A CLASS OF SURJECTIVE CONVOLUTION OPERATORS

WOJCIECH ABRAMCZUK

Let μ be a distribution with compact support in \mathbb{R}^n . In the terminology of Ehrenpreis [2] μ is called invertible for a space of distributions \mathfrak{F} in \mathbb{R}^n if $\mu * \mathfrak{F} = \mathfrak{F}$. Using his characterisation of invertible distributions in terms of the growth of their Fourier transforms, we obtain a class of invertible distributions which properly contains the distributions with finite supports. We consider $\mathfrak{F} = \mathfrak{F}$ (or \mathfrak{D}') and $\mathfrak{F} = \mathfrak{D}'_F$, but our results for the latter space are only partial.

1. Introduction. We follow the notation of Schwartz [6]: by \mathfrak{D}' (\mathfrak{D}'_F) we denote the space of distributions (distributions of finite order) in \mathbb{R}^n . \mathcal{E} will denote the space of infinitely differentiable functions in \mathbb{R}^n with the topology of uniform convergence of functions and all their derivatives on compact subsets of \mathbb{R}^n . The dual space of \mathcal{E} , denoted by \mathcal{E}' , consists of distributions with compact support in \mathbb{R}^n . For $\mu \in \mathcal{E}'$ we define the Fourier-Laplace transform of μ by

$$\hat{\mu}(\zeta) = \mu(e^{-i\langle\cdot,\zeta\rangle}), \qquad \zeta \in \mathbb{C}^n.$$

Ehrenpreis [2] and Hörmander [3] have studied the range of convolution operators

$$(1) u \mapsto \mu * u, \quad \mu \in \mathcal{E}',$$

in each of the spaces \mathfrak{D}' , \mathfrak{D}'_F and \mathfrak{E} . We recall their main result: the operator (1) in \mathfrak{E} and, equivalently, in \mathfrak{D}' (resp. in \mathfrak{D}'_F) is surjective if and only if $\hat{\mu}$ is slowly decreasing (resp. very slowly decreasing) in the sense of

DEFINITION 1. Let $\mu \in \mathcal{E}'$. $\hat{\mu}$ is called slowly decreasing if there exist constants A, B and m such that

$$\sup_{|\xi - \xi_0| \le A \log(2 + |\xi_0|)} |\hat{\mu}(\xi)| \ge B(1 + |\xi_0|)^{-m}$$

for all $\xi_0 \in \mathbb{R}^n$. $\hat{\mu}$ is called very slowly decreasing if there exists a constant m and for each $\varepsilon > 0$ a constant B_{ε} such that

$$\sup_{|\xi-\xi_0|\leq \varepsilon \log(2+|\xi_0|)} |\hat{\mu}(\xi)| \geq B_{\varepsilon} (1+|\xi_0|)^{-m}$$

for all $\xi_0 \in \mathbf{R}^n$.

We sketch the proof of this result for the space & in the Appendix; the given direct proof of the sufficiency of the slowly decreasing condition is due to J. E. Björk (personal communication).

In this note ($\S\S2-4$) we prove the following theorems:

THEOREM 1. Let $\mu = \nu_1 + \nu_2$, where $\nu_1, \nu_2 \in \mathcal{E}'$ have disjoint singular supports and assume that $\hat{\nu}_1$ is slowly decreasing. Then $\hat{\mu}$ is slowly decreasing.

THEOREM 2. Let $\mu \in \mathcal{E}'$, let f be real analytic in a neighbourhood of the singular support of μ and assume $(f \cdot \mu)^{\hat{}}$ is slowly decreasing. Then $\hat{\mu}$ is slowly decreasing.

THEOREM 3. Let $\mu \in \mathcal{E}'$ be a measure containing an atom (i.e. $\mu\{x_0\} \neq 0$ for some $x_0 \in \mathbb{R}^n$). Then $\hat{\mu}$ is very slowly decreasing.

REMARK 1. I do not know whether Theorems 1 and 2 remain true with "slowly decreasing" replaced by "very slowly decreasing"; the given proofs show they do if μ is a measure and \hat{v}_1 (resp. $(f \cdot \mu)$) is very slowly decreasing in the sense of Definition 1 with m = 0.

REMARK 2. Measures with non-empty singular support but without an atom may fail to be invertible as the following elementary example shows: Let n=1, let φ be a test function equal to 1 near x=0 and put $\mu=\varphi\cdot\log|\cdot|$; then μ is invertible if and only if $\varphi\cdot Vp(1/x)$ is, but $(\varphi\cdot Vp(1/x))\hat{}(\xi)=\int_{-\infty}^{\xi}\hat{\varphi}(\xi')\,d\xi'$ is not slowly decreasing.

As a corollary to the theorems, we describe in §5 a class of invertible (for \mathfrak{S}) distributions which properly contains the distributions with finite supports (see Ehrenpreis [1] and Hörmander [3], Theorem 4.4).

Finally I would like to thank Professor J. E. Björk for the generous advice I was fortunate to profit from during the work on this paper.

2. Proof of Theorem 1. It is no restriction to assume μ is a measure with total mass not greater than 1 (otherwise regularise μ by convoluting it with a suitable invertible distribution, see Ehrenpreis [2]).

Since by adding a test function one does not affect the invertibility of μ we may also assume that "singular support" in the theorem has been replaced by "support".

Let φ be a test function such that

(2) $\varphi = 1$ on a neighbourhood of supp ν_1 and supp $\nu_2 \cap \text{supp } \varphi = \emptyset$.

By assumption $(\varphi \cdot \mu)$ is slowly decreasing: for any $\xi_0 \in \mathbf{R}^n$ there exists $\xi_1 \in \mathbf{R}^n$ such that

$$|\xi_1 - \xi_0| \le A \log(2 + |\xi_0|)$$
 and $B(1 + |\xi_0|)^{-m} \le \left| \int \hat{\varphi}(\xi) \hat{\mu}(\xi_1 - \xi) d\xi \right|$

with some constants A, B, m and we shall assume B = 1.

For any R > 0 we may estimate the part of the integral over the ball $|\xi| \le R$ by

$$\|\hat{\varphi}\|_{L^{1}} \cdot \sup\{|\hat{\mu}(\xi)|: |\xi - \xi_{0}| \le R + A \log(2 + |\xi_{0}|)\}$$

and the remaining part by $\int_{|\xi| \ge R} |\hat{\varphi}(\xi)| d\xi$; we obtain

(3)
$$(1+|\xi_0|)^{-m} \le \|\hat{\varphi}\|_{L^1} \cdot \sup_{|\xi-\xi_0| \le R+A \log(2+|\xi_0|)} |\hat{\mu}(\xi)| + \int_{|\xi| \ge R} |\hat{\varphi}(\xi)| d\xi.$$

We may now pass to infimum over all φ satisfying (2). To do this we need

LEMMA 1. Let Φ be any test function with property (2). Denote by \mathfrak{F} the set of all test functions φ which satisfy (2) and are such that $\|\hat{\varphi}\|_{L^1} \leq \|\hat{\Phi}\|_{L^1}$. Then there exist constants C_1 , $C_2 > 0$ such that, for any R > 0,

$$\inf_{\varphi \in \mathscr{T}} \int_{|\xi| \geq R} |\hat{\varphi}(\xi)| d\xi \leq C_1 e^{-C_2 R}.$$

By Lemma 1 with $R = NA \log(2 + |\xi_0|)$, the constant N to be determined shortly, it follows from (3) that

$$\left(1 + |\xi_{0}|\right)^{-m} \leq \|\hat{\Phi}\|_{L^{1}} \cdot \sup_{|\xi - \xi_{0}| \leq (N+1)A \log(2 + |\xi_{0}|)} |\hat{\mu}(\xi)| + C_{1} \left(2 + |\xi_{0}|\right)^{-C_{2}NA}$$

implying

$$\sup_{|\xi - \xi_0| \le (m/C_2 + A)\log(2 + |\xi_0|)} |\hat{\mu}(\xi)| \ge B(1 + |\xi_0|)^{-m}$$

for a suitable constant B if N was chosen so that $C_2NA > m$.

Proof of Lemma 1. Suitably chosen positive constants occurring in the proof will all be denoted by C. We shall assume with no loss of generality that $R \ge 1$.

Since for all test functions φ and all $N = 0, 1, \ldots$,

$$\left|\xi_{j}\right|^{N} \cdot \left|\hat{\varphi}\left(\xi\right)\right| \leq \left\|D_{j}^{N}\varphi\right\|_{L^{1}}, \qquad 1 \leq j \leq n,$$

and since $|\xi|^N \leq C^N \cdot \sum |\xi_i|^N$, $\xi \in \mathbb{R}^n$, we easily see that

$$\int_{|\xi|\geq R} |\hat{\varphi}| \leq C^N R^{n-N} \sum_j \|D_j^N \varphi\|_{L^1}, \qquad N > n.$$

For each such N let φ_N be a function in \mathcal{F} with the property

$$||D_j^N \varphi_N||_{L^1} \le C^{N+1} \cdot N!, \qquad 1 \le j \le n;$$

for example, for a non-negative test function ψ with sufficiently small support and $\int \psi = 1$, put $\varphi_N = \psi_{(N)} * \cdots * \psi_{(N)} * \Phi$, where $\psi_{(N)}(x) = N^n \psi(Nx)$ occurs in the convolution N times.

Then

(4)
$$\inf_{\varphi \in \mathcal{F}} \int_{|\xi| \ge R} |\hat{\varphi}| \le \int_{|\xi| \ge R} |\hat{\varphi}_N| \le R^n \cdot C \cdot \left(\frac{C}{R}\right)^N \cdot N!$$

for N > n and, since $R \ge 1$, also for N = 0, 1, ..., n.

Now, for each N, take the inverse of (4), multiply it by 2^{-N} and then sum over all $N \ge 0$; we obtain

$$\inf_{\varphi \in \mathcal{F}} \int_{|\xi| \geq R} |\hat{\varphi}| \leq R^n \cdot C \cdot e^{-CR},$$

which is clearly bounded by $C_1e^{-C_2R}$ for some constants C_1 , $C_2 > 0$.

- 3. **Proof of Theorem 2.** The proof of Theorem 1 applies almost verbatim with condition (2) replaced by
- (2)' $\varphi = 1$ on a neighbourhood of supp μ and f real analytic on supp φ , and then φ and φ_N in Lemma 1 replaced by $f \cdot \varphi$ and $f \cdot \varphi_N$, respectively.
 - **4.** Proof of Theorem 3. We may clearly assume $x_0 = 0$.

Let φ be a non-negative test function with support contained in the unit ball in \mathbf{R}_{ξ}^n and $\int \varphi = 1$.

For R > 0 put $\varphi_R(\xi) = R^{-n}\varphi(R^{-1}\xi)$; observe that the equalities $\hat{\varphi}_R(x) = \hat{\varphi}(Rx)$ and $\hat{\varphi}(0) = 1$ imply that the functions $\hat{\varphi}_R$ converge pointwise to $\chi_{\{0\}}$ (= the characteristic function of the set $\{0\}$) as $R \to \infty$.

By a direct calculus we see that

(5)
$$\lim_{R\to\infty} \int \varphi_R(\xi')\hat{\mu}(\xi-\xi')\,d\xi' = \mu\{0\}$$

uniformly in $\xi \in \mathbb{R}^n$:

$$\begin{split} \varphi_R * \hat{\mu}(\xi) - \mu\{0\} &= \hat{\varphi}_R \cdot \mu(e^{-\langle \cdot, \xi \rangle}) - \mu(\chi_{\{0\}}) \\ &= \mu(\hat{\varphi}_R \cdot e^{-i\langle \cdot, \xi \rangle} - \chi_{\{0\}} \cdot e^{-i\langle \cdot, \xi \rangle}), \end{split}$$

and this is bounded by

$$\int |\hat{\varphi}_R - \chi_{\{0\}}| d|\mu|,$$

which is clearly convergent to zero as $R \to \infty$.

It now follows from (5) that, for some R > 0,

$$\sup_{|\boldsymbol{\xi} - \boldsymbol{\xi}_0| \le R} |\hat{\mu}(\boldsymbol{\xi})| \ge \left| \int \varphi_R(\boldsymbol{\xi}) \hat{\mu}(\boldsymbol{\xi}_0 - \boldsymbol{\xi}) d\boldsymbol{\xi} \right| \ge \frac{1}{2} |\mu\{0\}|$$

for all $\xi_0 \in \mathbf{R}^n$.

5. A class of invertible distributions.

THEOREM 4. Let $\mu \in \mathcal{E}'$ be a measure with an atom, let $\nu \in \mathcal{E}'$ have singular support disjoint from that of μ and let P be a non-zero polynomial. Then $P \cdot \hat{\mu} + \hat{\nu}$ is slowly decreasing.

Proof. By Theorems 1 and 3 all we need to prove is that non-zero polynomials are (very) slowly decreasing: for any $\varepsilon > 0$ the function

$$\mathbf{R}^n \ni \xi_0 \mapsto \int_{|\xi| \le \varepsilon} \left| P(\xi_0 + \xi) \right|^2 d\xi$$

is a polynomial with no real zeroes, hence it is bounded away from zero. Therefore, for some B_{ϵ} , $C_{\epsilon} > 0$,

$$\sup_{|\xi-\xi_0|\leq \varepsilon} |P(\xi)| \geq C_{\varepsilon} \cdot \left(\int_{|\xi|\leq \varepsilon} |P(\xi_0+\xi)|^2 \, d\xi \right)^{1/2} \geq B_{\varepsilon}.$$

Appendix. We briefly sketch the proof of the following result of Ehrenpreis [2].

The mapping

$$(A1) \qquad \qquad \mathcal{E} \ni u \mapsto \check{\mu} * u \in \mathcal{E}$$

is surjective if and only if $\hat{\mu}$ is slowly decreasing. Since the adjoint of (A1),

(A2)
$$\mathcal{E}' \ni \nu \mapsto \mu * \nu \in \mathcal{E}',$$

is injective, $\check{\mu} * \&$ is dense in &; it is equal to & if and only if $\mu * \&'$ is weak* closed (see, for example, Kelley and Namioka [4], Theorem 2.19). By reflexivity of & the weak* closure of $\mu * \&'$ is equal to its weak closure and therefore also to its strong closure, the strong topology of &' being locally convex. Malgrange [5], Corollary on p. 310, proved that $\mu * \&'$ is strongly closed if and only if $\hat{\mu}$ has the following division property:

(A3) if
$$\nu \in \mathcal{E}'$$
 and $\hat{\nu}/\hat{\mu}$ is entire, then $\nu = \mu * \gamma$ for some $\gamma \in \mathcal{E}'$.

We now show that (A3) holds if and only if $\hat{\mu}$ is slowly decreasing.

If $\hat{\mu}$ is slowly decreasing then, without losing generality, we may assume that for every $\xi_0 \in \mathbf{R}^n$ there exists $\xi_1 \in \mathbf{R}^n$ such that

$$|\xi_1 - \xi_0| \le A \log(2 + |\xi_0|)$$
 and $|\hat{\mu}(\xi_1)| \ge 1$.

Let $\nu \in \mathcal{E}'$ and assume $\hat{\nu}/\hat{\mu}$ is entire. For $\tau \in \mathbb{C}$ put $\varphi(\tau) = \hat{\mu}(\xi_1 + 2\tau(\xi_0 - \xi_1))$ and $\psi(\tau) = \hat{\nu}(\xi_1 + 2\tau(\xi_0 - \xi_1))$. By Harnack's inequality

$$\left|\log^{+}\left|\frac{\hat{\nu}}{\hat{\mu}}(\xi_{0})\right| = \log^{+}\left|\frac{\psi}{\varphi}\left(\frac{1}{2}\right)\right| \leq 3 \cdot \int_{|\tau|=1} \log^{+}\left|\frac{\psi}{\varphi}\right|.$$

By subadditivity of \log^+ and the equality $\log |\varphi| = \log^+ |\varphi| - \log^+ |1/\varphi|$, we may estimate the integral in (A4) first by

$$\int_{|\sigma|=1} \left(\log^+|\psi| + \log^+|\phi|\right) - \int_{|\sigma|=1} \log|\phi|,$$

and then only by

(A5)
$$\int_{|\tau|=1} \left(\log^+ |\psi| + \log^+ |\varphi| \right)$$

because, by the assumption,

$$\int_{|\tau|=1} \log |\varphi| \ge \log |\varphi(0)| = \log |\hat{\mu}(\xi_1)| \ge 0.$$

Since the points on the circle $|\tau|=1$ lie at a distance at most $2A \log(2+|\xi_0|)$ from the real space \mathbf{R}_{ξ}^n and we have an estimate on $\hat{\mu}$ and $\hat{\nu}$ in terms of the exponential of that distance, the integral (A5) is not greater than $\log C + N \log(1+|\xi_0|)$ for some constants C, N. Thus

$$\left|\frac{\hat{p}}{\hat{\mu}}(\xi_0)\right| \leq C(1+|\xi_0|)^N, \qquad \xi_0 \in \mathbf{R}^n,$$

proving that $\hat{\nu}/\hat{\mu}$ has polynomially bounded growth on \mathbf{R}_{ξ}^{n} and therefore, being necessarily of exponential type (see Malgrange [5]), is a Fourier-Laplace transform of some $\gamma \in \mathcal{E}'$.

Conversely, if $\hat{\mu}$ is not slowly decreasing, then there exists a sequence $\xi_j \in \mathbb{R}^n$, j = 1, 2, ..., such that

$$|\hat{\mu}(\xi)| < |\xi_j|^{-j}$$
 when $|\xi - \xi_j| \le j \log|\xi_j|$

and we may assume $|\xi_j| \to \infty$ suitably quickly. It is now possible to construct an entire function g which itself is not a Fourier-Laplace transform of any $\gamma \in \mathcal{E}'$, but becomes one when multiplied by $\hat{\mu}$. We indicate the idea: for each j we let φ_j be a test function with support in a fixed set k such that $\hat{\varphi}_j(\xi)$ is about the size of $|\xi_j|$ when $\xi = \xi_j$, but is conveniently small when $|\xi - \xi_j| \ge j \log |\xi_j|$. The function $g = \sum \hat{\varphi}_i$ is of exponential type but not polynomially bounded on \mathbf{R}_{ξ}^n . At the same time $\hat{\mu} \cdot g = \sum \hat{\mu} \hat{\rho}_j$ is polynomially bounded on \mathbf{R}_{ξ}^n because $\hat{\mu}$ is small where $\hat{\varphi}_j$ is big. For the details of the construction we refer to Ehrenpreis [2] and Hörmander [3].

Added in proof. I wish to thank Olaf von Grudzinski for bringing my attention to the papers [7], [8] of L. Hörmander and in particular to the fact that Theorem 2 of this note (hence also Theorem 1) is a consequence of Theorem 3 in [8] and Lemma 5.4 in [7]. It may be remarked, however, that the proof presented here is independent of the much more advanced methods of [7].

REFERENCES

- [1] L. Ehrenpreis, Solutions of some problems of division III, Amer. J. Math., 78 (1956), 685-715.
- [2] _____, Solutions of some problems of division IV, Amer. J. Math., 82 (1960), 522-588.
- [3] L. Hörmander, On the range of convolution operators, Ann. Math., 76 (1962), 148–170.
- [4] J. K. Kelley and J. Namioka, *Linear Topological Spaces*, Van Nostrand, Princeton, 1963.
- [5] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955–56), 271–355.
- [6] L. Schwartz, Théroie des distributions, I-II, Paris, 1950-51.
- [7] L. Hörmander, Supports and singular supports of convolutions, Acta Math., 110 (1963), 279–302.
- [8] _____, A remark on singular supports of convolutions, Math. Scand., 45 (1979), 50-54.

Received April 7, 1982.

University of Stockholm Box 6701 S-133 85 Stockholm Sweden