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FORMAL REDUCTION THEORY
OF MEROMORPHIC DIFFERENTIAL EQUATIONS:

A GROUP THEORETIC VIEW

DONALD G. BABBITT AND V. S. VARADARAJAN

One of the main goals of this paper is to develop an algorithm for
reducing the first order (singular) system of differential equations:

(f) fz

=Λ^f
to a Turrittin-Levelt canonical form. Here A(z) = zrAr + zr+]Ar+ι

4- , r < - 1 and Ar+m G flI(Λ; Q m > 0. The reduction of (f) to a
canonical form is implemented by the natural gauge adjoint action of
GL(n; ¥) where ^ i s the algebraic closure of the field of formal Laurent
series about 0 with at most a finite pole at 0. For example, it is shown
that the irregular part of the canonical form (f) is determined by Ar+m,
0 < ra < rc(| r| —1). The proofs utilize group theoretic techniques as
well as the method of Galois descent. In particular almost all of the
results generalize to the case where GL( n) and g I (n ) are replaced by an
arbitrary affine algebraic group G over C and its Lie algebra g.
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0. Introduction and summary.

0.1. This paper presents a formal classification of meromorphic linear

ordinary differential equations from a group theoretic point of view. Let
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the equations be

where the n X n matrix A is analytic around the origin and has at most a

pole of finite order there. Changing / to g = xf where x is an invertible

n X n matrix, meromorphic in z (or at least in zλ//m for some integer

m > 1) changes (0.1) to

(0.2) -^g = B(z)g

where

(0.3) ' B = χ[A] = xΛ c ' -t- xx ' | x = — x
dz'

If we introduce the field <$ of all formal Laurent series in z and its

algebraic closure ψ9 it is easy to check from the definition (0.3) that

x, A h-> x[A] defines an action of GL(«,SΓ) on Ql(n^W). The proposed

treatment of the systems (0.1) is based on a " parametrization" of the

orbits for this action.

The determination of canonical forms for (0.1) is quite well known

and goes back to Turrittin [26], Levelt [16], Jurkat [11], and more recently,

to Robba [21a] (cf. [1]). Our approach, which reduces the problem to the

study of the adjoint action of GL(rc, C) on g \{n, C), is new. It is moreover

completely finitistic and leads to algorithms and sharp bounds on the

number of coefficients of the Laurent expansion of A E Ql(n,Ψ) that are

needed to predict the canonical reduction of A. The reduction theory over

^itself is treated by Galois descent.

The transformation law (0.3) is that of a connection so that the theory

of the systems (0.1) is really the theory of meromorphic connections on

vector bundles. When properly formulated (taking into account tensor

products) the classical theory would also yield the generalization where

GL(/7, (5) and gl(w, $0 get replaced by G(®Ϊ) and Q(^) respectively for

any algebraic subgroup G of GL( n, C) with Lie algebra g. ! Our methods,

operating as they do directly in the context of algebraic subgroups of

GL(fl), seem to have interest of their own. For treatments of various

aspects of (0.1) from the point of view of connections on vector bundles

the reader should consult [1], [7], [13], [18].

'We owe this remark to Professor P. Deligne.
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Finally it is clear that these questions may be formulated in a much

more general context where the field ίFis replaced by a local field K whose

residue field k has characteristic 0. It is not particularly difficult to do this

at least when k is algebraically closed. It is also easy to formulate our

main results in a way that does not depend on the choice of a uniformi-

sant for K (see [18], [1]).
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0.2. There are three parts to this paper. The first part consists of §§1

and 2. §1 contains the terminology and notation that will be used in the

paper as well as some useful general remarks. §2 contains a discussion of

the orbits under the action of a complex reductive group on its Lie

algebra. The results discussed here are basic to everything that we do later

on. We mention in particular the results in §2.2 which construct, for a

given nilpotent orbit, a transversal having the crucial property that any

other nilpotent orbit it meets must have strictly higher dimension', this

increase in dimension lies at the heart of all the inductive arguments and

algorithms of this paper.

In the second part (§§3-7) we carry out the classification of the orbits

in $l(V(Ψ)) as well as gI(K(^F)). The core of our method (for reduction

over ψ) is a technique developed in §4.6; it shows how to transform a

given connection A E c\l(V(®r)) of order r < — 1 and nilpotent leading

coefficient Ar, into a connection Ar of order rf > r, such that, the leading

coefficient Ar

t, of A' is either non-nilpotent, or is nilpotent, but belongs to

a G-orbit of dimension greater than that of the orbit of Ar. In combina-

tion with the well known spectral splitting of a connection (along the

spectral subspaces of its leading coefficient) this leads in §6 to the main

results of classical reduction theory, and, in addition, to algorithms for

obtaining the reductions. As an illustration of the algorithmic aspects of

our techniques we mention the result that the entire irregular part of the
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reduced form of A is determined by the coefficients Ar+S, 0 < s <

n(\ r\ — 1) (n — dim(F)), the estimate being sharp. Earlier results of this

kind were restricted to just the term of the highest singularity in the

reduced form (cf. [12]). In §7 we show how the reduction theory over SΓ,

combined with elementary techniques of Galois descent, yields the reduc-

tion theory over <S.

In the third part (§§8-9) we show that the methods of §§4-7 go over

essentially without change to the context where GL(F) is replaced by any

complex affine algebraic group. The main results remain virtually the

same.

The material in §§3-7 is self-contained and, taking into account §§1

and 2, does not require any special background of the reader. The

treatment in §§8 and 9 however assumes some familiarity with the theory

of algebraic groups, and we have tried to compensate by giving extensive

reference to the relevant parts of BorePs book [3].

1. Notation. Generalities.
1.1. We begin by introducing our basic notation. As usual Z, Q, and

C will respectively stand for the ring of integers, the field of rational

numbers, and the field of complex numbers. Let z be a complex variable

and <$ — ^ the field of all formal Laurent series

0 -1) / — Σ f,zJ> fj~ 0 if7 < 0 and \j \ is sufficiently large.

I f / i n (1.1) is nonzero, its order, ord(/), is the integer k such that/^ Φ 0

and fj — 0 for7 < k\ we put ord(O) = + oo. The ring of elements of order

> 0 is denoted by 0. The Laurent series (1.1) is said to be convergent if for

some τ ^ 0 in C the series Σ | fj,\ \ τ f7 is convergent. The convergent

elementsform a subfield of S7, denoted by §cgi; we put Θcgt = & Π §cgt.

Let ^ b e the algebraic closure of <5Γ. Then, by the classical theorem of

Puiseux, §= U ^ j ®ϊh where <Sb is the Galois extension §(z]/h). Fixing a

choice of zx/b — ζ gives rise to an isomorphism, called the ^-lifting, of ^h

with SFp the f-lifting of / = Σ a}{zx/hy is Σ afi and will be denoted b y /

The pre-images of ^ c g t , 6^, in <Sh will be denoted respectively by %cgV ®h.

If / E <%h we write ord(/) for (1/Z>)ord(/). These are independent of the

choice of zλ/h. Let μh be the multiplicative group of bύ\ roots of unity. We

have μh ^ G a l ^ / ^ ) ; the element γ E / t f t acts on <Sb via
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This is also independent of the choice of zλ/h. The order functions on the

% are mutually compatible. We write 6 for Uh>xΘh. The field Φcgt =

U ^ , %cgt is the algebraic closure of %gV Finally, as is well known, we

may regard the (%h as topological fields; as a fundamental system of

neighborhoods of 0 in this topology, the so-called adic topology, we take

the ideals βhm = βhz
m/h (/w > 0).

The derivation d/dz of ^ extends uniquely to a derivation of $", also

denoted by d/dz. For / E ψ we often write / for df/dz. If w E f i s not a

constant, d/du is defined as the derivation (ύ)~]d/dz of §". If b > 1, d/dζ

and d/d(z]/h) correspond under the ξ-lifting isomorphism:

(1.3) -^x = bζh-χ±, x e f ,

here we are extending the ξ-lifting to some isomoφhism x h-> x of <$ with

f̂ . If γ E G a l ί i / f ) and « G I ( « ^ 0), we have (ιi) γ = (wγ)'; and

y(d/du)y~ι = d/du\

1.2. Let F be a complex vector space of finite dimension n over C. For

any commutative C-algebra R we put

(1.4)

c Λ , GL(K(Λ)) =

The cases R — Φ, ψ9 0, etc., will be important to us.

The notions of order, convergence, and ^-lifting extend in the obvious

way to V(^). Moreover we obtain an isomorphism

which is the restriction to G L ί F ^ ) ) of the ξ-lifting isomoφhism (of

associative algebras) End(V(%)) ^ E n d ( F ( ^ ) ) .

For R = β9 GL(F(0)) is the group of x G GL(F(^)) of the form

To + zTx + • where To E GL(F); for m > 1, GL(K(Θ))m is the sub-

group of x E GL(K(Θ)) with x = 1 mod(zw). For instance, if T E

exp(z-Γ)EGL(F(Θ))m ._

We write d/du (u E <#, ύ φ 0) for the unique C-linear map of

such that

(1 5) ίu{fw)
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For σ E Gal^/ίF), we write w H> wσ for the unique C-linear automor-

phism of V(%) such that

(1.6) (fv)σ=fσv (/E§>E V).

We have the obvious isomorphism

(1.7a) GL(F(Θ))/GL(K(Θ))1 - G L ( F ) .

If m is any integer > 1 the map

l + z ' " Γ m + z'"+ 1Γm + 1 + ι^Γm

gives rise to the isomorphism (+ denotes additive group)

(1.7b) GL(F(Θ)) m /GL(F(θ)) m + 1 - g l ( F ) + (m > 1).

The formulae (1.7) are further clarified if we use infinite product represen-

tations for elements of GL(F(Θ)),. It is easy to check that GL(F(Θ)), is

precisely the set of all infinite products

(1.7c) x = Π (1 + zkTk) = lim (1 + zmTm) (\ + zTχ)
fc _ j d i n m -»• oo

the elements Γw being uniquely determined, given x, by

x((l + z m Γ m ) ••• (1 + Z Γ , ) ) " 1 Ξ 1 ( m o d z m + 1 ) ( m > 0 ) .

The subgroup GL(F(Θ6)) of GL(K(^)) gives rise to its "polar

decomposition." Let V=Cn, so that GL(V(%)) = GL(n,%) and

) = GL{n,βh). Let a choice of zx/b be fixed, let z w ^

) w ( w ^ Z ) and let

(1.8) Φ + ̂  - {diag(z\... ,zr-) I rj E (l/fc)Z, r, < r2 < • < rπ}.

Then it follows from the theory of elementary divisors ([4], Th. 1, p. 82)

that

(1.9a) GL(n9%) = GL{n9βb)<%+tbGL(n9βb);

moreover, given x E GL(«, ^ ) , its component in 6D+ b with respect to the

decomposition (1.9a) is uniquely determined. In particular,

(1.9b)

1.3. We shall refer (cf. the introduction) to elements of gl(F(^F)) as

connections. GL(F(ίF)) acts on gί(K(iΓ)) by

(1.10) x[A] =xAx~ι + xx~' (x
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Note the identity

(1.11) x[A + B] = xAx~ι + x[B] = x[A] + xBx~ι

as well as the following formula relating the actions of GL(V(^)) and

(1.12) (x[A])σ =

(x E G L ( K ( f ) ) ) , σ E

In particular, if A is in g 1(^(5")) its equivalence class under GL(F(iΓ))
(resp. GL(K(^))) is fixed by Galίf/^) (resp. Gal(^/^)) . In §7.4 we
shall see that the converse statement is true and forms the point of
departure for a complete description of the GL(F(SΓ))-equivalence classes
of elements of g ί( V{ <$)) that are equivalent to A under GL( V( %)).

Given b > 1 and a fixed choice of zx/h the ^-lifting map g l ί ^ ί ^ ) ) -*
g I( F(^)) will not commute with the actions of GL( V(%)) and GL( K(S^)).
We shall therefore modify it. The modified map, applicable only to
connections, will be denoted by ~ . Given

(1.13) A=

we define

(1.14) A

With this definition it is easy to check that

(1.15) x[Λ] = 4A] {X E GL(V(%)),A E Qί{V(%))).

For the Galois actions we have the formula

(1.16) ^A - γ -u^ ( i γ ( 0 J

We also note from (1.14) the obvious

(1.17) ord(i) =

1.4. We wish to make a few remarks concerning the relation between
linear ordinary differential equations and connections; for a detailed
treatment in complete generality see Deligne ([7], pp. 23-29). If we are
given an ordinary differential equation

d dn~] d \
7-z + a, r + + α w _ i " r + an \y =
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we convert it into the system

y

y'

where

(1.18) A =

0 1

o 1

0

o

o

1

o
- α 2 ,

The converse is also true; any connection E gI(/t, <3Γ) is equivalent to one
of the form (1.18), so that it arises from a scalar nίh order ordinary
differential equation (cf. [7]; also [6]). Since our primary focus is on
connections and their transformation properties, we do not use this result
in this paper.

1.5. We now wish to extend the discussion of the preceding para-
graphs to the case where GL(K) is replaced by an arbitrary connected
affine algebraic group over C. We shall generally follow the notation and
terminology of Borel ([3], Chapter I). Fix such a group G, and write, for
any C-algebra i?, G(R) for the group of i?-points of G; we write
G = G(C). Let g be the Lie algebra of G. For any C-algebra R let

(1.19)

If p (G -» G') is a morphism of algebraic groups defined over C, its
differential dp is a Lie algebra morphism g -> g' where g' = Lie(G').

As in the case of GL(F) we have the subgroup G(Θ) of G(^) and the
"congruence subgroups" G(Θ)m (m > 1). For instance, if G C GL(F),
G ( Θ ) w - G ( f ) Π G L ( F ( 6 ) ) w . If Γ G g , exp(zT) E G(β)m for any
m > 1. It is easy to show that G(6)1 is precisely the set of elements of the
form

(1.20a) χ= Π exp(z f c7;)= lim exp(z"Tm)
« _ i d i n m -» oo

where T} are uniquely defined by

(1.20b) x(exp(zmTm) expizT^)'1 E G ( 0 ) w + 1
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The ^-lifting isomorphism leads, as in the case of GL(F), to the maps

x H> x (of G(%) with G(^)) and A μ» A (of Q{%) with g(^)) . One can

also show that G(^h t) is dense (adic topology) in G(^h). This is easy to

verify directly if T is a torus or unipotent; for semisimple G, it follows

from the Iwasawa decomposition of G(^) ([25], p. 114); for general G,

from its Levi decomposition.

If H is an endomorphism of a finite dimensional vector space V over

C which is semisimple and has only integral eigenvalues, it makes sense to

speak of the element zH in GL(V(^)); if λ E Z and Vλ is the eigenspace

on which H acts as λ id, zH acts as z λ id on F λ. Clearly zH E GL(V(%gt))

and commutes with any endomorphism of V that commutes with H.

Suppose b is an integer > 1 and we have fixed a choice of zx/h. We define,

for any λ = μ/b E (1/&)Z, z λ as (zι/b)μ. If H above is assumed to have

all its eigenvalues in (1/Z?)Z, we can define zH exactly as before; it lies in

G L ( F ( ^ c g t ) ) and commutes with all elements in the centralizer of H. To

extend these definitions to the case of a complex affine algebraic group G

with Lie algebra g, we use affine imbeddings G <=* GL(K). The notion of

an integral element X of g makes sense: X is integral if and only if in some

affine imbedding it has only integral eigenvalues; then dp(X) has only

integral eigenvalues for any C-morphism p (G -> GL(F)). It is now easy

to show that for any integer b > 1 and a fixed choice of z1///?, we have a

map

(1.21) Ht-»zH

from the set of semisimple H E g for which bH is integral, to G(%cgt).

Given //, z H is characterized by

(1.22) p(zH) = zd«H) (p = any C-morphism G -> GL(F)).

If H, Hr commute,

(1.23) zH+H' = zHzH'.

1.6. Given x E G(Wh) one can show the existence of a unique element

8G(x) E §(%) such that for any C-morphism p (G -> GL(F)),

(1.24) Jp(δ c (x)) = ρ(x)p(*) .

In fact it is easy to see this for x E C?(^ c g t ); for general x one uses a

density argument. If p(G -> G') is a morphism of algebraic groups,

(1.25) dp(δc(x)) = δG.(p(x)) {x e G(Ψ)).
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Using this we can define an action of G(Φ) on Q(W) by

(1.26) x[A]=Ad(x)(A)+δG(x).

In the presence of the transformation law (1.26) we shall refer to elements

of β(§") as connections.

The definition (1.26) reduces to (1.10) for G = GL(K) and is related

to it by (1.24). The relation (1.24) allows one to extend almost all the

remarks made earlier to the present context. For later use we put down

the following consequence of (1.25):

(1.27) dp(x[A]) = p(x)[dp(A)].

1.7. If x G GL(K(Θ)) and A G gί(K(f)), oτά{x[A}) = ord(Λ). For

x £ GL(F(Θ)) this is no longer true in general. For x G GL(F(9r)) we

define lag(x) as the smallest of the integers m >: 0 such that A = 0

(mod zm) impliesxAx~ι
 GQI(V(Θ))(A G gI(K(^))). If lag(x) < m, then

For έ > l we use the ̂ -lifting to define (independently of the choice of

z1/*)

(1.29) lag(jt) = (l/ft)lag(Λ) (x G GL(F(f,))).

The definitions (1.29) are compatible when b varies. The following is a

routine consequence of the definitions. In view of (1.9), (1.30) leads to the

effective computability of lag(x) for all x.

PROPOSITION 1. We have the following.

(i) lag(jc) = 0 for x G GL(V(Θh)) Zh where Zh is the group of ele-

ments of the form zk-\, k G (\/b)Z.

(ii) lag(xy) < lag(x) + \z%(y) for all x, y G GL(V(%)).

(iii) lag(yxy*) = lag(x) ify, yf G GL(F(0,)) Zh9 x G GL(V(%)).

(iv) If x — zH where H G Q>l(V) is semi-simple and has eigenvalues

kl9...,kne(l/b)Z,

(1.30) lag(x) = max I k( - k,
\<ij<n J

(v) lag(x) = lag(χ-'), x E GL(V(%)).

Let Θx be the group of units of 0. We define

(1.31)
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UV=Cn we write °GL(n, $) for OGL(V(<$)). It is clear that °GL(V(§))
is a subgroup of GL(V(^)) and that

(1.32) SL(K(#)) C G L ( F ( Θ ) ) C

Moreover, if H is semisimple in gl(K) with eigenvalues in Q, it is
immediate that

(1.33) zH G tτ{H) = 0.

PROPOSITION 2. Let V = Vx_® θ Vm9 y = yx θ

(1.34) lag(.y) < lag(^) +

Let ; / = l θ θ j ; / θ l θ θ l L l < / < m . Then j / G
°GUV($)) and ^ = Jί - ^ . So y G ^ L ί F ί ^ ) ) and lag(jθ < lag(j[)
+ +lag(^) . It is thus sufficient to prove that lag(j>/) = lag(^) for all
i. We use the polar decomposition in GYXV^)) to come down to the
situation where (with respect to suitable bases for Vl9...9Vm)

y; = y,=
o

o

The result is now immediate from (1.30) since min7 qι < 0 < max7 qt.

2. Orbits in complex reductive Lie algebras.

2.1. The reduction theory of connections in Q(^)9 Q being the Lie
algebra of a complex reductive group G, depends in a fundamental way
on the orbit structure of the adjoint representation of G. If G — GL(«, C),
the orbits in g = gI(fi,C) are just the similarity classes of matrices.
However, the orbit theory for general G may not be familiar to the
nonspecialist; and so we devote this section to a brief review of the
structure and classification of the orbits of the action of G on g. As the
basic references we suggest [14] [15] and [24] (cf. also [28], [29], [10]).

Our main results here are in §2.2. Propositions 2.2.1 and 2.2.2
construct, for any nilpotent Y φ 0 in g, an affine subspace of g through
y, meeting the orbit of Y only at Y and having the property that any other
nilpotent orbit that it meets is necessarily of dimension strictly greater
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than the dimension of the orbit of Y. This result is basic for everything we

do. It controls the inductive mechanisms involved in virtually all aspects

of the reduction theory of elements of g(S r).

The affine transversal mentioned above occurs in other contexts (cf.

[10], [28]). While the results of §2.2 are contained in [15] when Y is

principal, they seem to be new in the general case.

Let g be a reductive Lie algebra over C. Then [g, g] is semisimple and

0 — [0> 0] ® c where c is the center of g. G is a complex algebraic group

with Lie algebra g. G operates on g via the adjoint representation, and for

most of the following remarks one may assume as well that G is the

adjoint group.

An element X E g is said to be semisimple if ad X is semisimple; it is

called nilpotent if ^ E [ g , g ] and ad X is nilpotent. For g = gl(K),

[0, 0] — §I(K), and X E g is semisimple or nilpotent in the above sense if

and only if it is so in the usual sense as an endomorphism of V.

(a) The fundamental fact concerning nilpotents is the theorem of

Jacobson-Morozov: let Y Φ 0 be a nilpotent in g (i.e. [g, g]); then we can

find i/, X E [g, g] such that H, X and Y span an §1(2, C) with standard

commutation rules, i.e.,

(2.1) [H,X]=2X, [H,Y] = -2Y, [X9Y]=H.

Given Y, H is unique up to conjugacy by G y , the centralizer of Y in G;

given Y and H, X is unique (cf. Kostant [14], 980-988). In particular, the

§1(2, C)'s containing Y are all conjugate via Gγ. We note that the

commutation rules (2.1) are the same as those satisfied in §1(2, C) by

<*•'•> H i Λl HS i) H ΐ I)
{H, X, Y} is called a standard triple; H is semisimple, and X is

nilpotent. The roles of the elements X and Y can be interchanged in the

sense that there is an element g E G such that Y8 - X, Xs - Y,H8 - —H

where Z8 is an often used abbreviation for Ad( g)(Z).

(b) The usefulness of the Jacobson-Morozov theorem of course lies in

the fact that it allows us to split g with respect to the adjoint action of the

3 1(2, C) spanned by # , X and Y. Let

(2.2) α = CH + CX+CY.

If W is any finite dimensional irreducible α-module, H acts semisimply on

W with eigenvalues λ, λ — 2,. . . , — λ for some integer λ > 0, all eigenval-

ues being simple. W is said to be of highest weight λ. In particular,

άim(W) = λ + 1, and if Wμ is the eigenspace for the eigenvalue μ of H,
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we have

Wλ = [w G W\ Xw = 0}, W_λ = {w G W\ Yw = 0}

range(Γ) = Wλ_2 θ .. θ ^ _ λ , range(X) = Wx θ θ ^ _ λ

Consequently, fFis the direct sum of range(Y) and the null space of X.
This is then true for direct sums of irreducible modules also. Thus,
applying it to g regarded as an α-module, we get

(2.3) g = g x θ [ Y, g] (g x = centralizer of Xin g).

For convenience we shall refer to X as a nilpotent opposite to Y.
Let ί/ be an α-module of finite dimension and let Ux be the null space

of X. It is then //-stable and hence we can select a basis ut (1 < / < <y) of
t/^ consisting of eigenvectors for //. If //w7 = λ^y, the λz will be integers
> 0, ut generates an irreducible α-module Ut of highest weight λ/? and
U = i7j θ θ JJ In particular, taking [/ = g, we see that g^ is stable
under ad //; and that if Zf (1 < / < ^) is a basis of g x of eigenvectors for
ad /Γ, we have

(2-4) 8 ^ = 2 C Z,, [ ^ Z ^ λ . Z , . , λ, integer > 0.

It follows from the conjugacy under Gγ of the §> 1(2, C)'s containing 7 that
the λ7 's are invariants of the orbit G Y. We put

(2.5) A(Y) = A(G Y)= sup (μ, + l).

(c) As a simple application of the above we mention the fact that for
any c ¥=0,cY and Y are in the same G-orbit:

(2.6) cYGGY, 0 G C1(G Y) (Cl = Closure).

In fact, as [//, Y] = - 2 7 , γ e χp / 7 / = e~2Ύ, and we can choose t such that
e~2t = c; if ί G R and / -> + oo, Yexp/// -> 0.

(d) If we regard G as an algebraic group operating linearly on g, we
can conclude that each (/-orbit in g is irreducible and is a Zariski open
(Z-open) subset of its closure in the Zariski topology (Z-closure). More-
over, if 6 is the orbit and C1Z(0) is its Zariski closure, C l z ( 0 ) \ 6 is the
union of finitely many orbits each of which has dimension < dim(θ).
Note that as any orbit is Z-open in its Z-closure which is irreducible, it
makes sense to speak of the dimension of any orbit. Actually these are
results valid in the general context of algebraic groups acting on algebraic
varieties ([3], p. 98).
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Semisimple orbits are closed, and in fact, they are the only closed
ones, either in the complex or the Zariski topologies. In this respect they
are very different from the nilpotent orbits (cf. (2.6)).

Let 91 be the set of the nilpotent elements of g. Then 91 splits into
finitely many orbits ([14]). The classification of the nilpotent orbits is a
subtle matter and the reader may consult [24]. We do not use this
classification.

If / = rank(g) (/ = dim(F) for g = gί(F); see [30], p. 260), then
every orbit in g is of dimension < dim( g) — /. An element will be called
principal if it generates an orbit of dimension exactly dim(g) — /. Prin-
cipal semisimple elements are traditionally called regular; they are pre-
cisely the elements whose centralizers are Cartan subalgebras of g. Regu-
lar elements of Ql(V) are those endomorphisms of V whose eigenvalues
are all simple, i.e., which have, with respect to some basis, diagonal
matrices with distinct entries. Principal nilpotents exist and all of them are
in one orbit which is necessarily dense and Z-open in 91 (cf. [14], §§1-5,
[15], §3).

(e) Since G is a complex group, the G-orbits in g may also be regarded

as complex manifolds which turn out to be regularly embedded in g. In

fact, let Z G g and let G z be the centralizer of Z in G. Write G* = G/Gz

and Jίh>i* for the natural map of G onto G*. Since the orbit G Z is

Z-open in its Z-closure, it is open in its closure (usual topology) and so is

locally compact and second countable in its relative topology that it

inherits from g. Standard arguments then show that G Z is a regular

submanifold of g and that the map

(2.7) πz:x*^>Zx

is a complex analytic isomorphism of G* with G Z.
We shall always identify g with the space of holomorphic left in-

variant vector fields on G so that the tangent space at every point of G is
canonically identified with g. On the other hand, as g is a vector space
over C, its complex tangent space at each point is also canonically
identified with g. It is then clear that the tangent space to the orbit GZ
at Zis [Z, Q]:

(2.8) Γz(G Z ) = [ Z , β ] .

For, if X E g ,

(2.9) (£z-«),_=[*, 21
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so that the differential of the map x ι-» Zx of G onto G Z at 1 is the linear

transformation XH>[X,Z], leading to (2.8). For the dimension of the

orbit we have the formula

(2.10) dim(G Z) = dim([Z, g]) = dim(g) - d i m ( g z ) .

In particular,

(2.11) Z is principal <=> dim( g z ) = / ( = rank( g)).

If Y is principal nilpotent, dimίg^) = / and the λ, in (2.4) are even
integers ([14], [28]).

In case g = gί(«,C), we have g = C l Θ§I(«,C) and g x = C l θ
(QX Π gί(«,C)). It is often convenient to assume that the Z, in (2.4) are
chosen so that

(2.12) Z, = l ,Z 2 , . . . ,Z,eg J f n§I(π,C).

In particular λ, = 0. A typical choice of principal nilpotent is

(2.13)

o
bx 0

0 b,

o
0

, 0 0 ••• &„_, 0

where

(2.14) bj=j(n-j), l < y < / i - l .

A simple calculation shows that if we take

' n - 1

(2.15)

« - 3

O

0 1

0

o

0

1

o

-(n- nί
• 0

0

1

0
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[Hn, Xn, Yn} is a standard triple.

So Xn is a nilpotent opposite to Yn\ the choices (2.15) are thus seen to be

made so that Xn takes a simple form. The centralizer of Xn is seen to be

the space of all upper triangular matrices whose elements are constant on

each diagonal {companion matrices, see [8]):

Z E QX <=> Z —

aλ a2

0 aλ a2

O

-\
<*n-\

Let Etj (1 < /, y < Λ) be the matrix units, i.e., Etj is the matrix which has

1 in its ij th cell and 0 in all others. Define

(2.16) Z, = Eu + £ 2 f / + 1 + +En_i+Un (1 < ί < n).

Then

(2.17) Z, =

Moreover

(2.18) [/*., Z,] = 2 ( / - 1)Z, (1 < / < « ) .

It is immediately evident from (2.18) that Λ(ϊ^) = n.

We shall now obtain an estimate for Λ(7). Let g be arbitary reduc-

tive, Y ^ O a nilpotent, and {//, X, Y) a standard triple. If the integers λ7

are as in (2.4), it is easily seen that s u p , ^ ^ λ7 is the largest eigenvalue of

ad H. On the other hand, let ί) be a Cartan subalgebra containing H and

let us choose a positive system of roots of (g, ί)) such that a(H) > 0 for

all positive roots a. Let aι,...,aί be the simple roots. It is known that

at{H) E (0,1,2} for all i = 1,...,/, and that for principal 7, « . ( # ) = 2

for all i = 1,...,/ (cf. [14], Lemmas 5.1 and 5.2). So, if Δ, (resp. Δ 2) is the

set of / for which « , ( # ) = 1 (resp. a^H) — 2), then

(2.19) Λ(y) = 1 + 4 maxf

where the maximum is over all m l 9 . . . ,m7 such that a — mλax +

is a positive root.
+ mιaI
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For any positive root a = mxax + +mIal9 we call mx + + mι

the order of a. Write

(2.20) ord(g) = maximum of the orders of the positive roots of g.

Obviously ord( g) is the maximum of the orders of the highest roots of the

simple factors of g. From (2.19) we easily obtain the following.

PROPOSITION 1. For any nilpotent Y φ 0, Λ(7) < 1 + ord(g); if Y is
principal, A(Y) — \ + ord(g).

For g = gI(λi,C), the roots are ±(α, + α I + 1 + +«,), 1 ̂  / ̂ j ^
n — 1, so that ord(g) = n — 1. So Λ(7) < « in this case.

2.2. The following results are of fundamental importance for us.

PROPOSITION 1. Let YΦ0 be a nilpotent of g. Let X, H be in [g, g]

such that {X, H, 7} is a standard triple. Let Qxbe the centralizer of X in g.

Then the affine space Y + QX meets the orbit G Y exactly at Y.

Proof. We establish first that for a suitable open neighborhood n x of
0 in g^, the orbit G- Y meets 7 + nx only at Y. Let G* = G/Gγ and
x H> x* the natural map of G onto G*. We consider the map

ψ: JC*, Z H> y* + Z (JC* G G * , Z G g x ) .

It follows from (2.9) that the differential (dψ) ( 1*0 ) has for its range
[7, g] + QX which is g by (2.3). Hence (dψ)(1*,0) is a linear isomorphism.
So there are open neighborhoods U* of 1* in G*, and n^ of 0 in QX9 such
that ψ is an analytic isomorphism of U* X n'x with an open neighborhood
π of 7 in g. We claim that if n x is a sufficiently small open neighborhood
of 0 in n'χ, the orbit G 7 meets 7 + n x only at 7. If this is not true, we
can find a sequence (xn)n>\ in G such that

Now we have already remarked in §2.1 that the map JC* ι-» Yx is a
homeomorphism of G* with G 7, the latter being given the topology
induced by g. So, as YXn -> 7, we have JC* —> 1*. Hence x* E ί/* for all
n > n0. We may also assume that Zn E n'x and 7X" E n for n > n0. But
then, for « >: n09
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giving x* = 1*, Zn — 0, as ψ is one-one on ί/* X n'x. As Zn Φ 0 we have a
contradiction. Our claim is thus established.

In order to prove the proposition we need therefore only show that if
the orbit G 7 meets 7 + g x at points other than 7, it meets it also at
points different from, but arbitrarily close to, 7. Let (Zi)ι<i<q be a basis
of g x satisfying (2.4). Suppose (cx,..., cq) Φ (0,...,0) is such that

U= Y+cλZλ + . +cqZqίΞG-Y.

Then

for all / E C. Let Vt = e2tU***tH. As U^tH E G 7, it is nilpotent and so
is conjugate to any nonzero multiple of it, by (2.6). Hence Vt E G 7 also,
for all t E C. But now,

Vt = 7 + c^^'+^'Z, + + cqe
(λ<+2)tZq.

Since all λz are > 0, the exponentials above tend to 0 when t E R and
goes to — oo. Hence

(t -» — oo through real values)

as we wanted.

PROPOSITION 2. // U E 7 + g x is nilpotent and U Φ 7 f/ze«
dim(G ί/)>dim(G 7).

Proof. Let t/ = 7 + c,Z, + +cqZq, Zf as in (2.4). Define ^ as
before. Then Vt -> 7 as / -> — oo through real values. Since t/ is nilpotent,
(2.6) implies that Vt <Ξ GU. Hence 7 E C1(G t/), implying that 7 is in
the Z-closure of the orbit of U. By §2.1(d), we have dim(G-ί/)>
dim(G 7) with equality only if 7 (ΞGU, i.e., if ί7 E G 7. But G 7
meets 7 + g ̂  only at 7. Hence, as ί/ Φ 7, we cannot have U E G 7. So
we must have dim(G U) > dim(G 7).

COROLLARY \. If Y is a principal nilpotent, it is the only nilpotent in

Proof. For dim(G 7) has the maximum possible dimension.

For non-nilpotent elements in 7 + g x we have

PROPOSITION 3. For any U E 7 + QX, dim(G U) > dim(G 7).
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We do not prove this here since we make no use of it.

THE CLASSICAL CONNECTIONS

3. Reduction theory in the regular case.

3.1. The reduction theory of regular connections is very well known

and so we limit ourselves to a very brief review for later use. The main

result is that they are determined up to GL(F( ̂ -equivalence by their

monodromy. This comes out as a byproduct of the determination of the

orbit space GL(V(Θ))X \ Ω where Ω is the space of connections of the first

kind, i.e., of A E gI(F(S r)) with ord(^l) > — 1. The orbits are parame-

trized by the so-called aligned models.

The study of Ω as a GL(V(Θ))X-space goes back already to Birkhoff

[2] (although he erroneously asserted that every element of Ω can be

transformed to z~xA_x under GL(V(&))X). The reduction to an aligned

model is known (see Gantmacher ([9], p. 162)) and also Turrittin ([26], p.

33). We sharpen this result by proving that the aligned model of an

element of Ω is determined upto conjugacy by a suitable finite dimen-

sional subgroup of GL(F(Θ))1.

3.2. Let A G Ω be given by

(3.1) A = z~λA_x + AQ + zAι + + zmAm + .

We write σ = σ(A_x) for the set of eigenvalues of A_v For λ E σ let Vλ

be the corresponding spectral subspace of A_l9 i.e., the largest subspace of

V stable under A _ x on which A _ x — λ 1 is nilpotent. Let Pλ( V -> Vλ) be

the projections corresponding to the direct sum V — θ μ G σ Vμ. If m is an

integer > 0 and (λ, μ) E σ X σ, we say

(3.2) m is aligned with (λ, μ) if λ — μ — m + 1.

PROPOSITION. Let A be as in (3.1). Then we can find x in GL(V(Θ))X

such that B — x[A] = z~ιB_x + Bo + zBx + has the following proper-

ties:

(<ι)B_x=A_x.

(b) For m > 0, (λ, μ) E σ X σ, PλBmPμ = 0 if m is not aligned with

Proof. Let x = 1 + zTx + z 2 Γ 2 + where Tj is to be chosen so that

(a) and (b) are satisfied for B = x[A]. Since xA + x = Bx, we get



20 D. G. BABBITT AND V. S. VARADARAJAN

A __, = 5_,, and, for m > 0

(3.3) Bm = Am+ Σ (TrAm.r-Bm_rTr)

For (λ, μ) E σ X σ and any endomorphism L of F we write LλjLl for

PλLPμ and regard it in a natural way as an element of Hom c ( ί^ , Vλ).

Since Vλ and J^ are stable under A _, we have

Hence (3.3) leads to

(3.4) (Bm)λμ = (Am)λμ+ Σ (TrAm_r-Bm_rTr)λμ

for all (λ, μ) E σ X σ. Now a d ( ^ _ ^ - (w + 1)1 has λ - μ - (m + 1)

as its sole eigenvalue on Hom c (J^, Vλ). So, if By (j < m — 1), 7^ (/: < m)

have already been defined, we can define Bm and Γm + 1 as follows: if m is

not aligned with (λ, μ), ad(yί_,) — (m + 1)1 is invertible on

H o m c ( K , Vλ) and so we choose (Tm+{)λ so that (3.4) is true with

( 5 m)λ i u
= = 0 ; i f m i s aligned with (λ,/x), we choose ( Γ w + 1 ) λ / i = 0 and

define (Bm)λjl by (3.4). This completes the definition of Bm and Tm+X and

the proposition is proved by induction on m.

Any B as in the above Proposition is said to be an aligned model for

A.

3.3. We shall now examine the extent of non-uniqueness of the

aligned model. Let X <Ξ g ί (F) , let Ώ(X) be the set of all A G Ω with

A_x = X, and let % = <$>(X) be the set of all B E Ω satisfying (a) (with

A_{ — X) and (b) of Proposition 3.2. Let

(3.5) HX) = £ = {x = 1 + zTx + • • I ( Γ m ) λ μ = 0

unless λ — μ ~ m).

Then ^ is a subgroup of GL(K(0))! and JC ι-» x(l) (which is well-defined)

is an isomorphism of f with the subgroup U of GL( V) given by

(3.6) l / = { i ι E G L ( F ) | i ι λ λ = l , i ι λ / ι = O

unless λ — μ is an integer > 0}.
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Finally, let 9ί = 9t( X) be the affine subspace of all N e 91( V) such that

(3.7) Nλλ = ( U _ , ) J λ λ , # λ μ = 0 unless λ - μ is an integer > 0.

For any 5 G © let

(3.8) B = B(\)-XS

where, as usual, Λ̂  is the semisimple component of X. Obviously the map

B H* B is a bijection of © with 9Ϊ.

LEMMA 1. £αete on Φ. / / 5 G % x

Proof. This is a straightforward verification.

LEMMA 2. Lei 5, 5 ' e Φ α«J x e GL(F(Θ)), SMCΛ /Λαr x[5] = B'.
Then x Ef.

Proof. Let x = \ + zT{ + . Now, we have, for all integers m > 0,

( λ , μ ) G σ X σ ,

( « ; ) λ μ = ( 5 m ) λ μ + 2 [(τrBm_r)λμ - (B^rτr)

Assume that, for y < m, (7J ) λ μ = 0 unless λ — μ —j. Suppose λ — μ ¥"

m + 1. Then m is not aligned to (λ, μ) and so, (Bm)λμ — 0, (B'm)λμ = 0.

On the other hand, for 1 < r < m,

(TrBm_r)λμ = 2 ( ^ I λ ^ m - r ) ^ -

If both (Γ r) λ ϊ ; and (Bm_r)vμ are nonzero for some J>, we must have

λ — v — r (by the induction hypothesis) and v — μ = m — r+\(&sBG

©(AT)). Hence λ — μ = m + 1, which contradicts our assumption. Hence

(TrBm_r)λil = 0. Similarly we show (B'm_rTr)λμ - 0. Thus

(ad(X) - (m + l ) l ) ( ( Γ m + 1 ) v ) = 0. As λ - μ φ m + 1, we must have

(Tm+x)Xμ — 0, as we wanted to prove.
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We have thus obtained

THEOREM 1. Fix X E gl(F). For each A G Ω ( I ) let B be an aligned
model for A, and let B be as in (3.8). Then B (resp. B) is unique upto
conjugacy by ^(resp. [/); and the map that assigns to the GL(F(Θ)) ̂ equiv-
alence class of A the U-orbit of B is well defined and determines a bijection:

We give a few examples to convince the reader that the structure of
U\yi, and hence that of GL(F(0)^X0, is not simple. The notation is
as in Theorem 1.

(1) No two distinct eigenvalues of A_x differ by an integer. Here 9ί
consists of a single element bl.diag(Nl9... ,Np) (Ni nilpotent), and U = (1).
Hence there is only one orbit, and we have

x[A] =z~xA_]

for some x E GL(F(Θ))j. Actually the proof of the Proposition 3.2 gives
an algorithm for determining one such x.

(2) All eigenvalues of A_x are simple and any two of them differ by an
integer. This is the other extreme type of example. 9? is the Lie algebra of
lower triangular nilpotent matrices and U is its adjoint group. The space
U\SSl has been studied in considerable detail (see [21] for instance). The
aligned model z~λA_λ corresponds to the orbit (0).

3.4. Let A E Ω be as in (1). Write the eigenvalues of A_λ as (λ/y | 1 <
/ </?, 1 <y < «,.} where λ/y — λ fy E Z if and only if / = /', and λ/7 —
λ l 7 , > O i f / > / .

Let B be an aligned model for A. Let u E GL(F(^cgt)) be defined by
uλμ = 0 for λ Φ μ and, for λ = λtJ = μ, uλμ = z

λ " " λ ^ - l , 1 < / </?, 1 <y

PROPOSITION. With u as above, we have

u[B]=z~]C

where C — B + Λ and Λ acts as the scalar λn on all the spectral subspaces
Vλforλ = λij9 1 <7 <#!,..

Proof. Straightforward calculation.

REMARK. By arguing as in the proof of Proposition 1.7.2 it is easy to
see that lag(w) = maxz | λ d — λ/π | . This will be important in §6.6.
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3.5. We say that an endomorphism L of Kis reduced if

(3.9) the real parts of all eigenvalues of L lie in [0,1).

The property of being reduced is invariant under the action of GL(F),

and so it makes sense to speak of reduced GL(K)-orbits in ql(V).

For any λ E C let (λ) be the element of C defined uniquely by

0 < Re((λ)) < 1, λ - (λ) E Z. If C is any endomorphism of V with

spectrum σ(C) and spectral projections Qλ (λ E σ(C)), we define

(3.10) C r e d = Σ ( λ ) β λ , x = Σzw~λQλ.
λGσ(C)

It is obvious that

(3.11) exp2ir/C = exp2τ7/Cred, J C [ Z " ! C ] ^ Z " 1 ^ .

LEMMA. 77ze exponential map induces a bijection from the set of reduced

GL(F yorbits in g l (F) to ί/ze set of all conjugacy classes in GL(F).

Proof. It is well known that the exponential map from g l (F) to

GL(K) is surjective. The lemma is an immediate consequence of this,

(3.11), and the obvious fact that if C is reduced, the spectral projections of

exp2π/C are precisely the Qλ corresponding to e2<πιλ.

3.6. We say A E QI(V(Φ)) is regular if there exists c E

such that x[A] is of the first kind. We see from §§3.2, 3.4 and (3.11) that a

regular A is equivalent over GL(K(^)) to z~λC for some reduced C E

THEOREM. For ύwy regular A G QI(V(^)) let C E: QI(V) (resp. reduced

C E gί(K)) 6e swcΛ rΛαr ^ - z - 1 C ZΛ GL(K(f)), α«rf fer [exp 2πiC] (resp.

[C]) fe^ /Λe conjugacy class of explπiC (resp. C) in GL(F) (resp. gl(K)).

ΓΛe« [exp2ττ/C] (resp. [C]) ώ uniquely determined by A, depends only on

the GL(V(^)yequivalence class [A] of A, and the map

[A] μ>[exp2ir/C] (resp. [A] ^[C])

is a bijection of the set of regular GL( V{ *$ ^-equivalence classes in g I( V( *$ ))

with the set of conjugacy classes in GL(F) (resp. reduced conjugacy classes

inQl(V)).

The theorem is immediate from our discussion so far and the follow-

ing lemma.
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LEMMA. Suppose Cl9 C2 E g ί ( F ) are reduced, and t E GL(K(^)) is

such that t[z~]Cx] = z~]C2. Then t lies in GL(F) and tCλΓ
λ = C2.

Proof. Let us write ί in the form

(3.12) / = Σ M*
k>-oo

The equation t(z~λCλ) + t — (z~λC2)t then leads to the relations

(3.13) tkCx+ktk = C2tk.

Let L be the endomorphism of g l (F) defined by L(u) — C2u — uCλ

(u E gl(F)). Then the eigenvalues of L are of the form λ 2 — λ1 where λ,

runs through the eigenvalues of Ci9 i = 1,2. As C1 and C2 are reduced, we

see that | R e ( λ ) | < l for all eigenvalues λ of L. Rewriting (3.13) as

L(tk) = ktk we conclude that tk = 0 if k ¥= 0.

3.7. If 4̂ E β l ( J T O ) is regular and - z~ ιC under GL(F(^)) where

C E gl(F), we call [exp2ττιC], the GL(F)-conjugacy class of exp2τ7/C,

the monodromy of A. Let A be as in (3.1), B an aligned model for A, and B

as in (3.8).

THEOREM. The monodromy of A is [γ] where y — exp2πi(A_x)s-

explπiB. Moreover, this is the Jordan decomposition ofy.

Proof. This is immediate from Proposition 3.4.

COROLLARY 1. The elements in the monodromy (class) of A have the

same characteristic polynomial as exp2π iA_v

3.8. Starting with A as in (3.1), the determination of its monodromy is

thus seen to depend on the determination of B in Proposition 3.2 whose

proof gives a computational procedure for doing this. It is moreover clear

from that proof that the Bm are determined recursively and that Bm

depends only on^4_ l 9 Aθ9... ,Am. Let

(3.14) k(A_Λ — max max (λ. — λ , — l) .

It is then immediate that for m> k(A_x), m is not aligned with any

(λ, μ) in σ X σ, so that Bm = 0. So B is determined by a knowledge of the
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Bs, s < k(A_λ\ and hence by a knowledge of the As, s < k(A_λ). We

thus obtain

PROPOSITION. Let A be as in (3.1). Then its monodromy is already

determined by the coefficients As, s < k(A_]), k(A_x) being the integer

> - 1 defined by (3.14).

The bound k(A_x) obtained above is in fact sharp, as may be seen

from the example with

A = _ I, α^O, m integer > 1.
\azm mz I

Then k(A_x) = m — 1 and the monodromy is

1 0
2πιa I

3.9. It is obviously of interest to know when the monodromy is the

conjugacy class [exp2πiA_x]. This will be so if B — (A_])n. The classical

sufficient condition for this is that no two (distinct) eigenvalues of A _,

differ by an integer. By scrutinizing the recursion formulae (3.4) more

carefully one can prove the following sharpened form of it. We omit the

proof.

PROPOSITION. Suppose that the coefficients Am satisfy either the condi-

tions

= 0 on 0 0 V
κ

or the dual conditions

range(Λ m )C φ Vλή forO<m<k{A_x).

Then A is equivalent to z~xA_x over GL(t/(Θ))1.

3.10. In §6 we shall be interested in the question of when two

elements Rλ and R2 which are regular in 9l(K(?Γ)) are equivalent with

respect to GL(V(Ψ)).

PROPOSITION 1. Suppose R{ andR2 in ^1{V{^)) are regular. Then they

are GL(V(<3r))-equivalent if and only if for some integer k > 1, the kth

powers of their monodromies are the same.
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Proof. We may clearly assume that Rj = z~λCp j = 1,2, so that
My- = exp 2τπCy defines the monodromy of Rj. If d > 1 is an integer, it is
immediate by going over to the ̂ -liftings that Rx and R2 are equivalent
under GL(K(^)) if and only if f ' V C i ) and ξ~\dC2) are equivalent in

)9 i.e., if and only if [Mf] =

There is also an ^-version of Proposition 3.8 which we will need in
§6.6. Let C G g Ι ( F ) and let σ(C) be the set of its eigenvalues. Then we
can describe σ(C) as

where for / φ /', λίy - λrf & Q while λ/y. - λif is > 0 for j > / . Let

k{C) = max (λ - λ f Ί ) .
1 < / <p1 < / <p

PROPOSITION 2. Fix C E g Ι ( K ) α«J wr/te fc = fc(C). Suppose A, B E
f r e o/ /Λe //^/ faW α^J ^_, =B_x = C.IfA=B (mod z^)

and B are equivalent in

Proof. Let d> 1 be an integer such that A, B E gI(K(^)) and all
λ l7 - λ / y E (1/J)Z. The result follows by going over to f = z1/r f and
using Proposition 3.8.

3.11. We close this section with a brief discussion of the convergent
case. For any subset Γ of QI(V($)) we put Γcgt = ΓΠ flI(V(^cgt)).

It is obvious that if A E gI(F(^ g t)) is regular, there is x E
GL(K($^gt)) such that x[A] E Ωcgt. The key result in carrying over the
preceding theory to the convergent setting is the following proposition. It
leads to the theorem below.

PROPOSITION. Let Al9 A2 be regular elements of 8l(K(^.gt)). If x S
GL(K(f)) andx[Aλ] = A2, then x E GL(F(^cgt)).

Proof. We may assume that Ax and A2 are both in Ωcgt. We then have
xAx + x = A2x. Let W= End(F) and let R be the element of QI(W($))

defined by Ru — A2u — uAx (u E W^)); then x, viewed as an element of
W{^), satisfies the differential equation x — Rx. The proposition is an
immediate consequence of the following classical lemma.

LEMMA. Let U be any finite dimensional vector space, R E QI(U(^)) a
convergent connection of the first kind, and x G ί/(ί) such that x — Rx.
Then x is convergent, with at least the same convergence disc as R.
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THEOREM. The convergent elements in any regular GL(F(S: ^-equiva-
lence class form a single Gh(V(^cgi))-equivalence class. If A is a convergent
regular connection, we can find x E GL(V(^cgt)) such that x[A] = z~~λC
where C G g Ι ( F ) (resp. reduced C E gl(F)). The map [A] -> [exp2τπC]
(resp. [A] -*[C]) is then a well-defined bijection of the set of regular
GL(V(^cgt))-equivalence classes with the set of conjugacy classes (resp.
reduced GL(V)-orbits) in GL(V) (resp. gl(K)).

4. Transformations of connections with nilpotent leading coefficients.
4.1. From now on our goal is to develop a reduction theory for a

general connection of order < — 1. The first step is to determine whether
the connection is equivalent to one of higher order. It turns out that the
key indicator for recognizing this is the nilpotence of the leading coeffi-
cient. It is easy to prove (§4.2) that if the leading coefficient of a
connection is not nilpotent we cannot increase its order even if we are
willing to use transformations with coefficients in algebraic extensions of
$\ We shall see later (§6.2) that one can then split the connection "along"
the spectral subspaces of its leading coefficient, and so one can continue
the reduction by studying connections in lower dimension. Therefore the
basic step in the reduction theory is to transform a connection into one
whose leading coefficient is not nilpotent. The aim of this section is to
develop the methods for doing this. It is quite easy to give examples
showing that one cannot carry this step within f itself (§4.2).

Our main result is the construction of a finitistic procedure to
transform a connection A of order r < — 1 with nilpotent Ar, into a
connection A' of order rf > r such that A'r, is either nonnilpotent, or,
nilpotent but with dim(GL(F) A'r.) > dim(GL(F) Άr).

The basic idea behind it is to imbed the nilpotent leading coefficient
Ar of the connection A in a standard triple {if, X, Y — Ar) (§2.1) and
transform^ via GL(V(Θ))} to ensure that all the succeeding coefficients of
A are in the centralizer of X. We then obtain A' as the result of applying a
transformation of the form zqH to A9 q being a rational number. We
remark that this technique goes over without change when we consider
connections with a reductive structure group. It is not surprising that the
changes in the order of a connection are ultimately made only through the
transformations zqH. In fact, by the polar decomposition (cf. §1.2),
GL(n,%) = GL(/i,e f t)Φ+^GL(/i,θ6), for any b > 1, where 3 ) + , =
{zH\ H = diag(η,... , r j , ry E (1/6)Z, rx < r2 < •_< rn}\ and the order
of elements of gl(«, <§) is unchanged under GL(«, 0).

The transformations zqH are essentially the so-called "shearing trans-
formations" and occur already in Turrittin's work [26]. However, their
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relationship with §1(2) and the idea of basing reduction theory on the
orbit theory of nilpotents are both new.

4.2. PROPOSITION. Let A, A' E g>l(V(%)) and suppose that A and Af

are equivalent in GL(F(^)), b being an integer > 1. Let r — ord(^4),
r' — ord(yf). If r <r' and r < — 1, then Ar is a nilpotent element of g I( V).

Proof. Clearly (cf. §1.3) there is no loss of generality in assuming that
b — \ since we may consider zλ/h as the independent variable. Let
A = x[A'l x E GL(K(f)). We may assume V= C". We write (cf. §1.2)
x = kλdk2 where kv k2 E GL(«, Θ) and d = diag(z<V.. ,zβ«) where the
a} are integers and ax < a2 < < an. If B — k\x[A\ B' = k2[A'], then
B = d[B']. On the other hand, if ky = xj0 + zxjλ + (j = 1,2), it is
clear that B (resp. B') has the same order as A (resp. Ά), and that
Br — x^0

]Arx[0, B'r, — •X2ô 'r x2θ1 So it is a question of proving that Br is
nilpotent.

Let 5 = (fc . ) ,£ ' = (#/). Then

Suppose / >y. Then ax > aj so that b-j(z)za ~aJ has order > r'. Hence the
right side above has order > min(r', 1) > r, i.e.,

In other words, the leading coefficient matrix Br of B has zeros on and
below the main diagonal. It is therefore nilpotent.

For any A E gI(F(Sr)) we define its principal leυelpl(A), by

(4.1) pl(A)= S UP min(-l,ordjc[Λ])

(4.2) pl(A) = \

Thus

if ord x[^4] ^ — 1

for some x E GL(K(f)),

sup (ordx[^4]) if ord x[A] < — 1

for all x E GL(V(f)).

This is obviously an invariant of the GL(F(Sr))-equivalence class of A.
HA E gI(F(iΓ)), r = ord(Λ) < - 1 and Ar is not nilpotent, Proposi-

tion 4.2 shows that ord x[A] < r for all x E GLίFίf')). Hencej^/(^) = r.
If ^4r is nilpotent it is not a priori clear that ρl(A) is even a rational
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number. This is true and there is an c E G I ^ F ^ ) ) such that A' — x[A]
has order r' — pl(A) with A'r, not nilpotent.

In order to motivate our methods we shall look at an example. Let

= (o o | - 2 + / o η
li or \o 0/ z~\

Let us fix a square root z 1 / 2 and consider A' — x[A] where x =
diag(l, z 1 / 2 ) . Then

0 1\ _ 3 / 2 , (0 0
1 0)Z \0 1/2

The leading coefficient of Af is (fo) which is not nilpotent. Hence
pl{A) — pl{A') = —3/2. In particular, we cannot increase the order of A
using GL(V(^)); for, if we could do so, A would be regular and A' would
be equivalent over Gl,(V{^)) to an element of the form z~*C, contradict-
ing the above Proposition.

In the notation of §2.1 (cf. (2.1a)) A can be written as Yz~2 + Xz'\
The simplicity of the step going from A to Ar is clearly due to the fact that
X has very good transformation properties relative to the "shearing
transformation" diag(l, z 1 / 2 ) . This can be further illustrated with the
example of a connection A in gl(/?,^) of order r < — 1 whose leading
coefficient Ar is the principal nilpotent Yn defined by (2.13) and (2.14).
The opposite nilpotent is then Xn defined by (2.15) and its centralizer is
the space of companion matrices. If we consider the action of x =
diag(z^, z2q,... ,znq) we find that

x[Ynz'] = Ynz'+< -

while

x{Zιz
rJrm\ = Z{z

r+m-q{l

This suggests that if we can arrange matters so that all the coefficients
Ar+m (m > 1) are in the centralizer of Xn, then one can, by suitable choice
of q, match the numbers r + q with the numbers r + m — q(i — 1). The
result will be to obtain a connection Af whose leading coefficient will be of
the form Yn + cxZλ + +cnZn where not all c, are 0, hence nonnilpo-
tent by Proposition 2.2.2. In the example considered earlier, we have
q — 1/2 and the new leading coefficient is Y + X. This type of argument
is completely general and is the core of our method.

The first step is therefore to try to transform A so that all the Ar+m

(m > 1) are centralized by a nilpotent opposite to Ar. Now, we know from
§2.1 that if {//, X, Y) is a standard triple, the centralizer of X is a
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subspace of g l (F) complementary to range(ad Y). So we begin the next

paragraph with the setting in which α is an arbitrary subspace of gl(K)

complementary to the range of ad(Ar).

4.3. PROPOSITION. Let

A = zrAr + zr+xAr+x + ••• ( r < - 1 )

Z?e #« element of QI(V(^)). Let a C g l ( K ) feβ linear subspace complemen-

tary to range(ad(^4r)). Then we can find x G GL(F(Θ))j 5wc/z that if

A' — x[A], then, writing

we have

(*)A'r = Ar

(b)^EQ(^>l).

Proof. We define a sequence of elements

A =A(0\A(l\A(2\...

as follows. We define A{X) by

A<1) = x<l)[A], x ( 1 ) - 1 +zTλ

where Γ, will be chosen so that Aγlλ G α. The condition on . 4 ^ , turns

out to be

(4.3) A<r

ιlx=Ar+]-ad(A,)(Tx).

From the definition of α it is obvious that we can choose Tx E gl(K) so

that^ί r + 1 - a d ί ^ ^ ί Γ J G α.

Assume now that A(l\... ,^4(m) are chosen with

(4.4) / ^ J C ^ - ' ) ] , x w = l + z Λ Γ Λ ( l < Λ < w )

such that the coefficients of A(k) satisfy

(4.5) 4 * Λ e α , />=1,2, . . .^ .

We take

(4.6) Aim+ι> = x<m+»[A<m)], x(m+]) = 1 + zm+ιTm+i.

Then A(

r

m+l) = Ar,A
(

r7pl) = A(

rfp (I < p < m\ and

(4.7) 4 ΐ ^ , =4ΐL+> -
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We choose Γm + 1 so that &d(Ar)(Tm+]) equals the projection of

^ί +li+i o n r a n S e a d ( A ) ( m o d α ) ; t h e n ^tΐm+i E α τ h e definition of
x(m+]) and A(m+V) with the required properties is now complete.

If x E GL(F(Θ))1 is defined by

(4.8) * = f[(l+z™Tm)= lim (1 + zmTm) {\ + zTλ)
I ra—> oo

and A' = x[>4], then x and Λ' have the required properties.

REMARK. In the above construction the only lack of uniqueness is in

choosing the Γm + 1; let b C %1{V) be a subspace such that

QI(V) = N(ddAr) θb

where iV(ad Ar) is the null space of ad >4r. Then

r ) : b ->range(ad ^4r)

is an isomorphism. It is now clear that once α and b are given the entire

process is uniquely determined. We have thus obtained the following

corollary.

COROLLARY. Fix a and b as above. Then there exists a unique x — xA

E GL(V(β))x of the form (4.8) with Tm+ι <Ξh for all m > 0, such that, if

A' = x[A]9 A
f

r = Ar andA'r+m G 21 (m > 1).

4.4. Fix α and b as in §4.3. It is obvious that Tx depends only on Ar

and Ar+X. For general m, we have

A(m+\) — Λ(m) \ rp A(m)

-A\TM-(Tm+λ + (m + \)8r+UmTm+λ (t > 1)

with the convention that As = 0 for s < r. A simple induction then yields

the following proposition and its corollary.

PROPOSITION. For any m > 0, Tm+λ depends only on As (r < s < r + m

+ 1). Moreover, A'r+m depends only on As (r < s < r + m).

COROLLARY. L /̂ M Z?̂  α«y integer > 1 β« J v4 ^«y connection of order

r < — 1. Lei Ω(^l, M) £e /Aβ 5e/ o/^// connections B such that B has order r

and Br+S = Ar+Sfor 0 < 5 < M. If the element xA is as in Corollary 4.3 and

if
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then all the connections B' — y\B\ B E Ώ(A, M)9 have the same coeffi-

cients # ; + J , 0 < s < M\ with B'r = Ar and B^s E α, 1 < s < M. Moreover,

for each B E Ώ(A, M), xB has the product representation

xB= Π(i+zτ;)

where Tr = Trfor 1 < r < M.

4.5. We can now begin the reduction of a connection A of order r < 1

with nilpotent leading coefficient Ar. We need some preparation. We

choose a standard triple {//, X, Y) with Ar — Y9 and take α = QX,

b = range(ad X) in the discussion of §§4.3-4.4.

Let Λ = A(Y) be as in (2.5). We assume that

(4 9) ( ί ) A ' = Y

1 • ' (ίi) Λ + . e β , , l s m < Λ ( | r | - l ) .

Let (Zι)]<l<q be as in (2.4). Then we can write

(4.10) Ar+m= 2 ar+m.kZk ( l < w < Λ ( | r | - l ) ) .

Although it would seem more natural (in view of §4.3) to assume (ii) of

(4.9) for all m > 1, we work with the weaker assumption (4.9); this will

make possible the construction of algorithms later on. Let δ = δ(A) be

defined by

(4.11) δ = inf {/w/ ( μ * + 1) I 1 < m < Λ(| r \ - 1),

that δ depends on A, but only through its coefficients Ar+m with

m < Λ(| r I - 1). We set δ = oo if y4Λ+m = 0 for 1 < m < Λ(| r | - 1).

For any semisimple H E g l (F) with only integral eigenvalues and

any m E (1/&)Z (Z? > 1 an integer) we have defined in §1.5 the element

zmH E GL(V(%)); it depends on the choice of zx/h and m H> zmH is a

homomorphism of the additive group of (ϊ/b)Z into G L ( K ( ^ ) ) (even
G L(F(^>,cgt))) If ME aI(K) is such that [ # , M ] = cM for some c E Z,

a simple calculation shows that

(4.12) z m / / Mz- m / / = z c w M (m E (l/b)Z).

4.6. The following result is the key step in our reduction theory.
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PROPOSITION. Let notation be as above.

( a ) / / | r | - 1 < δ < os, then, for

x[A] — Af is of the first kind, E QΪ(V(^2)) and A'_x depends only on the

Λr+m,O<m<Λ(|r|-l).

(b) If 0 < δ <\r\ — 1, then δ — a/b where a, b are integers > 1 with

1 < b < Λ. Choose such a representation of δ and make a choice of zλ//2h in

%b. Let

_ --8H/2 A' — Γ ΛΛ
X — Z , /± — X\_s±\ .

Then x E GL(V(%h)), A' E Ql(V(%h)), A' has order r + δ < - 1 ; and if

we write mk = ( 2 ^ + l)δ/or any k, we have mk < Λ(| r \ — 1) and

(4.13) Λ ' r + δ = Γ + 2 ar+mktkZkΦY.
\<k<q,mk<Ξ'L

In particular, A'r+8 is determined by the Ar+S, 0 < ̂  < A(| r \ — 1); more-

over, either A'rJr8 is not nilpotent, in which case pl(A) — r + δ, or, nilpotent

but belongs to an orbit of dimension greater than dim(GL(F) Y).

Proof. From the definition it is obvious that when 0 < δ < | r | — 1, δ

has a representation of the form described. In this case, for some k, m

with 1 < k < q, 1 < m < Λ(| r | — 1), we have ar+mk Φ 0 and δ =
m / ( l + 2^*)- Then m — mk E Z, and the element in the right side of

(4.13) is different from Y, i.e., A'r+B Φ Y. Proposition 2.2.2 now implies

that last statement.

It is convenient to prove (a) and (b) together. Write

(4.14) δ* = m i n ( | r | - l , δ ) , x = z~8*H/2, M = Λ ( | r | - l ) ,

and let A' — x[A]. We enlarge the basis Z, (1 < i < q) to a basis Zy

(1 <j <p) of g = g l (F) such that [H, Zj] = ΛyZy, 1 <j <p. Since the

eigenvalues of H in the irreducible module forC 7 / + C X + C 7 with

highest weight λ are integers in [ — λ, λ], we have |λ y | <

Then A can be written in the form

\<m<M \

m>M \^j^P
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so that, by (4.12),

2J
 Z Z Z

m>M l^j^

J br

We shall now prove that the sums above contain powers zk only for

k > r + δ* and that the coefficient of zr+s* comes only from the terms

with m < M if 0 < δ < | r | — 1, and from the terms with m < M if

I r I — 1 < δ < oo. First let m> M. Since | Ay | < m a x ^ / ^ ί λ , ) , we have

r + m- ^/zyδ* > r + m - δ*(Λ - 1)

= r+ (m- M) + Λ ( | r | - 1 - δ*) + δ * ;

this is > r + δ if 0 < δ < | r \ -1 (so that δ* = δ), > r + δ* always, and

> r + δ* unless m — M, δ* = | r | — 1 (i.e., \r\ — 1 < δ < oo). Suppose

1 < m < M, ar+mk ¥^ 0 for some /c, \ <k < q. For any such m, /:,

0 < δ < m/(l + ^ λ Λ ) so that r + m - {\k8* > r + δ(l + ^λA)

- ^δ*λA > r + δ + ^λA(δ - δ*) > r + δ. We have therefore proved (a)

and (b) except for the explicit expression (4.13) for Af

r+8 when 0 < δ < | r \

— 1. But it is clear from the above discussion that the term zr+8 comes

from m, k with 1 < m < M, 1 < k < q, ar+m k. ¥^ 0 and m — ^\k8 = δ,

yielding (4.13). Since δ < | r | —1 and 1 + ^λk < Λ, we have mk —

δ(l + jλk) < Λ(| r I — 1). This proves the proposition.

COROLLARY 1. Let in addition Ar be principal and assume (as we may)

thatAr = Yn as in (2.13) and (2Λ4). Then A = n and

(4.15) δ = inf { y . _ 7 + l I λ ~ m

Furthermore, in case (a) w

Ί - I , z 2 ( I Ί - I ) , . . . , z w ( I Ί - 1 ) ) G G L ( / i , f )

/fe />i cα.s'e (b) we

(4.16) x =

/. To get δ in the stated form we note that (cf. (2.16)-(2.18))

(^4 r + w)/7 — « r + m j-i and λ7_y = 2( j — /). Further in case (a) we observe

that z-o/2)<M-i)/ί equals
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and note that omitting the power of z in front does not change the

conclusion.

In case (b) the argument is the same, the power of z which comes out

in front being z-o/2)«(w+Oe Omission of this power changes only the

coefficient of z~ι which is not involved in the conclusion. Finally since we

are working with nilpotents of maximal dimension there is only one

possibility for A'r+δ, namely, it is not nilpotent.

COROLLARY 2. Suppose tτ(A) = 0, i.e., all the coefficients of A are in

3 ί( V). Then, A' has the same property. In this case, if 0 < 8 < \ r | — 1 and

A'r+δ is not nilpotent, it must have at least two distinct eigenvalues.

Proof. Since H G §>l(V), the formula A' = xAx~ι + (a/z)H where

a G C shows that tr(A') — 0. The Corollary is immediate.

Let M be an integer > 1. For B{1), B(2) G gI(F( f ) ) , both of order r,

we write B0) ΞΞΞ B(2)(M) if B^s = B™s for 0 < s < M. We then have the

following useful supplement to (b) of the above Proposition.

COROLLARY 3. Let 0 < δ < r — 1, 8 — a/b where a, b are integers

> l.LetB G QliVi^)) be of order rand A = B(M) where M > Λ(| r \ - 1 ) .

Let x = z~0/2)δH, Af = x[A], Bf = x[B]. Then Br is of order r + 8 < ~ 1,

A'r+δ = B;+8, and the ξ-liftings {ζ = zi/2h) A' of A' and Bf of B' satisfy

λf ΈΞB\2bM- 2aA).

Proof. Only the last statement requires proof. We have from (4.12) the

following consequence: if H' is any semisimple endomorphism of V with

integral eigenvalues, then, for any mf G (1/26)Z, the lag of zmΊΓ will be

< | mf I max | h \ where the maximum is over the eigenvalues h of ad E'\

indeed, this is most easy to see by writing the coefficients of any

connection as a linear combination of eigenvectors of ad H' and using

(4.12) with respect to each term in this linear combination. If Hf is H and

mf = - ^8, max | h | = 2(Λ - 1) so that the lag is < (Λ - 1)5. Hence,

'~B' (mod zr

where N = 2b(r + M - δ(A - 1)) + 2b - 1 = (2br + 2a + 2b - 1) +
2bM - 2aA = f + 2bM - 2aA. Hence λr = B\2bM - 2aA).
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5. The principal level.

5.1. In this section we shall illustrate the technique of §4.6 by

applying it to determine the basic properties of the principal level of a

connection. The present section is therefore a prelude to the full reduction

theory over ty.

The main properties of the principal level are as follows: (i) it is a

rational number E m~ιZ where 1 < m < n = dim(F), and is — 1 if and

only if the connection is regular (ii) pl(A) is already determined by the

coefficients Ar+S, 0 < s < n(\ r | — 1), r being the order of A\ moreover,

this estimate is sharp (iii) there is an x E GL(F(S r

cg t)) such that ord(

We shall use the results of §4.6 to prove these properties and to

develop algorithms for computing pl{A). In the regular case we shall

supplement these procedures with a technique for calculating the mono-

dromy of the given connection. Procedures for deciding when A is regular

have been developed by Moser [19] and Lutz [17]. The estimate on the

number of coefficients needed to determinepl(A) is known (cf. [12]). Our

techniques, besides being purely algebraic, will lead in §6 to the much

stronger result that the coefficients Ar+S, 0 < s < n(\ r | — 1), are already

sufficient to determine the entire irregular part of the canonical form of A.

5.2. The following is the basic result on the principal level.

THEOREM. Let A E g I ( F ( f ) ) . Then:

(a) A is regular if and only ifpl(A) — — 1.

(b) If A is not regular and r' = pl(A), then r' is a rational number

< — 1 and belongs to m~χrL where 1 < m < n\ and we can find x E

GL(V(Ψ x)) such that A' — x[A] has order r\ and A'r, is not nilpotent.

Proof. We prove (a) and (b) together except for the assertion that

r' E ra~'Z where 1 < m < n\ this fact will be obtained in Proposition 7.6.

If ord(^4) = r is > — 1, A is regular and pl(A) = — 1. So we may assume

r < — 1. If dim(F) = 1, Ar is a nonzero complex number and so, pl( A) — r

and we are in case (b) (with x — 1). So we may assume dim(K) > 2.

Case 1. Ar is not nilpotent. Then pl(A) = r and we are in the context

of (b) wi th* = 1.

Case 2. Ar is nilpotent. We use downward induction on

dim(GL(K) Λ r). Let us write Y = Ar and fix H, X <Ξ §>l(V) such that
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{//, X, Y) is a standard triple. We may clearly assume that Ar+m E QX for
all m > 1 (see §4.3). Proposition 4.6 gives an element x E GL(F(^cgt))
such that Λ' = x[A] is in one of three categories: first kind, of order
r' < — 1 with A'r. non-nilpotent, or with A'r, nilpotent but with
dim(GL(K) A'r,) > dim(GL(F) Άr). In the first two cases we are through
trivially; in the third case we are through by the induction hypothesis. We
must note that A' may not be in gI(K(iF)) so that it may be necessary to
first change the independent variable to ζ = z]/h.

If the connection A arises from a scalar differential equation it is of
the form

(5.1) A =

0 1

0

an, -<!„_,,

o

1

0
-a2,

1
- α ,

with ai E
 (5. In this case one can calculate pl(A) directly in terms of the

coefficients arln fact we have the formula

(5.2)
ord(gj

due essentially to Katz (cf. [13], §11), which generalizes the classical result
of Fuchs that A is regular if and only if ord(α •) ̂  —j for 1 <y < n. We
sketch a proof of this from our point of view which is a variant of
Proposition 4.6. Let {Hn,Xn,Yn} be the standard triple in gI(/ι,C)
defined by (2.13)-(2.15).

PROPOSITION 2. Let A be as in (5.1) and let s be defined by the right side
of (52). Ifx = z{s/2)H» and A = x[A], then A' is of the first kind ifs= - 1
while ord^ ') = s and A's is non-nilpotent if s < —1. In particular, s —

Proof. A simple calculation shows that Af — A" + (s/2)Hnz
 ι where

0 zs

0 .. O

A" = O zs

0
-~(n-2)s

ι2Δ •> — a,
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By the definition of s, ord(αy) - (j - l)s > s, so that ord(A") > s. If

s = — 1, we are done. If s < — 1, then s is the minimum of the numbers

oτd(cij)/j, 1 <j<n, so that some entry in the last row of A" has order

exactly s. So A's is the matrix given by

*s =

0 1
0

0
- α 2 , - α 1 /

where at least one of the α, is non-zero. A's is not nilpotent since its

characteristic polynomial is

REMARK. Let us consider the differential equation

( • )

where P are polynomials in w9 dQg(Pi) — Mi9 locally around w = oo. If

we go over to the corresponding system and let z = 1/vv, we obtain a

system ύ — Au. The above proposition then gives

where

pl(A) =

h = max
Mf. -

n — i

is the rank of (*) according to [20].

5.3. From the (adic-)continuity properties of the action of

on QI(V(Ψ)) it follows that the principal level, regarded as a function on

flUFί^F)), is locally constant. One can do much better however; the

results of §4.6 may be used to prove that pl( A) can already be determined

from the knowledge of the coefficients ArΛ_m, 0 < m < n(\ r \ — 1).

THEOREM. Let r be any integer < — 1, let M = n(\ r | — 1), and let Ωr be

the set of all A E g ί ( F ( f ) ) of order r. If A, B G 2randAr+m = Br+mfor

0 < m < Λf, /Λe« pl(A) = pl(B). Moreover, this estimate is sharp.
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Proof. We shall obtain the theorem as a consequence of the following

somewhat stronger proposition. For A E Ωr, and any integer L > 1,

ίl(A9 L) is the set of B E Ωr with A = B(L) (cf. §4.6).

PROPOSITION. Let A G Ωr. ΓΛCT we αw / Ϊ W M E °GL(F(f c g t)) (c/.

§\.Ί) such that

(i) ///e lag of u < (Λ — 1)(| r I — | 5 |) where s — pl(A);

(ii) //Λ* = w[^4], ord(v4*) > ^ (vv/Y/z equality if s < — 1).

In particular, if s < — 1, A* is not nilpotent; and, for any B E Ω(/l, M),

5 * = M [ 5 ] AΛJ 0/50 order 5, w/ίλ 5* = Λf. //j = - 1 , ίλew 5 * ώ of the first

kind for any B E Ω(^4, Λf); // moreover Br+M = Ar+M, then A*_λ = Bl}

also.

Proof. It will be clear from the following proof that u will be

convergent. Before beginning the proof we remark that the assertions

involving B follow from (i) and (ii). Indeed, if B E Ώ(A, M), B^A

{moάzr+M) so that, as M - lagO) > n{\ r \ -1) - (n - l ) ( | r | - 1 ) > | r |

- 1 , 5 * Ξ # ( m o d z H ) ; ϊί B = A (mod z r + M + 1 ) , r + Af + 1 - lag(w) >

r + I r I = 0 so that we get the sharper result that 5 * — A* has order > 0.

The statements concerning B are now clear. If Ar is not nilpotent, we are

through with s — r, u = 1. So we may assume that Ar is nilpotent. We

prove the proposition by downward induction on the dimension of the

orbit of Ar. Let {//, X, Y) be a standard triple with Y = Ar. By Corollary

4.4 (with a — a,x, b = range ad X) we know that if y = xA M as in that

Corollary and Ar — y\A\ then A'r+S G cj^, 0 < ^ < M. Proposition 4.6

and its Corollaries now lead to the following conclusions. For \r\ — 1 < δ

< oc, if we take JC = z-(1/2)(k|-i)^ M = χ ^ t h e n ^ * = ^ j = χ^A^ i s o f

the first kind; thus s = — 1. Further (cf. proof of Corollary 4.6.3), lag(w)

= lag(x) < (Λ - 1)(| r | - 1 ) <(/ι - 1)(| r | - 1 ) , giving (i). For 0 < δ <

I r I — 1, let JC = z~
(l/2)δH, u = xy; then A" = u[A] = x[Af] is of order

r + δ < — 1. If A"+8 is not nilpotent (this is the case when Ar is principal

nilpotent), then s = r + δ, A* = A". We define u = xy; since tr(H) = 0,

x, and hence M, belongs to °GL(F(^ g t )) . Moreover lag(w) = lag(x) <

(Λ - l)δ < ( « - l ) ( | r | - | ^ | ) . I f ^ +δ is nilpotent, we go over to f = z1 / / ?

and the f-lifting A(2) of yl". v4(2) is of order f = 2br + 2a + 2£ - 1 while

/?/(Λ(2)) = 2bpl(A") + 26 - 1 = lbs + 2/? - 1 = S9 say. The induction

hypothesis is applicable to A(2) and gives u(2) E ° G L ( F ( ^ ) ) having prop-

erties (i) and (ii), with S and r in place of s and r respectively. Let

υ E °GL(F((5r)) correspond to w(2) under an isomorphism of ^ with ψ

that takes f to zλ/2b; and let w = vxy. It is then easy to check that w has
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property (ii). To verify (i), lag(w) < lag( c) + lag(t ) < δ(Λ — 1)4-
(l/26)lag(w(2)). By induction, lag(w(2)) < (n - 1)(| r | - | S | ) . We now
claim that

( 5 . 3 ) 1^1 — 1 |
Assuming this we have, as Λ < n,

*δ(n-l) + (n-l)(\r\-\s\-δ)

= (n-\)(\r\-\s\).

It remains to check (5.3). But, as r + δ < — 1,

r = 2b{r + 8+ 1 - 1/26) < 0,

giving

\f\ - 1 = -26(r + δ + 1 - 1/26) - 1 = 26( | r | - 1 - δ).

Similarly, as s < - 1 , ί = 26(^ + 1 - 1/26) < 0, giving

\s\ - 1 - - 2 6 ( ^ + 1 - 1/26) - 1 = 2 & ( | J | - 1 ) .

To prove that this estimate is sharp we give, for arbitrary n and r,
elements A, B G Ω r such that A = B(n(\ r\-l)) but pl(A) Φ pl(B). We

define A = zΎn and B = zr7Λ + zr+mEλn where m = n{\ r \ -1) - 1 and
Eln is as usual the matrix unit. By Corollary 4.6.1, pl(A) — — 1. But
8{B) — m/n —\r\ —1 — \/n and the same Corollary shows that pl(B)
= - 1 - 1//?.

COROLLARY. //̂ 4 w regular and A = B{M), then B is also regular.

5.4. The proof of Proposition 5.3 is entirely finitistic and gives an
algorithm for determiningpl( A) as well as the element u when r — ord(^)
< — 1 . It operates only with the coefficients Ar+m, 0 < m < M =
n(\r\ — 1), and the main step is the transition from A to A" that obviously
does not change the principal level. In fact define A" — xy[A] where

(5.4) y = {l+z»-1TM_ι) - (l+zTj, A' = y[A\

and

(5.5) JC = Z-* "/ 2, δ* = m i n ( | r | - l , δ ) , δ = δ(A')

as in the proof of Proposition 5.3. If | r | —1 < δ < o o o r i f O < δ < | r | —1
but A"+8 is not nilpotent, the algorithm stops; in the first case A is regular,
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in the second it is irregular of principal level r + δ < — 1; A"+δ is given by

(4.13). Otherwise we continue with A(2\ working only with the coefficients

Afls, 0 < s < M; from Corollary 4.6.3 we know that these coefficients are

completely and explicitly determined by the Ar+S, 0 < s < M.

This algorithm will end, with the determination of pl(A), in at most k

steps where k is the number of nonzero nilpotent orbits. Since n2 — n is

the maximum dimension for an orbit and all dimensions are even,

k<\(n2 - n).

In particular this algorithm will enable one to decide whether A E Ωr

is regular or not. We now indicate a method of determining the mono-

dromy of A when A is regular. It is immediate from the above proposition

that HA E Ώr we can find u E °GL(V(%)) (b > 1) of the form

(5.6) u = xί»»y(>n)...xυyi)9

where the y{l) are of the form (5.4) and the x{ι) as in (5.5), such that

B = u[A] is of the first kind; u and B_λ are entirely determined by the

Ar+S, 0 < s < M. Let B be the {-lifting of (ζ = z1 / / ?). From §§3.2, 3.4, and

3.6 we know how to find v e GL(K(^)) such that ϋ[J?] = ζ~xC\ C E

gl(K) and reduced. This requires (§3.8) only the knowledge of the

coefficients Bs, s <k(B_λ) = bk(B_λ)\ these in turn depend only on

knowing a finite number of additional coefficients of A, and are computa-

ble in terms of the latter (this involves working with ιCx which is easy to

compute since the inverses of the x(ι) and y(i) are trivial to compute).

Write w = vύ9 C = b~xC. Then

w[A]=Γ](bC).

One can then prove that

(ζ)'x = θ

is a constant, i.e., an element of GL(F), that θ commutes with C, and that

the conjugacy class

[θ~]Qxp2ττiC]

is the monodromy of A. The proof of this result uses Galois descent

arguments and will be given in §7.4.

6. Reduction theory over ^F.

6.1. In this section we shall use the results of §4.6 together with the

well known spectral "decoupling" lemma (Lemma 6.2) to obtain canonical

models in the GL(F(^^-equivalence classes of elements of Qί(V(Φ)). The
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canonical models are of the form

(*) Drχz
r' + +Drmzr*» + z~λC

where rx < r2 < < rm < — 1 are rational numbers, Dr,...,Z>r, C are

commuting elements in gl(V)9 and the Dr are semisimple. The η are

uniquely determined by the corresponding GL(F(^^-equivalence class

and are called the canonical levels of the elements of the class. In

particular r, is the principal level. Two canonical models, defined by

(/>,,,... ,/>ΓM, C) and (2>r',... ,Z>r\ C"), are in the same class if and only if

for some integer k > 1

(Z) r i,...,/^,exp(2τπ/:C)) and

are in the same GL(F)-orbit (Theorem 6.5). The connection Drz
rχ

+ + D zΓm is called the irregular part of the canonical model (*). It

turns out (§6.6) that the irregular parts of the canonical models in the

GL(F(9r))-equivalence class [A] of a connection A E ql(V(^)) are com-

pletely determined by the coefficients Ar+S, 0 < ^ < n{\ r \ — 1), and, in

addition, there exists a non-negative integer k effectively computable from

the Ar+S, 0 < s < n(\ r \ — 1) such that the canonical models themselves

are determined by Ar+S, 0 < ^ < w(| r | — 1) + k; the estimate in the first

case is sharp. The proofs of these theorems will yield algorithms for

computing canonical models in [A].

The canonical models described here are substantially the ones given

by Turrittin [26]. Although his procedure is computational, it is not clear

that it leads to sharp estimates as in Theorem 6.6.1. Levelt [16] has

treated, from a different point of view, and utilizing cyclic vectors, both

the existence and uniqueness of canonical models, but not algorithms or

estimates for the number of coefficients. For another treatment of the

theory of GL(F(ir))-equivalence the reader should refer to Jurkat [11].

6.2. We begin with the classical lemma "decoupling" any A E

Ql{V{^)) of order r< — 1 along the spectral projections of its leading

coefficient.

LEMMA 1. Let

be in Q ί( V( ί5Γ)). Let σ be the set of eigenvalues of Ar\ for λ G σ let Pλ be the

corresponding spectral projection. Then there is x E GL(F(Θ)), such that

A' — x[A] commutes with all Pλ\ in fact, if X is the semisimple component of
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Ar9 there are unique Tk E range of ad X (k > 1) such that if

00

x = Π (1 + zkTk) = lim (1 + z T j • (1 + zΓ,)

v4r = x[A] commutes with all Pλ. If y E GL(F(Θ))1 is such that

A" — y[A] also commutes with all Pλ, then y — ux and A" — u[A'] where

u E GL(F(β))1 commutes with all Pλ.

Proof. Write g = Ql(V) and let QX (resp. g*) be the centralizer of

ad X (resp. range of ad X) in g. Then S E g x if and only if S commutes

with all Pλ. Moreover g = g^ Θ QX

9 the direct sum is ad(^4r)-stable, and

ad(Ar) is invertible on QX.

The construction of x is essentially a minor variant of §4.3. Let

A(]) = x ( 1 ) [Λ], ; t ( 1 ) = 1 + zTλ. Then (cf. (4.3))Λ(

r!>, = ^ r + 1 ~ ad(^ r )(Γ,);

and the above remark on ad(^4r) shows that there is a unique Γ, E g^

such that A^lλ E g x . The rest of the proof is the same as in §4.3, with g^

in place of α of that proof. If y is as in the lemma and u — yx~\ then

u[A'] = A" where both A' and A" commute with X (so that their coeffi-

cients are in g x). Write (cf. §1.2)

00 00

« = ][{l+zkSk), «<">= Π {l+zkSk),
k=\ k=m+\

««= Π (l+^5 f c ) .

Then v4;Vi = ^ + 1 - ad(yίr)(5 f

1), giving ad(yίr)(5 t

1) E g x ; the fact that

ad(τ4r) is invertible on g 1 now implies that Sλ E g^. Suppose for some

m > 1, 5 , , . . . , ^ E g^. If B = um[A% then 5 commutes with X and

κ<">[2ί] - A". As 5 r = ^ = An A';+m+x = Br+m+λ - *ά{Ar){Sm+x\ giv-

ing ^ ^ j E g^ as before. Hence all the S- are in QX, showing that u

commutes with X.

REMARK. The above proof actually shows that if u has the product

representation Π^= 1(l + zkSk\ A" = u\A'\ and if A"+k, A'rΛ_k commute

with X for k < M, then Sk E g x for 1 < k < M also. Given A we write xΛ

for the element obtained in the lemma whose coefficients in its product

representation are all in QX. AS in §4.4 we now obtain the following

corollaries.

COROLLARY 1. Let xA = Π~=1(l + zkTk) be as above. Then Tm (m > 1)

depends only on the Ar+S, 0 < s < m; z/^4' = xA[A]9 A'r+m depends only on

the Ar+S, 0 <s <m.
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COROLLARY 2. For any integer M > 1 let Ώ(A, M) be the set of all

connections B such that Br+S = Ar+S, 0 < s < M. If

Xj M — y —

, /or α«y 5 G Ω(^4, M), /λe connection B' — y[B] has the property that

B'r+S = A'r+S, 0<s<M. Moreover, xB has the product representation

Π*(l + zkT'k) where Vk=Tk,\<k<M.

We shall now prove a variant of this lemma, needed in §6.6. Fix an

integer d > 1 and let A be a connection in β l ( F ( ^ ) ) of order r < — 1.

Write Λ in the form

A= Σ Atz'
r<t<Ξ(l/d)Z

and assume that for some M E (\/d)Z with 0 < M < | r | — 1,

, v ^ r + ί ? 0 — s < M, are semisimple and commute with
each other.

LEMMA 2. We can find an element x G GL(V(Θd))ι with the property

that Af = x[A] commutes with all the Ar+S, 0 < s < M, and such that

A'r+S = Ar+S, 0 < s < M. If M'' >M, and if the Ar+S for M < s < M'

commute with theAr+n 0 < t < M, ί/ze« we can choose x so that A'r+S — Ar+S

for M < s < M' also.

Proof. We may assume d — 1 by replacing z by ζ — zx/d. We use

induction on | r \ . If r — —2, then M = 1, and we are in the framework of

Lemma 1 and we take x — xA. ItAr+k for 1 < fc < M r commutes with ^4r,

we have Γ* E g Λ , 1 < fc < M r, by the remark above; as Tk E. $Ar also we

must have Tk — 0 for such k. Suppose now r < —2.Lety = xA,B= y[A].

Using the remark above once again we find that Br+k = Ar+k, \ < k < M.

Obviously B is the direct sum of connections B(λ) G Ql(Vλ(^)) and

#(λ> = \zr + 4 λ

+ v r + 1 + +4 λΛ/-i^+ M~ 1 + •

where y l ( ^ is the restriction of Ar+S to Vλ9 1 < 5 < M. Transforming

within Kλ does not affect the first term. A simple induction argument

applied to each 2?(λ) — λzr completes the proof of the first part. The same

argument takes care of the second part also.

6.3. We begin with a definition.
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DEFINITION. We shall call any element of g I( V(Ψ)) of the form

(6.3) Drz
r* + +Drmzr"> + z~xC

canonical if

(i) the r, are distinct rational numbers < — 1

(ii) Dr,... ,Z> C E fll(K) and commute among themselves

(iii) Drι,. •_.,/? are semisimple.

If £ E g I( K(f)) is canonical and given by (6.3),

(6.4) Birr = Drz'* + . +Drmzr"

is called the irregular part of B, while the η are called the canonical levels
of B.

The main result of formal reduction theory is then the following

theorem.

THEOREM, (a) Any connection A E g\{V{^)) is equivalent, under

GL(K(5Γ)), to a canonical one; canonical levels of the latter are invariants of

the GL(K(Sr))-equivalence class of A.

(b) Two canonical connections

A = Drz
r* + +Drnz

r*» + z~ιC9 A' = D'rz
r' + + A ^ W + z~lC

with the same determinations of the zΓj are equivalent under GL(F((3Γ)) //

and only if for some integer k > \ and some t E GL( F),

texp(2πikC)Γι = exp(2πikCf), tDrΓ
x -Dr

r, 1 <y < m.

(c) 7/̂ 4 E g ί( F ( ^ ) ) , to canonical levels are in

U <Γ'z.

In this section we shall only prove the possibility of reduction to

canonical form. The conditions for the equivalence of two canonical forms

will be treated in §§6.4 and 6.5. The assertion (c) will be established in

Proposition 7.6.

Proof of existence of a reduction to canonical form. We use induction

on n. We may assume that A is irregular. It is also enough to prove the

reduction for elements of gI (F(^)) since we may work with ξ = zλ/h for

suitable integers b > 1. If n = 1, we have A — arz
r + +a_2z~2 + /,

/ E f being of the first kind. We can find x E GL(l,ίF) such that
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x[f] = z~ ]γ, γ E C (exp(277/γ) = exp(2πia_ι)). As x[A] = arz
r

+ - - - +a_2z~2 + γz~\ we are done.

Assume that n > 1 and that the theorem is true in dimensions m < n.

We may also assume that A E %\{V(^)) i.e., all the coefficients of A are

of trace 0. In fact, we can write A = A0 + fl where A0 E § ί ( F ( f ) ) and

/ = (l/n)tr(A). By the one-dimensional case treated above we can find

y E GL(1, §") such that >>[/] is in canonical form. So, as y[A] = A0 +

y[f]\9 we may assume that /itself is canonical. Since x[A] = x[A°] + f\,

it is clear that we only need to reduce A0.

We call this a trace adjustment. We distinguish two cases.

Case \. Ar has at least two distinct eigenvalues. Let V = θ λ ( Ξ σ Kλ be

the spectral decomposition of Ar with | σ | > 2 . By §6.2, we can find

x' E GL(F(Θ)), such that Λ' = x'[A] is of the form A' = ΘΛ'λ, Λ'λ E

gl(Fλ(<•?)). The induction hypothesis is applicable to each A'λ9 and we are

done.

Case 2. Ar has only one eigenvalue. Since tr(^4r) = 0, Ar must be

nilpotent. We take Ar = Y where {//, X9 Y) is a standard triple and use

Proposition 4.3 followed by a trace adjustment to assume that Ar+m E QX

Π §I(K) m > 1. The argument goes as in Theorem 5.2 based on Proposi-

tion 4.6. Let x be as in that proposition and A' — x\A\ Using downward

induction on dim(GL(F) Άr) we may come down to the case when

0 < δ < | r | —1 and A'r+δ is non-nilpotent. A'r+8 then has at least two

distinct eigenvalues, by Corollary 2 to Proposition 4.6. We are thus

reduced to Case 1 (after an appropriate ^-lifting) and the argument is

complete.

REMARK. If rmin = min!<,<„, r , rm i n is the principal level of A. The

numbers η will be called the canonical levels of A.η

6.4. We shall now examine when two canonical elements are equiva-

lent. We shall actually consider the equivalence between elements a little

more general. Let

A = D z r ι + ••• +Dr zr™ + R = A' + R
r\ rm

be an element of QI(V(Ψ)) such that A' is canonical, R E QI(V(Ψ)) is of

the first kind and commutes with all the Dr. The Dr, being commuting

and semisimple, can be simultaneously diagonalized. For a = ( # , , . . . ,am)

E C m l e t

(6.5) F(a) = {v\v G V, Dv = αyi;, 1 <y < m).
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Let

(6.6) Σ = ( a | a G C " \ F(a) ^ 0 } .

Then

V= ΘF(a).

Obviously R commutes with the projection V -> F(a) corresponding to the

above direct sum. So

(6.7) R = 0 Λ(a) Λ(a) e Qί(F(a)(f)).

All these definitions are relative to (Dr)x<j<m; if it is necessary to

emphasize this we shall write VA(a)9 ΣA, etc. Note that Σ — (0) if and only

if Dr = 0 for ally.

LEMMA. Let A be as above. Suppose u E V(^) is such that

ύ = Au.

Then

Proo/. Let a G Σ \ ( 0 ) and let v G K(a) ® f b e the projection of u in

F(a) ® S7. Then v satisfies the equation

v = A(*)v9 A(a) = axz
rι + m ()

Comparison of the orders of t; and ^4(a)t; leads to v = 0.

We now consider

(6.10) Λ = Drz
r* + + ^ / " w + Λ^ = ^[' + Λ4,

i? = ^ z * ' + +E z*p + RB = B' + RB

where A' (resp. Bf) is canonical, i?^ (resp. RB) is of the first kind and

commutes with A' (resp. B').

THEOREM. Let A and B be as above. Then A and B are equivalent under

GL(F(cF)) if and only if the following conditions are {simultaneously)

satisfied:

(i)m=p,rx =sλ9...9rm = sm\

(ii) with the same choices of the zr> for both A and B, there exists

t G GL(V) such that tDrΓ
x = Er,\ <j < m\
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(iii) ifΣ denotes the common spectrum ΣA = ΣB (in virtue o/(ii)), then

for any a E Σ, RA(&) and J?β(a) are equivalent over (ΰ.

Moreover, in this case, if d is any integer > 1 and y E GL(K(^)) is

such that y[A] = B, then y takes VΛ(2) ® % to VB(a) ® % for all a E Σ,

and the restriction yΆ ofy to VA(?L) ® (5d takes RA(ά) to i?#(a):

yΛ[RA(*)] = **(*)•

Proof. Since the sufficiency of these conditions is obvious we consider

only their necessity. Let y E G L ( F ( f ) ) and y[A] = B. If W= End(K),

then y E W® <$ is a solution of ϋ = Cw where C E aI(W^)(SΓ) is such

that Cw = 5vv — H Ά The preceding lemma then shows that y G WQ®Ψ

where M^ is the subspace of all w E W such that B'w — wA' — 0. As y is

invertible, it follows that Ŵ  must contain invertible elements. If / is one

such, tA't~x = Bf and so (i) and (ii) are satisfied. To prove (iii) and the

last statement we may, replacing B by t~λBt, assume that Af — B'. Wo is

then the centralizer of A\ i.e., of D ,... 9D , so that y — Θ a yΛ whereyΛ is

in GL(VA(a)(^)). Clearly we must have j J Λ ^ a ) ] = RB(a) for all a, so

that (iii) and the last assertion follow at once.

6.5. The invariant nature of the canonical levels in the reduction of a

connection is clear from Theorem 6.4. Moreover the criterion (b) of

Theorem 6.3 is also immediate. We take RA = z~λC, RB = z~ιC in

Theorem 6.4 and use Proposition 3.10.1 according to which z~xCΛ and

z~λC2ί are equivalent over ^ if and only if, for some integer kΆ > 1,

exp(2ττ/7caCa) and exp(2τr/A:aCa

/) are in the same conjugacy class. We omit

the details. Theorem 6.3 is thus proved (except for (c)).

DEFINITION. Let A — Drz
rχ + +Drj.

rm + z~ιC be a canonical ele-

ment in QI(V(Ψ)). The connection A(s) ^*Drz
r* + +D,m + z~λCs {Cs

is the semisimple component of C) is called the semisimple component of

A. Two elements of Qί(V(Ψ)) are called weakly equivalent if they have

canonical forms whose semisimple components are equivalent in

For any B E β I ( F ( f ) ) let V,(Z?) = z(d/dz - B). If Λ = Drf

+ - - +Drz
Γm + z"]C is canonical, we get the decomposition (analogous

m

to the Jordan decomposition of a linear transformation)



DIFFERENTIAL EQUATIONS: A GROUP THEORETIC VIEW 49

where, in the above expression, Cn stands for the operator of multiplica-
tion by Cn. It is easy to check that (*) is the canonical decomposition of
Levelt [16]. Levelt's reduction theory over ψ9 in which such canonical
decompositions play the main role, is essentially equivalent to the theory
developed here. Levelt also obtains similar decompositions for connec-
tions in

6.6. In this section we shall examine to what extent the equivalence
class (resp. weak equivalence class, irregular part of canonical form) of a
connection A E QI(V(^)) can be predicted from the initial segment of its
Laurent series. We begin with a generalization of Proposition 5.3.

PROPOSITION 1. Let A E $l(V(Ψ)) be of order r<—\. Let M —

n(\ r I - 1). Then we can find u E °GL(V(%gt)) such that

(i) the lag ofu is < (Λ - 1)(| r \ - 1);
(ii) there is a canonical element Dr zrχ + +Dr zΓm + z~]CA (rx <

• < rm < - 1) in Ql(V(Φ)) such that

A* = u[A] = Ώrz
r' + +Drmzr» + z~ιCA + RA

where oτd(RA) > — 1.

Proof. Exactly as in Proposition 5.3, the proof will make it clear that u
is convergent. Before beginning we remark that it is enough to prove this
proposition for A E gI(F(^)); the proposition for A G gI(F(#')) is then
a formal consequence of the technique of ^-lifting.

Let first n — 1. Then A = arz
r + and we need only take u = 1.

Suppose n > 1. We assume the proposition in dimension < n. Assume
first that Ar has at least two distinct eigenvalues. Let y — xA M be as in
Corollary 6.2.2, let A' — y[A] and let A" be the connection obtained from
A' by omitting all powers zp with/? > r + M; A' — A" + E where oτά(E)
> r + M and A" commutes with the spectral projections of Ar. If {Vλ} are
the spectral subspaces of Ar with nλ — dim(Fλ), and if A'^λ) is the
restriction of A" to Fλ, we can find convergent u{λ) E °GL(Fλ(iΓ)) having
properties (i) and (ii), where, in (i), (nλ — 1)(| r \ — 1) appears as the upper
bound for lag(w(λ)); this is possible by the induction hypothesis since
nλ < n. We now use Proposition 1.7.2 to conclude that if u — Θ λ u{λ\
then, lag(w) <Σλlag(w(λ>) < Σ(«λ - 1)(| r | -1) <(w - 2)(| r | -1); and
u\A"\ satisfies (ii). To complete the proof in this case we must only check
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that u[E] has order > 0. But

oτd(u[E]) >r + M- {n- 2 ) ( | r | - 1 )

> r + 2(| r I - 1 ) > | r | - 2 > 0.

We remark that in the remainder of the argument we can use the validity

of the proposition, for arbitrary b > 1, r < — 1, whenever Ar has at least

two distinct eigenvalues.

We may thus assume that Ar — a \ + Y where Y is nilpotent. We

now use the induction on the number of canonical levels of A. If this

number is 0, we are through by Proposition 5.3. We may thus suppose

that A is irregular. If a Φ 0 and A —A — azr\, then r — pl(A), and the

canonical levels of A are exactly those of A with r omitted. So the

induction hypothesis is applicable to A and proves the proposition for A.

Suppose now that a = 0 so that Y Φ0. Let s — pl(A); we have r < s <

— 1. Let w, be chosen to satisfy the conditions of Proposition 5.3, and let

A* = uλ[A]. A* is not nilpotent, and if it has at least two distinct

eigenvalues, the earlier result allows us to find u* G °GL(F(f)) of

l a g < ( « — l)(\s\ —1) for which w*[̂ 4*] has the specific form (ii). If

u = u*ux,

lag(n) < (n - \)(\s\-\) + (n - l ) ( | r | -\s\) = (n - l ) ( | r | - 1 ) ,

and we are through. If A* has a single eigenvalue (which must be

nonzero), we can write A* = a*zs 1 + A**9 with α* φ 0, where ord(^4**)

> s and the number of canonical levels of A** is one less than the

corresponding number for ^4*, i.e., A. The induction hypothesis applied to

yl** gives w** having properties (i) and (ii). As before we take u = w**^

and note that lag(w) < (n — 1)(| r\ — 1). The proof is thus complete.

COROLLARY. Let Ω(^4, M) be the set of all connections B E

of order r with B =A (mod zr+M). Then, for any B G Ω(Λ, AT),

RB

where ord(RB) > - 1 . If further B=A (mod z r + Λ / ) /or some Mf > M,

CB — CA.

Proof. Since lag(κ) < (Λ - 1)(| r | - 1) and r + M - (n - 1)(| r \ -1)

> r + | r | - l = - l , B ΞΞ A ( m o d z r + Λ / ) implies B* = A* (modz" 1 ) ,

giving the first statement. If B = A (mod zr+M>), B* = ^ *

(mod Z ~ 1 + Λ / / ~ M ) ? proving the second statement.
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The significance of Proposition 1 lies in the fact to be proved below

that the connection Dr zΓ | + +Dr zYm + z~λ(CA)s, the suffix s denoting

the semisimple component, is in the weak equivalence class of A. To see

this let us consider a connection D of the form

D = D r z r ' + • +Drmzr"> + zιC + R = D ' + R ( o τ d { R ) > - l )

where D' is a canonical element of QI(V(Ψ)). Let

Z ) ' ( ί ) = Drz
r* + ••• + Drz

r»> + z~ιCs.
r\ rm s

Let Σ and F(a) have their usual meaning and let Ca = CV{Sk). Put

(6.8) k(D) = &(£>') = maxfc(Ca)

where fc(Ca) are the rational numbers > 0 defined in §3.10.

PROPOSITION 2. Let notation be as above. Then:

(i) D is in the weak equivalence class of D\

(ii) If EjΞ Ql(V(Ψ)) with E = D (mod zk(D)), then E is equivalent to

D in

Proof. Let d > 1 be an integer such that J5 6 gI(F(f r f)). Going over

to ξ = zx/d we may assume that d = 1 and /) G gI(K(f)), so that all the

r} are integers < — 1. In view of Lemma 6.2.2 there is no loss of generality

in assuming that [Dr, R] — 0, 1 <y < JW. But then D becomes a direct

sum of its restrictions to the spectral spaces F(a), say DΛ; and, if

a = ( £ ! „ . . . , έ i m ) 6 2 ,

£>a = fllz
r« + +amzr» + z~[Ca + RΛ, ord(i? a) > 0.

The connection z ^ Q + i?a can be reduced to the form z~λC'2ί in

GIXFίaX^)); moreover, exp(2ττ/(Ca)5) and exp(2τrϊ'(Ca)J) are conjugate

in GL(K(a)). Since this is true for all a E Σ, we see that D is equivalent

over Gh(V(^)) to the connection

(6.9) Z>rz" + +D,mz'» + z - ! C ( C | K ( a ) = Q )

and that exp(2ττ/C/) is conjugate to exp(277/Cs) via an element of GL(F)

that centralizes Dr,...,Dr. In other words, D'{s) is in the same weak

equivalence class as the connection (6.9) which was equivalent to D. This

proves (i).

We prove (ii) in three steps. First suppose that both D and E

commute with Dr,... , D r . Then D (respectively E) is the direct sum of its

restriction DΛ (respectively EΛ) to VΛ. DΛ and EΛ have the same scalar
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irregular part aλz
rχ + + amzΓm, while Proposition 3.10.2 shows that

D ί = D Λ - ( d i Z ' t + • • • + * „ , * ' - ) 1 a n d _ E ^ = E Ά - { a λ z ^

+ ••• ±amzr»>) \ are equivalent in GL(K(a)(^)), because E'Ά=D^

(mod zk{C&)). D and £ are then obviously equivalent in GL{V(^)).

Next suppose that only D commutes with / ) , . . . , / ) . Choose the

integer rf > 1 so that D, E E gI(F(^)) and fc(Z)) G(l/ί/)z! Since £ = Z)

(mod zλ(Z))) it follows that £ r + J = Z)r+J, r + s < £(/)). By Lemma 6.2.2

there exists x E GL(V(Θd))x such that £ ' = x[E] has the property that
E'r+s = £ r + s = Dr+s> r + J < £"(£)> L e - £ ' = ^ ( m o d Z ^ ( D ) ) a n d £ / c o m -
mutes with Dr,...,Dr. We are thus reduced to the first case.

Finally we consider the general case: E = D (mod zk(D)). By applying

Lemma 6.2.2 to D with M = | rx \ — 1, M' = | ^ | — 1, we see that there

exists x E GLίFίΘj) , such that x[D] = D' commutes with (£>,.,... ,£), )

and £>;i+s = D Γ i + J , η + 5 < - 1 , i.e., D' = D (mod z ~ 1 + ( 1 / J ) J . Note also

k(D) = k(D')Aί Ef = x[E] it is clear that E' = D'_(moά zk(DΊ). So, by

the second case above, Ef is equivalent over GL(F(Sr)) to D' hence E is

equivalent to D. The proposition is completely proved.

COROLLARY. For D as above, Drz
rχ + +Drz

rm is the irregular part

of its canonical form; and r 1 ? . . . ,rm are the canonical levels.

Propositions 1 and 2 lead at once to the following.

THEOREM. Let r be an integer < — 1 and A E gI(F(SΓ)) a connection of

order r. Let M= n(\r\ -l).IfB E g I ( F ( f ) ) is of order r and Ar+S = Br+S

for 0 < s < M, then A and B are either both regular or both irregular and

have canonical forms with the same irregular part; and this estimate is sharp.

If further Ar+M — Br+M, then A and B are weakly equivalent. Let u E

°GL(F(f c g t)) be as in Proposition 1, let A* = u[A] and let k = ϊc(A*) be

defined by (6.8). Then k depends only on the Ar+S, 0 <s < M; and if

Ar+S = Br+S for Q<s<M + k + \, then A and B are equivalent over

REMARK. Let A E ^l(V{^)) be irregular and of order r < — 1 and let

B be a canonical form of A. For reasons of (adic) continuity we can find,

for any p > 0, an element x E GL(V(Ψcgt)) such that x[A] = B + R

where R =0 (mod zp). Proposition 2 tells us conversely that any connec-

tion of the form B + R, B canonical and U Ξ O (mod zp) necessarily has

B as its canonical form if p is sufficiently large.
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6.7. Let A G QI(V(^)) be of order r < — 1. An examination of the
proofs of Proposition 1 above and Proposition 5.3 shows that the elements
u G °GL(V(($)) are actually algorithmically constructed, and depend only
on the coefficients Ar+S, 0 < s < M — n(\ r \ — 1). One should note (cf.
Proposition 7.6) that as the canonical levels of A are all in U1<m<π m~λrL,
the number of canonical levels of A is at most (n/2)(n — l )( | r | —1),
showing that the inductive process involved in the computation of u as in
Proposition 1 will end in a finite number of steps which can be bounded a
priori (i.e., depending only on n and r). The determination of any finite
initial segment of A* is thus completely finitistic. Proposition 2 shows that
we need to compute A* only mod zk where k — k(A*) and d is such that
A* G Ql(V(%)) and k G (l/d)Z. Let Λ** be the f-lifting of A* truncated
mod zk, ζ being zx/d. Obviously canonical forms of A** are ξ-liftings of
canonical forms of A. To determine a canonical form of yl** we follow the
method of Lemma 6.2.2 to obtain a connection A' G gI(K(^)) belonging
to the same equivalence class as A**9 containing only powers ξp with
p < k — ϊc(A**)9 and commuting with the Dr, 1 <j < m; in this proce-
dure we can, thanks to Proposition 6.2.2, always truncate mod ξk, since at
every stage, the connections we deal with begin with the same canonical
element of g ί( F(^)) . The connection A' is then written as a direct sum of
connections A^. Each Af

Λ is then reduced to the canonical form by the
method of §3 since the irregular part of A'Λ, being scalar, plays no further
role.

7. Reduction theory over $\

7.1. In this section we shall discuss the problem of equivalence (of
connections) over the field <$ itself using the standard technique of Galois
descent. The basic problem is to determine, for any integer b > 1 and any
canonical 5 G g I ( K ( ^ ) ) , the GL(F(^-equivalence classes of elements
ofQl(V(^)) that are equivalent to B over %.

The descent arguments become simpler if we work with the so-called
^-reduced canonical forms. The significance of Z?-reducedness, which is a
generalization of the reducedness of elements of gl(F), lies in the fact
that the centralizer in GL(V(^h)) of a canonical 6-reduced connection in
Ql(V(%)) consists only of constants, i.e., a subgroup of GL(K). The
method of descent is quite explicit and leads to a detailed picture of the
GL(F(^))-equivalence classes in $l(V($)) (§§7.5-7.6). For an alternative
treatment that is in part based on Turrittin's work [26], see Jurkat [11].
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7.2. DEFINITION. Let b be any integer > 1. An element C G gl(K) is

said to be b-reduced if 0 < Re(λ) < 1/6 for all eigenvalues λ of C. A

canonical element

of Qί(K(i')) is said to be b-reduced if 6 is such that η G (1/Z>)Z for ally,

and if C is 6-reduced (1-reduced = reduced).

REMARK. If B G g I(V{ %)) is canonical and 2? is its f-lifting (ξ = zι/b),

1? is ^-reduced if and only if B is reduced. Suppose that B above is such

that Yj G (1/6)Z for ally but that C is not 6-reduced. Using (3.11) to

transform each z~ιCa (a G Σ) to the form z " 1 ^ where Q is Z?-reduced,

within GL(K(^)) , we see that ^ is GL(F(5Γ

/7))-equivalent to a connection

B' where

is canonical and ^-reduced.

THEOREM. Le/ 5, 5 r Z?e canonical b-reduced, i.e.,

B' = D'zr> + ••• +D'zr™ + z - ' C

where the same choices are made for the zv< in both the expressions. If

y G GL(K(^)) andy\B\ = 5', ίΛe/î  = T e GL(F) α«rf

(7.1) τCτ~' = C, T^T""1 = D;, 1 <j<m.

/« particular the centralizer of the connection B in G L ( F ( ^ ) ) ώ /Λ̂

subgroup of GL(V) centralizing C, Dr,... ,Dr.

Proof. This is immediate from Theorem 6.4; for, j J z ^ C J = z " 1 ^ ,

and the 6-reducedness of Ca, Q shows that yΛ G GL(K(a)) (cf. Lemma

3.6).

7.3. The first step is to make more precise the field over which

reduction to a canonical form takes place.

PROPOSITION. Let A G o,l(V(^)) and assume that the canonical levels

of A are all in (1/Z?)Z, b being an integer > 1. Then we can find

x G G L ( F ( ^ ) ) such that x[A] is canonical and b-reduced.



DIFFERENTIAL EQUATIONS! A GROUP THEORETIC VIEW 55

This depends on the following well-known lemma.

LEMMA. Let S be any subset of QI(V) and θ E GL(F) a semisimple

element centralizing S. Then θ can be written in the form εxp(2πiX) where

X E Q I ( F ) is semisimple and centralizes S.

Proof. If H is the subgroup of GL(K) of elements which act as scalars

on the eigenspaces of 0, it is clear that H — exp ί) where ί) is the

subalgebra of gl(V) whose elements act as scalars on the eigenspaces of θ.

Now θ E H and the elements of ί) are all semisimple and commute with S

since the eigenspaces of θ are stable under S. The lemma is now im-

mediate.

Proof of the Proposition. The proof is a typical application of the

Galois descent theory. First of all, it is enough to find x E G L ( F ( ^ ) )

such that x[A] is canonical (cf. Remark in §7.2). Secondly, going over to

ζ — zx/h enables us to come down to the case when b — 1. So we assume

that for some 7 E GL(V(Ψ )),y[A] = B where
r™ + z~λC

is canonical and the rΛ are integers. We wish to prove that for a suitable

x E GL(V(^))9 x[A] is canonical. Choose the integer b > 1 so that

y E G L ( F ( ^ ) ) . By suitably changing C we may assume that C is Z>-re-

duced (cf. Remark in §7.2). Identifying μh with G a l ^ / ^ ) and using the

fact that μh fixes both A and B, we see that yΎy~~ι centralizes B for all

γ E μh. Let ω = e2vi/b

9 ζ = zλ/h. Then Theorem 7.2 shows that

K<»ζ)K$)~X = 0 e GL(F) and centralizes C, £> r ],... ,DΓm. Changing £ to

ωf, ω 2£,... ,ωb~~]ζ and multiplying, we get θb — 1. So 0 is semisimple and

we can write, in view of the above lemma, θ — exp(2πiX) where X is

semisimple and centralizes C, Dr,...,Dr. Since exp(2τr^X) = 1, all ei-

genvalues of bX are integers. Let u(ξ) = ξbX. It is immediate from the

definition of ζhX (cf. §1.5) that u(ωζ)u{ζ)~x = θ. Hence w(f)"^(f) =

u(ω£Γιy(ωξ), showing that M(f ) " ^ ( f ) - x(ξ) for some x E GL(F(<f)).

But then, jc[i] = u~][B] = 5 - Γ 1 ^ so that x[Λ] = 5 - z'λX. As

5 — z - 1 X i s canonical, we are through.

7.4. Consider now a canonical element B E gI(F(^)) . If /•,,... ,rm are

its canonical levels, we have

(7.2) 5 = Dry + +A./r'" + z " ^

= ^ + 2 ^ ^ (ry = j / M y e Z)
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for some choices of zr\...,zrm. Let Σ = ΣB be the spectrum of
(Dr,... ,Dr ), K(a) (a E Σ) the spectral subspaces, and for each a E Σ let

(7.3) pΛ = axz
rt + ..

(cf. (6.5) and (6.6)). The set Σ as well as the injection a ι->/?a of Σ into %

depend on the choices of zr\... ,zr»<; however, the set of all elements pΛ is
intrinsically defined and coincides with the spectrum of Bπτ when it is
viewed as a semisimple endomorphism of V(^). In fact, if v E K(a),
5 i r r v — pΆv. Moreover, this spectrum does not change when B is replaced
by another canonical element GL(K(5Γ))-equivalent to it. We shall hence-
forth identify ΣB with spec(5 i r r).

Fix an integer b > 1 and a choice of ζ = z]/h. for m/b E (\/b)Z let
zm/b — /

PROPOSITION. Let Goj(b; V) be the set of all B E QI(V(%)) whose

GL(V(%))-equivalence class [B]^ meets a l (K(f)) . Let B be as in (7.2) a

canonical b-reduced element of QI(V( %)). Then the following statements are

equivalent:

(i)ίee#; V)
(ii) [B]% is fixed by G a l ( ^ / f ) , i.e., for each γ E μh, B and yBΎ ' are

equivalent with respect to GL(F(Sj))
(iii) Σ (regarded as a subset of ¥h) is stable under μh; and there is a

representation p of μh in K, commuting with C, such that p and (V(p))pEΣ

form a system of imprimitivity\ i.e.,

(7.4) p(y)Cp(y)-] = C, p(y)(V(p))=V(yp) (yEμh,pEΣ).

(i) =*(iii). Let A ε gI(K(^)) be such that for some x G GL(V(%)),
x[A] = B. Then x[A] = 5, and from §1.3 we know that xΎ ' [ i ] =

for any γ G μΛ. So xΎ~'x~'1 takes 5 to yBy '. By §7.2 we must have

(7.5) χ ( τ m α Γ '

( ) ( ) ^ ' = C,

for all γ e μft. The first of these relations shows that p is a representation
in V. From the second we see that if p = pa G Σ and v G F(/?), then
Drp(y)υ = y~~sφ(y)Drv = γ~^α i p(γ)ϋ, showing that yp e Σ and
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(iii) => (ii). This is obvious since (7.4) shows that the p(γ) satisfy the

second set of relations in (7.5) and hence that p(y)[B] = yBΎ {y G μh).

(ii) =» (i). By §7.2 we can find a θy G GL(F) for each γ G μh such that

ΘΎ[B] — yBΎ~\ We now claim that θy can be chosen to be semisimple and

to have its bth power equal to 1. Write θ = θy and θs for the semisimple

component of θ. As Ad(05) is the semisimple component Ad(0), ΘSCΘ~1 =

C, θsDrθ~x = ysΦr, 1 <y < m. So ^ centralizes θs, C, 2) r , . . . ,Drj Lemma

7.3 allows us to write θs

b = exp(2ττ/X) where Xis semisimple and central-

izes θs, C, Dr,...,Drm. Take ψ = exp(2iriX/b)9 φ = ψ~ιθs. Then φ is

semisimple, φft = 1, and φ[i?] = yBΎ~\ With φ = θy, our claim is proved.

Choosing θy as above let ω G μh be primitive and θ — θω. We assume

V = Cw and

0 = diag(</\ . . . , (/") , /cy G Z.

WehdveθBΘ~] = ωBω'\ LetB = ( A f ) 1 < : , ,<„. Then

Hence, if γ o ( f ) - Γ ^ ' ' ^ " 1 ^ ^ ) , Y f/«f) = γ ι y (f )• Hence there is α l y G
S" such that γ / y(f) = α ι y (f*). Define D G gI(F(SΓ)) as the element with
the matrix

A simple calculation shows x[D] — B. This proves (i) and hence the

proposition.

From now on we fix a canonical b-r educed B G Ql(V(^b)). Let S(b: B)

be the set of all systems of imprimitivity

where p is a representation of μh in K commuting with C (cf. (7.4)). It is

natural to call two such systems σ,, σ2 equivalent if

(7.6) P2(y) = ' p , ( γ ) r ' ( γ e μ j

for some r in the subgroup T(B) of GL(F) defined as

(7.7) Γ(£) = {/ e GL(F) I ί(F(/;)) = F(/7)

for all/? 6 Σ , < C Γ ' = C};
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of course, in (7.6), p, is the representation corresponding to σ . It is also
obvious that

(7.8) T(B) = [t EGL(V)\tCΓ] = C,tDrΓ
x = Dη9 1 <j<m).

Let

(7.9) S(6:5)

be the set of all equivalence classes in S(b : B). Finally, let

(7.10) Ω(6: 5) = {̂4 G g i ^ f ) ) \A is equivalent to 5

THEOREM. For any A G Ώ(b: B) let x be any element of

that x[A] = 5. Then, for any y G /A/,, p^(γ) = * γ 'x" 1 E GL(F);

Pλ(y -* Pλ(Y)) ^ α representation of μh commuting with C such that σx =

(p x, (K(/?))/ ? e Σ) w a system of imprimitiυity. The equivalence class [σv] of σx

is independent of the choice of x and depends on A only through its

GL(V(^)yequivalence class [A]. The map

[A] _>[σ]

is then a bijection:

Proof. The only non-trivial part of the proof is the surjectivity. This is

shown with the help of the following lemma, which is essentially "Hubert's

Theorem 90."

LEMMA. Let θ G GL(F) be such that θb — 1. Let ω G μh be primitive.

Then we can find x G G L ( F ( ^ ) ) such that xω ιχ~] = θ. Moreover we can

choose x to be semis imp le and commuting with θ.

Proof. Assume V = Cn and θ = d i a g ^ , λ 2 , . . . ,λ„), λ7 G μh. Now ¥ζ

is a Galois extension of 3 ^ with μh as the Galois group acting as

/ ( Π ^>f(o~ιζ) ( / G f r , σ G μh). As λj G ̂  and λ) = 1, we can write
λj = (fj^ϊj f o r s o m e // E ^Γ ' b y Hubert's Theorem 90 (see [22], pp.

158-159). Then x = diag(/1? / 2 , . . . ,/„) has all the required properties.

Let σ = (p9(V(p))pGΣ) G S(fe: B). By the lemma we can find x G

GL(K(^)) such that xω 'x~ι = p(ω) = θ where ω G μh is primitive.

Then JC^'JC" 1 = p(γ), γ G μ^. Let Z> = x~ ] [5] . We must show that
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D = A for some A E ^1{V{^)). Since 0 = ρ(ω) we must have Θ[B] =

ωBω~\ so that jcω~'[Z)] = ωBω~\ But, as x[Z>] = J? we have ^"" '[ω/)"" 1 ]

= ω ΰ ω H also. Hence D = ωD"" ' , i.e., D(ίof) = ω " 1 / ) ^ ) . By §1.3 there

exists an A G QI(V(^)) such that D — A. This completes the proof.

Let B E βgr(6: F) . The spectrum Σ of 2?irr splits into the disjoint

orbits

Σ,,Σ2,...,Σfl

under the action of Gal(i/ίF), i.e., μh (since Gal( i/ f ) acts on Σ C ^
via μ t ). Let

(7.11) VJ=VCΣ.J)= Θ V(p).

Each ^ is stable under all the Dr and C. Let .£>,. 7 and C, be the restrictions

to Vj of £>r and C respectively. Then we have the following natural

decomposition;

(7.12) B= 0 Bj

where

(7.13) Bj = D^jZ'* + +D,mJz
r~ + z - ' ς .

Of course, for a given y", some or all of the DrJ and Cf may vanish, so that

Bj may be regular, even 0. We call (Bj)λ^)<q the homogeneous constituents

of 5. If q = 1, i.e., Σ is a single orbit, 5 itself is called homogeneous. The

proposition above shows that

(7.14) 5 E e^(b : F ) - 5 y E β^(fr : V}) (1 <y < ^ ) .

Conversely, let By E β f (b : P )̂ be canonical ^-reduced homogeneous, with

their spectra Σ β disjoint. Then 5 = ®JBJ is in β^(& : V) where K = Θ ; Vr

and the 5 ; are the homogeneous constituents of B. Finally we have the

following commutative diagram of natural isomorphisms:

( 7 . 1 5 ) i t i t

Π (GLί^ί^XQίft:^)) - Π §(

T h e v e r t i c a l m a p s a r e i n d u c e d r e s p e c t i v e l y b y t h e m a p s , (A],...,Aq)\->Aι

Θ ••• @Aq o f U j Ώ ( b : Bj) i n t o S2(fe: B ) a n d ( σ , , . . . , σ 9 ) h * σ , θ ••• θ σ ( /
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of UjS(b : Bj) into S(b : B); the map on the right is obviously a bijection
so that the vertical map on the left is also bijective.

It is also not difficult to obtain a criterion for deciding when a given
canonical Z?-reduced B E gl(K(f6)) satisfies the conditions of the preced-
ing Proposition. We leave it to the reader to verify that B E β f (b: V) if
and only if Σ is stable under μh and for each μ^-orbit O c Σ , all the
(V(p)9 C(p))pe0 (C(p) = C\V{p)) are mutually equivalent.

As a first application of the main theorem of this paragraph consider
the case when B is regular, i.e., B = z~ λC where C is Z>-reduced. If H is the
centralizer of C in GL(F), we have a natural bijection

between the GL(F( ̂ -equivalence classes [A] of connections A E
gI(K(f)) that are GL(F(^))-equivalent to z~ιC, and the conjugacy
classes [Θ]H in H of elements θ E H for which 0^ = 1. For a given A we
choose any^ E GL(V(%)) such that^[Λ] = z~]C; then, with ω = e2πi/b,
yω Xy~x — θ E GL(F) and defines the associated [Θ]H in (*). To this we
add the remark that the GL(F)-conjugacy class

is the monodromy of A. To see this, we use Lemma 7.3 to write
θ = exp(2πiX) where X is semisimple and centralizes C. As in the proof
of Proposition 7.3, bX has only integral eigenvalues, and if u(ζ) — ζhX,
u(S)~ιKS) = x(S) f o r s o m e x e GL(K(^)) while x[A] = z~\C - X).
This establishes the above formula for the monodromy of A. We recall
that this result was used in §5.4.

As our second application we consider the question of determining
the GL(K(SΓ))-equivalence classes of connections mg,l{V{^)) which have
a given canonical form. Let

B - Z)riz" + +D,mz'- + z~xC E Ql{V{%))

be canonical and let ti(B) be the set of all A E g l ^ ^ ) ) for which B is a
canonical form. Let H (resp. §) be the subgroup of GL(F) (resp. subalge-
bra of gl(F)) centralized by Dr,...,Dr. We select a maximal set of
elements L λ ( λ E Λ ) o f ί ) with the following properties:

(a) for each λ E Λ, Lλ is ^-reduced and there is an integer k > 1 such
that exp(2πikLλ) and εxp(2πikC) are conjugate in H;

(b) for λ, λ' E Λ, λ 7̂  λ', L λ and L v are not conjugate under H.
For λ E Λ let us write
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It is then clear from Proposition 7.3 that

Ώ(B) = H Ω(b: Bλ).
λGΛ

Hence

GL(F(f ))\Ω(5) = Π (GL(V($))\il(b: Bλ)).

Finally, in view of (7.15), it only remains to determine the structure of
Ώ(b : B) when B is homogeneous. Fix a

B = Drz
r* + +A-/r"' + z ~ l c

which is canonical, ^-reduced, homogeneous, and belongs to G$(b: V).
Then μh acts transitively on Σ with isotropy μ^ where | Σ | - d — b. From
the standard theory of systems of imprimitivity one knows that the set
%(b\B) is naturally bijective with the set of equivalence classes of
representations of μd in some V(p) that commute with C(p) = C\y(p).
Fix a generator ωdoί μd and let G(/?) be the subgroup of GL(V(p)) that
centralizes C(/?). We then have a natural bijection

GU K ^ ^ X Ω ^ : 5) « set of conjugacy classes c in G(p) with c J =
1.

In principle these remarks lead to a complete classification of connec-
tions in §1{V(Ψ)) up to GL(F(Sr))-equivalence. However there is another
way to treat the same question which will allow us to construct explicit
models also. We turn to it now.

7.5. For any A E gί(K(?F)) we define the spectrum of A to be the
spectrum of the irregular part of a canonical form of A. We shall call A
homogeneous if this spectrum is homogeneous in the above sense, i.e., is a
single orbit for Gal( ̂ F/̂ F). Let B be a Z?-reduced canonical form in
g l(V(%)) such that A G ί l ( 6 : ί ) . Then the commutativity of the diagram
(7.15) together with the bijective nature of the vertical maps shows that
any A G gI(F(?F)) is GL(F(^-equivalent to ®tAt where V= ®Ύn

and Ai G g l ί^ ί^)) is homogeneous, the ,4, having disjoint spectra; t h e ^
are determined uniquely upto eigenvalence over 5'. We shall refer to them
as the homogeneous constituents of A. Clearly the problem of describing
the GL(F(5r))-equivalence classes in gI(F(SΓ)) reduces to the problem of
describing the homogeneous connections.

For any canonical B G Ql(V(^)) given by

B = Dτz
r* + •
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we define b(B) to be the smallest of the integers d> 1 such that

r7 E (l/d)Z for ally. We say B is minimal if it is 6(5)-reduced, i.e., if C is

6(5)-reduced. If A E fl 1(^(5")) we define b(A) to be 6(5) where B is any

canonical form of A.

Let MΛ for any integer b > 1 be the set of all 5 G g I ( F ( f A ) ) with the

following properties:

(i) 5 is canonical, minimal, and b(B) — b,

(7.16) (ii) B is equivalent to an element of QI(V(<U)) under G L ( F ( ^ ) ) ,

(iii) 5 is homogeneous.

We now fix B E Mh and apply Theorem 7.4 to it. The fact that 6(5) = 6

means μ/? acts with trivial isotropy on Σ, i.e., μh is simply transitive on Σ.

It is well known that in the simply transitive case there is just one

isomorphism class of systems of imprimitivity (cf. [23]). Hence the connec-

tions in QI(V(^)) which are equivalent to B under GL(K(5Γ

/?)) form a

single GL(F( ̂ ^-equivalence class, which moreover does not change if we

replace B by a Bf E Mh that is GL(F(^))-equivalent to it. Finally, if

A E c[ί(V(^)) and is homogeneous, and if b(A) = 6, Proposition 7.3

guarantees that, for some B E Mh, A will be equivalent to B under

GL(V(^h)). We have thus obtained the following theorem.

THEOREM, (a) Any A E QI(V(^)) is equivalent to the direct sum of

homogeneous connections in c\i{V{^)) with disjoint spectra, the summands

being unique upto permutation and equivalence over <§.

(b) For any integer b > 1, the GL(V(^ ))-equivalence classes of homo-

geneous connections A in αU^C^)) w/7λ b(A) — b are in natural bijection

with the set of*GL(F(S:^-equivalence classes of connections in Mb\ for any

ί G M/;, the GL(V(^))-equivalence class corresponding to the G L ( F ( ^ ) ) -

equivalence class of B is simply the set of all connections in Ql(V(^)) that

are equivalent to B under GL(F((3:

/;)).

7.6. To round out the picture we construct explicit models for

elements of Mh and the corresponding elements of QI(V(¥)).

Fix b > 1 and take a polynomial^ in the variable ξ~~! such that

(i) ρ0 is a linear combination of the ξ"\ m < — 2;

(ii) p0 has period exactly b under the substitution ξ h-» ωξ where

ω = e2"ί/h.

Let U be the 6-dimensional vector space over C with basis (Oo</</>

and the convention eh — e0. Take

V = u ® vQ
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where Vo is any finite dimensional vector space over C, and let Co be a

^-reduced endomorphism of Vo. We then define B E QΪ(V(%)) by

(7.17) B = dmg{po,ω-po,...,ω
h-ι po)® 1 + z~\\ ® Q)

where, we write /?0 for pQ(zx/h), and γ /?0 is obtained from p0 by the

substitution z]/b \-*y~]z]/h (y G ^ ) .

It is not difficult to verify that B E Mh. The spectrum Σ is

[p0, ω -/?0,... ,ωh~ι 'PQ), the spectral subspaces are given by V(ωr -p0) =

(Ce r) ® Fo. If j E GL(ί/) is defined by ser = e Γ + 1 (0 < r < 6 - 1) and

p(ω r) = 5 r ® 1, (p, K( •)) is a system of imprimitivity of the type we are

discussing. We need to consider no others as we are in the simply

transitive context. It is also easy to show that every element of Mh is of the

above form.

From the explicit form (7.17) we obtain

PROPOSITION. If A E QI(V(^)) is homogeneous, b(A) is a divisor of n

and all canonical levels of A are in b(A)~]Z. For an arbitrary A E g I (V( *$ ))

the canonical levels of A are in

U q~xτ

and b(A) is a divisor oflcmι^J

The element s defined above has eigenvalues ωy, 0 <y < b. Let f. be

corresponding eigenvectors and let R be the element of GL(U) defined by

Re7 = fJ9 0 <y < b. Using the fact thaty(ξ) = diag(l, ξ9...,ζ
h~ι) satisfies

the relationy(ωξ)y(ξ)~ ι = diag(l9 ω,. . . ,ω/?~1), we obtain the following:

(7.18) p(ω) - x(ωξ)jc(SΓι wherex(ζ) = Ry(ζ) ® 1.

The method of §7.4 now leads to the following explicit formula for an

element^ E g I ( F ( f ) ) which is GL(F(^-equiva lent to B:

(7.19) A =

1 6 - 1

Here we are writing j for jp with f replaced by z1/^. It is not apparent that

y4 E gί(K(5Γ)) but the verification is not difficult. We must also use the

same choice of zx/h in/?0 as well asy.



64 D. G. BABBITT AND V. S. VARADARAJAN

For the model A given by (7.19) we consider a fundamental solution

ΦA of the differential equation

dΦA/dz = AΦA.

If ΦB is a fundamental solution of

dΦB/dz = BΦB

we then have, since A = (y~ιR~] ®

Clearly

φ z=z

Thus

(7.20) Φ, =

with:

(7.21) / = - ( l / d ) d i a g ( 0 , l , . . . , < / - 1)® 1 +

which are the same as in [11].

CONNECTIONS WITH AN AFFINE ALGEBRAIC STRUCTURE GROUP

8. Regular connections and their monodromy.

8.1. Let G be an affine algebraic group over C with Lie algebra g. In

this section we associate with each regular A G g ( f ) its monodromy

which will be a conjugacy class in G and which will determine the

connection up to G( ̂ -equivalence. However one cannot proceed to do

this in complete imitation of what was done in §3 for G — GL(F) because

there are regular connections in Q(Φ) that cannot be transformed to the

form z]C(C £ Q) over G{%) (cf. §8.2).

In essence our method is to reduce the given regular connection A to

the form z~]C over some ^ , and then use Galois descent to determine the

monodromy of A. The monodromy itself is first defined for convergent

regular connections in Q(^) and then extended to all regular connections

in QiΦ). It would have been more desirable to give a completely formal

treatment. We have not been able to do this.
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8.2. DEFINITION. A connection A E Q(Ψ) is said to be of the first kind

if ord(^ί) > —1, and regular if x[A] is of the first kind for some

x

EXAMPLE. Let G = SL(2,C), g = §I(2,C). Let {#, X, 7} be the

standard basis for g (cf. (2.1a)). For any a E C x and any integer m > 1

let

Aam — Z ' y j

We shall now show that Aam can be transformed to the form z~xC,

C E g, over SL(2, 5"), if and only if m is even.

It is a trivial calculation to check that

Suppose now that m is odd, and that for some y E SL(2, f ) and C E

§1(2,C), y[Aa m] — z~ιC. Then, with [•] denoting GL(2,C) conjugacy

classes, [exp(2 77z'C)] will be the monodromy of Aam regarded as an

element of g 1(2, ί3r). On the other hand, we have also

y l + « l ) , u = diag(l,zm)

Hence, for some t E GL(2, C), /exp(2τ7/C)r * = exp2ττ/((m/2)l + aX)

= -exp(2τr/αΛΓ). So, writing C = tCt~\ and C = Cs + C'n for its Jordan

decomposition, we have C/, Cn E ^I(2,C), Cn' = α l and exp(2ττ/C/) —

~~ 1. As C/ is semisimple and centralizes X, C's — 0, a contradiction.

8.3. Let v4 E g(^c g t) and let D x = {z | 0 < | z \< p} be a punctured

disc of convergence for A. We define Π = {w E C | Re(w) < log p} and

regard it as the universal covering of Dx for the covering map w H> Z = ew.

DEFINITION 1. A fundamental solution for A is a. holomorphic map

XA = X(Yί -> G) such that its tangent map δX satisfies the equation

(8.1) (8X){w) = ewA(ew),

the tangent spaces to G at its various points being canonically identified

with g via right translation, so that the tangent map of X may be regarded

as a map of Π into g.

If we regard G as imbedded in GL(F) and X as a holomorphic map

of Π into the vector space End(K), the equation (8.1) becomes the more

familiar

(8.2) 4-χ(*) = *
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A fundamental solution for A is automatically a fundamental solution
for the classical system (8.2). The converse is also true: if X is a
holomoφhic map of Π into End(F) satisfying (8.2) such that X(w) E G
for some w E Π, then X is a fundamental solution for A in the sense of
the above definition. The monodromy of A can now be defined by noting
(a) for any fundamental solution X, w H> X(W + 2πi) is also a fundamen-
tal solution and so for some γ E G

(8.3) X(w + 2<πi) = X(w)y (w E Π)

and (b) the conjugacy class [y]G = [γ] of γ in G is independent of the
choice of X and depends on A only through its (/(^^-equivalence class.
This class is the monodromy of A.

If H is another algebraic group over C and π(G -> H) a C-morphism,
we have the corresponding Lie algebra moφhism g -»ί) = Lie(7/), de-
noted by dπ. Then dπ(A) E Ϊ K ^ ) and

(8.4) Monodromy of dπ (̂ 4) = π (Monodromy of A).

Let m be any integer > 1, Z>'x = {f | 0 < | f |< p' = p1 / m}, and let us
regard Z>'x as an m-fold covering of Dx through the map ζ ι-> z = ζm.
The f-lifting of A is the connection A E gl((^) c g t ) where A(ξ) —

ι

(8.5) Monodromy of A = (Monodromy of A)m.

8.4. If A E g(^ g t ) and x[A] = z~]C for some C E g and c E g

it is immediate that w ^ ^ ^ ) " 1 exp(wC) is a fundamental solution for
A, showing that [exp(2ττ/C)] is the monodromy of A. Let us now call a
conjugacy class c in G exponential if c = [exp(2ττ/C)] for some C E g.
Since not every conjugacy class is exponential, the determination of the
monodromy of a regular connection is a little more delicate than in the
case of GL(n). The difficulty may be (partially) overcome by going over
to zx/m = ξ in view of (8.5) and the following result.

PROPOSITION. There is an integer m>\ such that if c is a conjugacy
class in G, then cm is exponential.

Proof. Let h E c and let h — hshu be its Jordan decomposition. We
write hu — exp(2τπ7V) where N E g is nilpotent. Let x — hs. It is enough
to find L E centerίg^) and m > 1 independent of c such that xm =
exp(2τπX). For, if this can be done, we have [L, N] — 0 as N E gx, and
hence hm - xmh^- exp(2πi(L + mN)). We can take m to be the lcm of
the numbers d(y) of the lemma below. Note that x E G% ([3], p. 271).
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LEMMA. Let γ be any semisimple element of G, Z = center(G^). Then

the semisimple elements of Z° form a torus Tγ whose Lie algebra I γ is

contained in center(gγ). If d(y) = [ Z : Z°], then there exists L E I γ wcΛ

/Aύtf γ J ( γ ) = exp(2τπX). Moreover, as γ varies, there are only finitely many

g γ wpto conjugacy and hence d(y) varies in a finite set.

Proof. Since Z° is a connected abelian algebraic group, its semisimple

elements form a torus ([3], p. 156). As γ E Z, the rest is obvious except

the finiteness statement. Fix a maximal torus T. Since we can move γ into

T by conjugacy, we may assume that γ varies in T. We can write

8 = Θ χ g x where the χ are distinct characters of T and T acts on g χ as χ.

Then gγ is the linear span of the g χ with χ(γ) = 1.

The main results in the local analytic theory of regular connections

depend for their proofs on the result that all conjugacy classes in GL(w, C)

are exponential. Going over to new variables ξ — zι/m and using Proposi-

tion 1 we may extend all of these results to regular connections in β ( ^ g t ) .

We formulate these as follows.

(a) Let H C G be an algebraic subgroup and let A E ί>(^g t) where

ί) = Lie(i/). Then for the regularity of A it is immaterial whether A is

viewed as an element of t)(%gt) or g(^.g t). In particular, A is regular if

and only if its fundamental solutions satisfy the growth estimate O(\ z \~N)

as z -> 0 for some N ^ 0 on each sector in the z-plane with vertex at the

origin and sufficiently small vertex angle.

(b) A regular A E a ( ^ g t ) is determined up to <5(^gt)-equivalence by

its monodromy.

(c) If A E Q(%gt) and is regular, A can be reduced to the form z~ιC

over (%h if and only if the feth power of its monodromy is exponential. In

particular, there is an integer m > 1 such that all regular connections in

fl(^gt) can be reduced over G(^m t) to the form z~ιC.

8.5. We begin the treatment of the formal aspects with the analogue

of Proposition 3.2. Let A E g ( f ) be of the first kind,

(8.6) A = z-χA-λ + Ao + zAx + (A, E g) .

Let σ = σ(ad(^4_!)) be the spectrum of ad(^4_1), gλ (λ E σ) the spectral

subspaces, and £ λ (g -> g λ) the corresponding projections; g λ is the

eigenspace of ad((A_ι)s) for the eigenvalue λ.

DEFINITION. A above is said to be aligned iίAr E g r + x for any integer

r > 0. Note that in this case (8.6) is a finite sum.
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PROPOSITION. Let A E Q(^) be of the first kind. Then there is an

x E G(Θ)λ such that x[A] is aligned.

Proof. The argument we give is a combination of the ones used in

§§3.2 and 4.3, except that we replace expressions of the form 1 + zmXby

Qxp(zmX) to make sure that we work in G(^).

Fix X E g and let Ω( X) be the set of all A E g(S r) of the first kind

with A_x = X. Let g λ be as above. Let %(X) be the set of all A E Ω ( I )

which are aligned with respect to X, i.e., A = z~ ιX + Ao + , Ar E g r + 1

for all r > 0; for B E ©( A") write 1? = 2?(1) — X5. Let π be the subalgebra

Σ r>i g r; it is the Lie algebra of a unipotent (algebraic) subgroup U of G.

We denote by ?Γthe set of all elements of G(f) of the form

00

Π exp(zχ)= •• exp(z2Γ2)exp(zΓ1)

where Tr E g r for all r > 1. (Note that this product is actually finite.) It

can then be shown that: ^ is a group, the evaluation X B I ( 1 ) is an

isomorphism of ^ with £/, SΓacts on %(X), and this action goes over, via

the maps x h* x(\) and B ι-> B, to the action of t/ on JSfn + n by conjugacy

(Xn is the nilpotent component of X). We then have the following

theorem. We omit its proof.

THEOREM. Let A E Ω( X). Then all the aligned models in %(X) for A

form a single ^-orbit which depends only on the G(&)x-equivalence class of

A. The map, which assigns to the G(Θ) ^equivalence class of A the U-orbit in

Xn + n that corresponds to the ^-orbit in %(X) of aligned models of A, is a

bijection:

8.6. DEFINITION. Let m φ- 0 be any integer. Then X E g is said to be

weakly m-reduced if Xs and exp(2ττimXs) have the same centralizer in g. If

m— 1, we say weakly reduced instead of weakly 1-reduced. If X is weakly

m-reduced for all m ψ 0 in Z, we say that X is weakly Z-reduced.

A few comments are perhaps in order concerning this definition. Our

aim is to transform an aligned connection to the form z~ιC (C E g) over

some extension field ^m and come down to ^v ia Galois descent. In the

case g = g ί ( F ) it was very convenient in descent arguments to work with

elements that are 6-reduced. For arbitrary g it turns out that the notion of
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a weakly 6-reduced element is a partial substitute and works almost as

well (see for instance Lemma 8.7.1).

PROPOSITION. Let A E Q(Ψ) be regular. Then A is equivalent over

G(^) to z~xC where C E g is weakly Z-reduced.

This depends on the following lemma which will be of use on other
occasions also.

LEMMA. Let H E g be semisimple. Let tfl(H) be the set of all semisim-

ple elements R E g centralizing QH and such that R has only rational

eigenvalues. If R E <3l(H) is such that dam(QH+R) > dim(g 7 y + Λ,) for all

R' E <&(#), H + Ris weakly Z-reduced.

Proof. It is clear that $l(H) C center(g^) so that ^ί(H) is an abelian

Lie algebra over the rational field. Moreover it is easy to verify that for

any R' E <Sl(H)9 <&(H + R') C <&(#). Hence d i m ( g / / + Λ ) >

d i m ( g H + Λ + Λ 0 for all R' E $l(H + R). Replacing H by H + R we may

assume that dimίg^) > dim(g^ + Λ ,) for all R' E &(//) and prove that H

is weakly Z-reduced. Suppose not. Let t be an integer > 1 such that

γ = exp(2πitH) has a centralizer in g strictly larger than QH. By Lemma

8.4 we can find a semisimple L E center(gγ) and an integer d > 1 such

that yd = Qxp(2ττitdL). Then R = L- H lies in <Sl(H); but as H + R = L

and Q L D g ff, we have a contradiction.

Proof of Proposition. In view of §8.5 we may assume that A is

convergent and hence (cf. §8.4) already of the form z~xD, D E Q. Let

D — Ds + Dn be the Jordan decomposition of D. By the above lemma we

can find JR E <Sl(Ds) such that Ds + R is weakly Z-reduced. Since [Λ, £>J

= 0, C = (Ds + R) + Dn is the Jordan decomposition of C = D + R;

8.7. We shall now use Proposition 8.6 and the descent machinery to

complete the theory of monodromy. By that proposition, for any regular

A E g ^ ) , we can find an integer b > 1, C E g which is weakly 6-re-

duced, and x E G ( ^ ) , such that x[Λ] = zιC.

LEMMA 1. Let D E g be weakly b-reduced and y E G(^b) such that

y[z~ιD] = z~xD. Then y E GD, the centralizer of D in G.
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Proof. Going over to ξ = zx/b and replacing D with bD, we come
down to the case b = 1. By Proposition 3.11, y E G(%gt). Considering
fundamental solutions we have y(ew)exp(wD) — exp(wD)t0 for all w, t0

E G being independent of w. Changing w to w + 2πi we see that
exp(2τπZ>) centralizes t0. If D = Ds + Dn is the Jordan decomposition of
D this means that D^° = £>„ and that exp(2τr/D5) centralizes t0. Let m > 1
be an integer such that t™ E (Gexp(27ΓiDs))°. Since Z>5 is weakly reduced,
Qexp2iri/>s

 = QD5

 a n d h e n c e ί™ G (GDs)
Ό. Hence f™ centralizes /),, therefore

D itself. But 'then (y(ew))m = exp(wD)^exρ(-wD) = r̂ 2, a constant.
Therefore^ must be a constant, i.e.,>> E GD.

Fix an integer Z> > 1 and a weakly 6-reduced C E g. Let i?(Z?: C) be
the set of all regular elements of a(^) that are equivalent to z~ιC over
G(%). It is obvious that G(Φ) operates on R(b: C). Further, let Θ(b:C)
be the set of all elements θ E Gc (= centralizer of C in G) such that
β* = 1. Such θ are always semisimple and Gc operates on Θ(Z>: C) by
conjugation. For A E R(b: C) (resp. ί £ θ ( ί : C)) we write [A]<$ (resp.
[^]c) for the (/(^^-equivalence class of A (resp. Gc-orbit of θ). We now
proceed exactly as in §7.4. Let A E R(b: C) and let x E G ( ^ ) be such
that x[A] = z " ^ . Write co for e27r/A Then ^ ί o z ' ^ W z 1 ^ ) " 1 = θ is in
Θ(&: C), and [0] c is independent of the choice of x or zλ/b. Moreover,
[θ]c depends on A only through [A]$. This allows us to introduce the map

Φ: G($)\R(b:C) -> Gc\&(b: C)

that takes [A]^ to [θ]c in the above notation. Φ is one-one. Exactly as in
§7.4 one can show using Hubert's Theorem 90 ([22], pp. 158-159) that Φ
is onto. In fact, if# E θ(b: C) and T is a torus of G containing θ, we can
write θ = exp(27riL) for some L E Lie(Γ). Then bL is semisimple and has
only integral eigenvalues so that ^ L = M ( ί ) e 6 ( f ί c g t ) and satisfies
u(ωζ)u(ξyι = ΘΛfx = u(zι^b) Bind A' = x~ι[z~ιCl Φ([A%) = [θ]c.

The last observation shows that any G(SΓ)-equivalence class of regular
connections in Q(^) contains convergent elements, so that its monodromy
can be defined as the monodromy of these convergent elements. To
complete the picture we must show that the monodromy map is surjective.
We shall do this by obtaining an explicit formula for the monodromy of
the equivalence class corresponding to [θ]c. Let A E β(^ g t ) be such that
Φ([A]9) = [θ]c. We may choose x E G(%cgt) such that x[A] = Γ\bC)
and x(ωξ)x(ξ)~ι = θ. If X is a fundamental solution of A9

X(w μ> X(b~ιw)) is a fundamental solution of A, so that
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X(w)']X(w + 2πi) = X{b-χw)~λX(b-\w + 2ττi))

( l y l exp((w + 2ττi)C)

Hence

(8.7) Monodromy of the class corresponding to [θ]c =

The surjectivity of the monodromy map is then a consequence of the

following lemma.

LEMMA 2. Let g E G. Then we can write g as θ~ι exp(2τπ'C) where, for

some integer b > 1, C E g is weakly b-reduced while θ G Gc and θh = 1.

Proof. Let g = gs exp(2π iN) be the Jordan decomposition of g, so

that TV E g is nilpotent and is in g g . By Lemma 8.4 we can find a

semisimple if E center(g g) and an integer d>\ such that gd

s ~

exp(2ττid H). By Lemma 8.6 we can find R E <3l(H) such that H + R is

weakly Z-reduced. Since g g j C g f f , C = H + R + N has /ί + iϊ (resp. iV)

for its semisimple (resp. nilpotent) component. Moreover, as center(gg ) is

precisely the centralizer of Qg in g , i / + i ? E g g . We now define θ~] =

g sexp( — 2πi(H + R)) so that g — θ~ι cxp(2πiC). Moreover, if b is a

sufficiently large positive integer divisible by d and such that

QXp(-2πibR) = 1, we have θ~h = gh

s εxp(-2πibH) = 1. Finally it is

obvious that θ E Gc and that C is weakly ό-reduced.

9. Reduction theory for arbitrary connections.

9.1. In this section we shall extend the main features of the reduction

theory of §§6 and 7 to arbitrary connections in c^S7). Our methods are

essentially the same as before. The definitions of canonical forms and

canonical levels remain the same (with g in place of gl(F)). Exactly as

was done in the classical case one can use the techniques of §4 to obtain

the reduction of arbitrary connections to canonical ones when G is

reductive. In the general case when G is arbitrary, this method is still

applicable to G/U where U is the unipotent radical of G, and yields a

reduction of the structure groups, from G to a Borel subgroup of G. We
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are thus in the solvable case where the reduction to canonical form is
much simpler; it is done in §9.2. We shall also prove that the irregular
part of a canonical form of A is determined (upto conjugacy by elements
of G) by the knowledge of the coefficients Ar+S, 0 < s < N(\ r \ — 1) where
r — ord(^4) and N = \ + maximum order of the positive roots of a Levi
factor of g. If g — gl(F), we have N — dim(F), and this estimate reduces
to that of §6. We conclude in §9.8 with an application of Galois descent to
the problem of determining when two irregular connections in Q(^) are
equivalent to each other over

9.2. In this paragraph we shall treat the reduction to canonical form
under G(f) of i4 E g ( f ) when G is solvable. Before proceeding to do
this we make a general remark. Let us consider an arbitrary (not neces-
sarily solvable) G and a quotient group G of G with g = Lie(G). If D E g
is semisimple it is obvious that we can find a semisimple D G g with
image D\ if in addition Z E g is such that [D, Z] = 0, we can choose, in
view of the semisimplicity of ad(D), a Z E g above Z with [D,Z] — 0,
with Z semisimple (resp. nilpotent) if Z is semisimple (resp. nilpotent). It
follows easily that any canonical form in g(^) lifts to a canonical form in

flίή
Suppose now that G is solvable and write U for the unipotent radical

of G. Let A E Q(^). We shall prove by induction on dim(G) that A has a
reduction to canonical form. If G is abelian so that it is a unipotent
group X torus, the reduction is easy and we omit the details. Suppose
dim(£7) > 0. G is the semidirect product of U and a torus T. Let
u = Lie(t/), I = Lie(Γ). Let B be a connected subgroup of £/, normal in
G, of dimension 1. Since any set of commuting semisimple elements in the
Lie algebra of an algebraic group can be imbedded in the Lie algebra of a
torus, it follows from the above remark and the induction hypothesis (for
G/V) that A is equivalent to, hence may be assumed to be, a connection
of the form Όrz^ + + Dr/<» + z"ιC + E where D r , . . . 9DM Cs E I,
Cn E u, £ Έ t)(f); here t) = Lie(F). A will then be in H{Ψ) for an
algebraic group HC.G with dim(#) < dim(G), thus completing the
argument, unless (a) Cn and Ό span u and (b) T is the smallest torus whose
Lie algebra contains C5, Dr,... ,Dr. So Tcentralizes Cn and hence, if To is
the connected centralizer of Fin Γ, dim(7yro) < 1. Moreover, as dim(£/)
< 2, U is abelian. A simple argument shows that G is the quotient (by a
finite group) of a group Gx X G2 where dimίG^ < 2 and G2 is abelian.
One is thus reduced to the case when G is non-abelian and has dimension
2. G is then seen to be a covering group of the group of matrices of the
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form (Q f). It is sufficient to prove the theorem for this matrix group and
with f^in place of ψ. The element A E Q(Φ) is of the form (g£) where
α, jβ G f. A simple calculation shows that for x = (g f) where α G ^ ,
6 G f, we have

/ + όα"1 6 - (α + άfl'^ft + α

o o
It is enough to show that for suitable a, b, a + άa~λ = α i r r + θz~λ and
b — (a + άa~ι)b + aβ = 0'z"1, 0, 0' being constants; here α i r r is the part
of α containing the zm with m < — 2, and the condition on 0' is that
0' = 0 if aiτr φ 0. Using the theory of connections in gl(l, 3F) we can
choose α G f such that α + άa~x = γ = α i r r + βz"1 where 0 < Re(0) <
1. It is now a question of choosing b E ^such that b — yb = —aβ — θ'z~ι

for some 9 ' G C restricted as above. This is elementary.

9.3. With the single modification that exp(zmX) plays the role of
1 + zmX we can carry over the proofs of §§4.3, 4.4 and 6.2 to our present
context.

We consider a connection A in g(^) given by

A = Arz
r + Ar+Xz

r+X + (r = ord(Λ) < - 1 ) .

Let α C g be a linear space complementary to the range of ad(^4r) and let
b C g be a linear space complementary to the centralizer QAr of v4r in g.

PROPOSITION 1. We can find unique Tk E b (& >: 1) swcλ ίAαί //*
element ofG(Θ)ι defined by

fί {kTk)= Urn ( )

A = x^f^ί], ίΛeπ ^^.+m E α /or α// m > 1. Moreover, Tm depends only
on the Ar+S, 0 < 5 < m. /w particular, A'r+m depends only on the Ar+S,
0 < 5 < m .

We omit the proof which is an imitation of the arguments of §§4.3-4.4.
These arguments also yield the following corollary.

COROLLARY 1. Let M be an integer >: 1 and ίl(A9 M) the set of all
connections S ε g( f ) of order r with A = B(M), i.e., Ar+S = 2?r+5, 0 < s
<M.If

*Λ,M = y = e*p(zM-λTM_λ) • - • exp(zTλ)
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then all the connections Bf — y\B\ B G Q(A9 M) are of order r and have

the same coefficients B,+s = A'r+S G α, 0 < s < M. Moreover if

*B= Π exp(z%) (^εb)
A : = l

/Λe/2 Sk = Tkfor I <k< M.

The spectral splitting Lemma 6.2.1 takes the following form.

PROPOSITION 2. Let A be as above and suppose X = (Ar)s Φ 0. Let QX

be the centralizer of X in g. Then we can find unique Tk (k > X) in range

(ad X) such that if xA G G(Q)X is defined by

00

x = TT

Af — xA[A] belongs to QX(^). Moreover, Tm and A'r+m depend only on

the Ar+S, 0 < 5 < m .

REMARK. If X £ center(g), dimίg^) < dim(g). This proposition then

allows us to use induction on dim(g).

COROLLARY 2. Let ti(A, M) be as in Corollary 1. //

then, for any B G Ω(A, Λf), B' = y[B] has the property B'r+S - A'r+S,

0<s<M. Moreover, if xB = Π* = 1 e x p ( z ^ ) , then Sk = Tk9 1 < A: < M.

9.4. The crucial step in reduction theory is when G is reductive. The

formulations and proofs of §4.6 go over without any change. For ease of

reference we put down

PROPOSITION. Let Y ΦO be a nilpotent in [g, g], g being reductive. Let

A — Arz
r + E 8(^F) with r < — 1 απd >4r = Y. Assume that the condi-

tions (4.9) are satisfied. Then (a)-(c) of Proposition 4.6 and Corollary 3 are

true (with g l (F), G L ( F ) , . . . replaced by g, G,. . . ) .

9.5. Let now G be an arbitrary affine algebraic group.

THEOREM, (a) Any A G g ( ^ ) is equivalent under G(^) to a canonical

form. The canonical levels of the latter are invariants of the G(^)-equivalent

class of A.
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(b) Let

A = Drz
r" + >>• +Drmzr- + z~ιC,

A' = D'rz
r* + +D;zr« + z~ιCf

be canonical forms with the same determinations of the z^'s. Then A and Af

are equivalent over G(^) if and only if for some integer k > 1 and t E G,

(9.1) texp(2πikC)Γι =

Ad(/)(i)0)=Z)r;,

Proof. In this paragraph we prove (a). We use induction on dim(G).

Fix A E Q(Ψ). If the unipotent radical U of G has positive dimension, the

induction hypothesis applied to the image of A in g(cF) (g = Lie( G/t/))

shows that 4̂ is equivalent to, hence may be assumed to be, a connection

of the form B + E, where B is canonical and E E u ^ ) , u being Lie(£/).

Hence 5 + £ G b ( f ) where 6 is a Borel subalgebra of g. We are through

by §9.2. So we may assume G to be reductive. Using the splitting of a

reductive group as a torus X semisimple group (locally) we come down to

the case when G is semisimple. If r — ord(^4) < — 1 and X — (Ar)s -φ 0,

Proposition 9.3 and the induction hypothesis complete the argument as

dim(g^) < dim(g). If Ar is nilpotent, Proposition 9.4 and a downward

induction on dim(G ^4r) prove the required result.

9.6. It remains to examine the conditions for equivalence of canonical

forms. The sufficiency of the conditions is trivial. For proving the necess-

ity, we may, by enlarging V if necessary, assume that G is imbedded in

SL(F). In particular, G is closed in End(F). Let E = End(F).

We shall show first that if x E G(®r) and x[A] = A\ then

(9.2) Ad(x)(Dr) = D;, 1 <j < m, x[z'}C] = z~λC.

In fact, for any such x, it is immediate from Theorem 6.4 that

Ό'rx = xDr (1 < y < m ) .

Let us now consider the subspace/ (resp. J(^)) of E (resp. E{^)) of ally

satisfying D'ry — yDr = 0 , 1 <j < m; J{^) is spanned by / over <$. The

above relations may now be inteφreted as the statement that the closed

algebraic varieties J and G have a common point over i\ As these varieties

are already defined over C they must have a common point over C.

Hence, for some s E G, D'r — sDrs~\ \<j<m. Replacing Af with
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5-1[y4'] = s~ιA's we may assume that Ό'r — Dr, 1 <y < m. Then xDrx~x

— Dr, 1 <y < m, and so the relation x[A] = ^4' reduces to x[z - 1C] =
z " 1 ^ . Let Z be the centralizer of the D ( l_<y<m). Then Z is a
connected algebraic subgroup of G, and x G Z ^ ) ([3], p. 271). Obviously
C and C" belong to j = Lie(Z); and x[z - 1C] = z ' ^ ' means that z~xC
and z " ^ ' are equivalent in some Z(¥k). So exp(2ττ/A:C) and exp(27π/:C")
must be in the same conjugacy class in Z. This proves (9.1) and finishes
the proof of Theorem 9.5.

9.7. Let U be the unipotent radical of G, G/U- G9 and Q = Lie(G).
We recall the definition of ord(g) (cf. (2.20)) and define

(9.3) tf(fl) = l+ord(f l) .

Our aim in this paragraph is to prove the following theorem.

THEOREM. Let r be an integer < — 1, and let

If A and B are two connections in Q(^) of order r such that Ar+m = Br+m

for 0 < m < M, then either A and B are both regular, or both are irregular

and the irregular parts of their canonical forms are conjugate under G.

Proof. We prove the theorem by induction on dim(G). Suppose first
that U Φ (1) so that dim(G) < dim(G). Let A, B be as in the theorem. We
choose a Levi subgroup H of G and write ί) = Lie(if). It is easily seen
that A (resp. B) is conjugate over G(^) to a canonical connection
Af = Dr z'i + +Dr zr™ + z~xCA (resp. B' = £ 5 z*< + + £ 5 z

s* +
r\ rm A \ f 5, Sp

z~ CB) where rx < < rm < — 1 (resp. sx < < sp < — 1) and £>r, £ 5

belong to ί). If yί (resp. 5) is the element of Qi^) corresponding to A
(resp. B), the induction hypothesis applied to A and 2? leads to the result
thatp — m, η = si9 and (Z>Γ],... ,DΓm) is conjugate to (Er^... ,^ r ) in H.

We may thus assume G is reductive. A simple argument allows us to
work with semisimple G.

Let G be semisimple. If X = (Ar)s = (Br)s φ 0, the reduction to
gx(SΓ) under G(6)x guaranteed by Corollary 9.3.2, together with the facts
dim(Qx) < dim(g), N(QX) <7V(g), proves what we want. So we may
assume that Ar = Br φ 0 is nilpotent. As usual we take Ar = Y and
assume (§9.3) that Ar+m, Br+m G QX for all m > 1. We now argue as in
Proposition 5.3 using Proposition 9.4. The key step is the verification that
if A' = x\A\ B' = JC[£] where x = z~8H/2, and if A\ B' are the ^-liftings
of A' and 5 ' where £ = z 1 / 2 6

? then i i + 5 = J?;+5, 0 < s < N(Q)(\ r \ -1);
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here r = 2b(r + δ) + 2b - 1 = 2br + 2a + 2b - 1. We know (cf.

Corollary 3 to Proposition 4.6) that A' = B'(2bM - 2aA) where M =

N(Q)(\r\ - 1 ) . So we must check that N( g )(| r \ -\)<2bM-2aA. This

is done exactly as in §5.3 using the estimate Λ < N(Q) (Proposition 2.1.2).

In fact, since I f I - 1 = 2b(\r\ - 1 - 8) and Λ < JV(g),

2bM-2aA- N(Q)(\r\ -I) >2bM - 2aN(Q) -7V(g)(|f| -1) - 0.

9.8. In the remainder of this section we shall give a brief treatment of

the theory of G( ̂ -equivalence of connections in

DEFINITION. A canonical connection B as in (9.1) is said to be weakly

b-reduced if τ E (\/b)Z for all j and C is weakly 6-reduced as an element

°f QD D — centralizer of Z> ,.. .,Z> in g. It is said to be weakly

Z-reduced if C is a weakly Z-reduced element of g ̂  D .

LEMMA 1. Let B be any element O/Q(Ψ). Then B is G(Ψ)-equivalent to

a canonical weakly Z-reduced connection in ^

Proof. We may assume that B is itself canonical, say B — Drz
rχ

+ "- +Drnz
r>» + zιC. Let 3 = g ^ Dr then j = Lie(Z) where Z is the

centralizer of Z>r,. ,.,Dr in G. We know that Z is connected. Regarding

z~*C as an element of 3(¥) we can use Proposition 8.6 to reduce it to the

form z~λC over Z ( ^ ) , C being a weakly Z-reduced element of 3.

LEMMA 2. Let B, B' be canonical weakly b-reduced elements of

Ae same coefficient of z~ι. Then the set of all x E G ( ^ ) such that

x[B] — Bf is contained in G and coincides with the set of all t E G

centralizing C and taking Birr to B'iττ.

Proof. Write B' = D'rz
r* + +D'rj^ + z~ ιC where we use the same

determinations of the ZΓJ for both B and B'. By (9.2) we have, for any

x E G(<5) such that x[B] = 5 ' , the relations Ad(x)(D r ) = D'9 1 <y < m,

and x [ z - 1 C ] = z~ιC. Lemma 8.7.1 implies now that x E G and central-

izes C.

PROPOSITION. Let B = Drz
rι + +Drj

rm + z~ιC be weakly Z-re-

duced and canonical. Then B is G(^)-equivalent to an element of g ( ^ ) //

and only if there is an integer b>\ and a θ E G such that θb — 1,

Ad(0)(C) = C, brj = sj E Z, Ad(0)(Z>r) = ωs

bΦr for 1 <y < m
2πi/b J J
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Proof. The "if" part is argued as in §7.4. For the "only i f part let
d> 1 be an integer such that B G Q(%) and y~ι[B] G Q(Φ) for some
y G G{%). Applying Lemma 2 to x = y(e2πi/dzι/d)y(zι/dyι we see that
x G G, Ad(x)C = C, Ad(x)(Dr.) = ω ^ r . where tj = Jry G Z and ωrf =

e2« //<ίβ ^ e m a y a s s u m e x i s semisimple. However xd need not be 1. So we

write x = exp(2πiH) where H G g is semisimple and use Lemma 8.6 to

select R G <&(#) such that H + R is weakly Z-reduced. Let ft > 1 be

divisible by d and such that exp(2πibR) — 1 and let t = exp(2πi(H + R)).

Then ί is semisimple, commutes with JC, and tb = xb. Moreover, since

H + R is weakly Z-reduced, t and /fe have the same centralizer in g. Hence

t centralizes C and the Dr. We then have θ — t~λx with the required

properties.

COROLLARY. B is G(^)-equivalent to an element of Q(¥) if and only if

the G(^yequivalence class of B is

Proof, If there is Galois invariance we can find d > 1 and x G

such that B G g ( ^ ) and x[B] = B' = Drω'jzrι + +z~*C. The argu-

ment from this point on is the same as in the proposition.

Let ό > 1 be an integer and

B = Z>r]z
r> + +A/1""1 + z ~ l c > 6/} = 57 G Z>

a weakly Z?-reduced canonical element of g(S^). As before let ωb — e2mi/b

and let <d(b: B) be the set of all θ G G such that

θb=h () (

and let Γ( ft: B) be the set of all t G G such that

Ad(t)C = C, Ad(t)D = Z) , 1 <y < /w.

It is obvious that T(b: B) operates on θ(b: B) by conjugation. For any

0 G θ ( 6 : B) we write [0] for the T(b: 5) orbit generated by θ. We then

have the following theorem. Its proof is along the same lines as in §7.4

and is omitted.

THEOREM. Let Ω,(b : B) be the set of all connections in g(^F) which are

Yequivalent to B. For any A G Ω(b: B) let x G G(%) be such that

x[A] = B. Then θ = x(ωbz
ι/b)x(zι/b)~ι lies in θ(b: B) and [θ] is inde-

pendent of the choice of x. Moreover, [θ] depends only on the G{^yequiva-

lence class of A, denoted by\A\\ and the map [A] h-> [θ] gives a bijection

: B)\β(b: B).
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