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A CLASS OF SURJECTIVE CONVOLUTION
OPERATORS

WOJICIECH ABRAMCZUK

Let p be a distribution with compact support in R". In the terminol-
ogy of Ehrenpreis [2] p is called invertible for a space of distributions &
in R" if p * ¥ = 9. Using his characterisation of invertible distributions
in terms of the growth of their Fourier transforms, we obtain a class of
invertible distributions which properly contains the distributions with
finite supports. We consider = & (or %’) and & = ., but our results
for the latter space are only partial.

1. Introduction. We follow the notation of Schwartz [6]: by %)’
(%D;.) we denote the space of distributions (distributions of finite order) in
R". & will denote the space of infinitely differentiable functions in R” with
the topology of uniform convergence of functions and alktheir derivatives
on compact subsets of R”. The dual space of &, denoted by &’, consists of
distributions with compact support in R”. For p € &’ we define the
Fourier-Laplace transform of u by

A(E) =p(e7CD),  fecn
Ehrenpreis [2] and Hormander [3] have studied the range of convolu-

tion operators
(1) ubpxu, pEE,

in each of the spaces 9’, ;. and &. We recall their main result: the
operator (1) in & and, equivalently, in 9’ (resp. in ;) is surjective if and
only if fi is slowly decreasing (resp. very slowly decreasing) in the sense of

DEFINITION 1. Let p € &'. fi is called slowly decreasing if there exist
constants A, B and m such that

sup 16.(8)] = B(1 +1£&)™
£l =A log(2+ ko)

for all §, € R". ji is called very slowly decreasing if there exists a constant
m and for each ¢ > 0 a constant B, such that

sup lﬁ(g)‘ZBe(l +|‘fol)_m
j6—&ol=elog(2 -+

for all {§, € R".
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We sketch the proof of this result for the space & in the Appendix;
the given direct proof of the sufficiency of the slowly decreasing condition
is due to J. E. Bjork (personal communication).

In this note (§§2-4) we prove the following theorems:

THEOREM 1. Let p = v, + »,, where v,,v, € &’ have disjoint singular
supports and assume that v, is slowly decreasing. Then [i is slowly decreasing.

THEOREM 2. Let p. € &', let f be real analytic in a neighbourhood of the
singular support of p and assume (f- p) is slowly decreasing. Then i is
slowly decreasing.

THEOREM 3. Let p. € &’ be a measure containing an atom (i.e. p{x,} #
0 for some x, € R"). Then fi is very slowly decreasing.

REMARK 1. I do not know whether Theorems 1 and 2 remain true with
“slowly decreasing” replaced by “very slowly decreasing”; the given
proofs show they do if p is a measure and #, (resp. ( f - p)") is very slowly
decreasing in the sense of Definition 1 with m = 0.

REMARK 2. Measures with non-empty singular support but without an
atom may fail to be invertible as the following elementary example shows:
Let n =1, let ¢ be a test function equal to 1 near x =0 and put
p = o -log|-|; then p is invertible if and only if ¢ - ¥p(1/x) is, but
(¢ - Vp(1/x)) (&) = [E, §(&) d¢’ is not slowly decreasing.

As a corollary to the theorems, we describe in §5 a class of invertible
(for &) distributions which properly contains the distributions with finite
supports (see Ehrenpreis [1] and Héormander [3], Theorem 4.4).

Finally I would like to thank Professor J. E. Bjork for the generous
advice I was fortunate to profit from during the work on this paper.

2. Proof of Theorem 1. It is no restriction to assume p is a measure
with total mass not greater than 1 (otherwise regularise p by convoluting it
with a suitable invertible distribution, see Ehrenpreis [2]).

Since by adding a test function one does not affect the invertibility of
p we may also assume that “singular support” in the theorem has been
replaced by “support”.

Let @ be a test function such that

(2) @ =1 on aneighbourhood of supp », and supp v, N suppp = &.
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By assumption (@ - M)A is slowly decreasing: for any §, € R” there
exists £, € R” such that

€, — &0l = Alog(2 +1&]) and B(1 +[&|) " s‘ Jo®ae — ¢ at

with some constants A, B, m and we shall assume B = 1.
For any R > 0 we may estimate the part of the integral over the ball

|§|= R by

6112 - sup{la(£)]: |§ — &0l = R + Alog(2 + &)}
and the remaining part by [~ z|$(£) | d€; we obtain
() (1 +1&l) " <lpl sup B+ [ 1 (&)lde.
—&ol=R+Alog(2+ ) E=R

We may now pass to infimum over all ¢ satisfying (2). To do this we
need

LEMMA 1. Let ® be any test function with property (2). Denote by ¥ the
set of all test functions ¢ which satisfy (2) and are such that ||¢|| 1 = ||| 1.
Then there exist constants C,, C, > 0 such that, for any R > 0,

inf f | (£)|dE < Ce=GR.
€T Jg=R

By Lemma 1 with R = NAlog(2 + |£,|), the constant N to be de-
termined shortly, it follows from (3) that

(1 +1&]) ™" <I®]. - sup [8(&)]+ C\(2 +1&|
E—£ol=<(N+1)Alog(2+q)

)—C2 NA

implying
sup |8.()1= B(1 +]&|)™
€ —&ol=(m/Cy+A)log(2+ )

for a suitable constant B if N was chosen so that C,NA > m.

Proof of Lemma 1. Suitably chosen positive constants occurring in the
proof will all be denoted by C. We shall assume with no loss of generality
that R = 1.

Since for all test functionsp and all N = 0, 1,...,

gl 16 (&) <|pMl,, 1=j=n,



4 WOJCIECH ABRAMCZUK

and since |£[Y < CV - B¢, ", ¢ € R”, we easily see that
[ ll=c S e, N>n
K=R j

For each such N let g, be a function in % with the property
DMyl =¥t N, 1s<j<n;

for example, for a non-negative test function ¢ with sufficiently small
support and [¢ =1, put @y =y, * - * Y, * O, where ¢ 5,(x) =
N"Y(Nx) occurs in the convolution N times.

Then

C\V
inf pl= P SR"-C-(——) -N!
(4) ;ggfﬁzqu)l fmzRIq)NI R

for N> n and, since R = 1, also for N = 0,1,...,n.
Now, for each N, take the inverse of (4), multiply it by 27" and then
sum over all N = 0; we obtain

inf |p|<R"- C-e R,
PET Jg=R

_Cz

which is clearly bounded by C,e~“*® for some constants C,, C, > 0.

3. Proof of Theorem 2. The proof of Theorem 1 applies almost
verbatim with condition (2) replaced by

(2 @ =1 on aneighbourhood of supp p and f real analytic on supp ¢,
and then ¢ and ¢, in Lemma 1 replaced by f - ¢ and f - ¢,,, respectively.

4. Proof of Theorem 3. We may clearly assume x, = 0.

Let ¢ be a non-negative test function with support contained in the
unit ballin R} and [¢ = 1.

For R > 0 put pg(£) = R "p(R7'£); observe that the equalities $(x)
= @(Rx) and ¢(0) = 1 imply that the functions ¢ converge pointwise to
X 0y (= the characteristic function of the set {0}) as R — oo.

By a direct calculus we see that

(5) Jim  [ou(£)i (¢ — &) ¥ = p(0)
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uniformly in § € R":
Pr* (€)= p{0} = ¢r - p(e P) — ulx (o))
= p( g - e CH— X0 - e 0,

and this is bounded by

f |¢R - xm}ldlul,

which is clearly convergent to zero as R — oo.
It now follows from (5) that, for some R > 0,

S R()1=2| [on(©)3 (2~ £) g = 1n(0)
for all {, € R".

5. A class of invertible distributions.

THEOREM 4. Let u € &’ be a measure with an atom, let v € &' have
singular support disjoint from that of p and let P be a non-zero polynomial.
Then P - ji + v is slowly decreasing.

Proof. By Theorems 1 and 3 all we need to prove is that non-zero
polynomials are (very) slowly decreasing: for any ¢ > 0 the function

R"5€°Hfm< |P(g, + £)| de

is a polynomial with no real zeroes, hence it is bounded away from zero.
Therefore, for some B,, C, > 0,

1/2

sp [P©=C- ([ _Ipe,+of ] =5,
|§_€ol<5 K=

Appendix. We briefly sketch the proof of the following result of
Ehrenpreis [2].

The mapping
(A1) boumji*xucbh
1s surjective if and only if fi is slowly decreasing.

Since the adjoint of (A1),

(A2) E'Drpu*xr €L,
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is injective, i * & is dense in &; it is equal to & if and only if p* &’ is
weak* closed (see, for example, Kelley and Namioka (4], Theorem 2.19).
By reflexivity of & the weak* closure of p * &’ is equal to its weak closure
and therefore also to its strong closure, the strong topology of &’ being
locally convex. Malgrange [5], Corollary on p. 310, proved that p = &’ is
strongly closed if and only if g has the following division property:

(A3) ify € & and »/fiis entire, then v = u = y for somey € &’.

We now show that (A3) holds if and only if /i is slowly decreasing.
If 4 is slowly decreasing then, without losing generality, we may
assume that for every £, € R” there exists £, € R” such that

|§1_§0|5A10g(2+|‘50|) and [A(£)|=1.

Let » €&’ and assume #/0 is entire. For 7 € C put ¢(71) =
a(é, + 27(&, — §))) and (1) = #(§, + 27(§, — §,)). By Harnack’s in-

equality
¢(1)1< +¢'
—\5=3- log™|—|.
@ \2 /| Sy

71=1
By subadditivity of log™ and the equality log|¢@|= log" |@| —log™ |1 /9],
we may estimate the integral in (A4) first by

J

7= 1

= log™

(A4) log™

ﬁ:(so)

(log" ||+ log" |g]) — [

loglel,
=1

and then only by

(A3) [ (og* [yl + log*[g])

=1

because, by the assumption,

[ oele| = loglo (0)] = logli (&)= .

Since the points on the circle |7|= 1 lie at a distance at most
2A41log(2 + |§,) from the real space R and we have an estimate on fi and
7 in terms of the exponential of that distance, the integral (AS5) is not
greater than log C + Nlog(1 + |§,]|) for some constants C, N. Thus

;%(so) =c(1+&))", & er,

proving that #/fi has polynomially bounded growth on R’ and therefore,
being necessarily of exponential type (see Malgrange [S]), is a Fourier-
Laplace transform of some y € &’.
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Conversely, if fi is not slowly decreasing, then there exists a sequence
§, €R,j=1,2,..., such that

8(£)l<|&|” when |& — £ | < jloglt)|

and we may assume |§;|— oo suitably quickly. It is now possible to
construct an entire function g which itself is not a Fourier-Laplace
transform of any y € &', but becomes one when multiplied by i. We
indicate the idea: for each j we let ¢, be a test function with support in a
fixed set k such that q‘>j(£) is about the size of |§ A when £ = £ ', but is
conveniently small when [§ — £,|=jlog|§;|. The function g = 2 ¢, is of
exponential type but not polynomially bounded on R}. At the same time
fi - g = 2 ip; is polynomially bounded on R} because fi is small where ¢ is
big. For the details of the construction we refer to Ehrenpreis [2] and
Hoérmander [3].

Added in proof. 1 wish to thank Olaf von Grudzinski for bringing my
attention to the papers [7], [8] of L. Hormander and in particular to the
fact that Theorem 2 of this note (hence also Theorem 1) is a consequence
of Theorem 3 in [8] and Lemma 5.4 in [7]. It may be remarked, however,
that the proof presented here is independent of the much more advanced
methods of [7].
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