean, cυ = 0 if v is complex
archimedean, there is a central division algebra D over F such that
I N V ^ J D J = cυ for all v. This deep theorem ([9], Theorem 18.5), together
with the result that the degree of D is the least common multiple of the
orders of the local invariants of Z), leads to existence theorems for
p-realizable division algebras.

COROLLARY 5.4. Let F be an algebraic number field with F Φ Q. If

n > 1 is a natural number and Π is a finite (possibly empty) set of rational

primes, then there is a division algebra D with center F and degree n such

that D is p-realizable if and only if p ξ£ Π.

Proof. Let q and r be distinct primes not in Π such that in the ring /

of integers in F, Jq and Jr are products of two or more distinct prime

factors, say Jq - PιP2 , and Jr-QXQ2". Such primes exist by the

Tchebotarev Density Theorem ([9], §18.7) because [F: Q]> 2. For each

normalized non-archimedean valuation v of Z7, denote by Pv the set

{x G F\v(x) < I}. The mapping v -> Pv is bijective between valuations

and non-zero prime ideals of/. Let ϋ( l ) , . . . ,v(m) be the (possibly empty)

set of valuations such that Pv(ι) D Jp for some/? E Π; and let v(0) and w

be the valuations such that PΌ(0) = P,, Pw = Qv Define D to be the

division algebra with center F such that INVϋ(|.)(/)l?(/.)) = \/n + Z for

0 < i < m, INVw(25j - -(ΣΓ= 0 INV ϋ ( l ) (4 ( l ) )) , and ISVΌ(DΌ) = 0 if v is

not among w, v(0)9... ,v(m). The order of ΐNVυ(i)(Dv(i)) is clearly n\ the

order of INVvv(i3vv) divides n\ and the (multiplicative) order of all other
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local invariants divides n. Thus the degree of D is n. By construction, if
p E Π, then Dp is a product of division algebras. If p is q or /% then Dp is
not a product of division algebras because INV^ΰJ = 0 if Pυ = P2 or Q2.
Finally, if p & Π and p φ q or r, then INV^ΰJ = 0 for all valuations υ
such that v(p) < 1; hence Dp is a product of matrix rings of the form
Mn(Fυ). It follows from Theorem 5.1 that D is /7-realizable if and only if
p e Π.

For division algebras with center Q, the situation is somewhat differ-
ent. When n is not a prime power, then the construction in Corollary 5.4
can be modified to obtain the same result in the case F — Q. Similarly, if
n = qe is a prime power and | Π | > 2, or if n = 2 and | Π | = 1, then the
argument can be modified to produce a division algebra D with center Q
such that Π is the set of primes at which D is not /?-realizable. Our final
corollary shows that these restrictions on Π cannot be omitted.

COROLLARY 5.5. // n — qe > 1 is a prime power, then every central

division algebra D of degree n over Q is not p-realizable for at least one

prime /?, and for at least two primes if n > 2.

Proof. Suppose that Z(D) = Q and Deg D — n. Since n is the least
common multiple of the orders of ΪNVv(Dp) and ΪNV^D^) (correspond-
ing to the absolute value on g), it follows that ΪNYp(Dp) = ap/qf(p) + Z
(with a zero or not divisible by q, f(p) < e), INV^Z)^) = 0 if q φ 2,
INVJZJJ = 0 or 1/2 + Z if q = 2, and (since Σ INVp(Dp) + INVJ2JJ
= 0) there are two or more local invariants of D whose orders are n. Thus,
ΪNYp(Dp) has order n for at least two primes p if n > 2, and for at least
one prime p if n — 2. The corollary therefore follows from Theorem 5.1.
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