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DOUBLE BRANCHED COVERS AND PRETZEL
KNOTS

RicHARD E. BEDIENT

Given a knot K we describe a modification of K which leaves the
double branched cover of S* branched along K unchanged. We then
modify certain pretzel knots in this way to produce arbitrarily large
families of distinct knots having the property that all of the associated
double branched covers are homeomorphic.

1. Introduction. This paper concerns the relationship between a
knot and its associated double branched cover. A brief review of the
history of this problem will indicate some of the known results.

Given a tame knot K in S* the unique representation of I1,(S* — K)
onto Z, yields a unique closed orientable 3-manifold M(K) called the
double branched cover of S* branched along K. By Waldhausen [17] K is
trivial if and only if M(K) ~ S°. This leads one to ask whether knot types
and the homeomorphism types of their branched covers are in one-to-one
correspondence. Birman and Hilden [2] give an affirmative answer in the
case where the Heegaard genus of M(K) is 2 and where homeomorphism
type is replaced by Heegaard splitting class.

Unfortunately (or possibly fortunately) when the above restriction on
genus is removed, counter-examples appear in abundance. Montesinos [8]
and Viro [16] independently give examples of distinct composite links for
which the double covers are homeomorphic. Birman, Gonzalez-Acuna and
Montesinos [3] remove the restrictions “composite” and “link” by produc-
ing pairs of distinct prime knots such that for each pair the double covers
are the same. These examples are also described in different ways by
Takahashi [14] and Bedient [1]. Montesinos [7] has also given examples of
arbitrarily large families of distinct /inks such that within each family all
of the associated double covers are homeomorphic.

In this paper we will show that such families of knots exist. Boileau
and Siebenmann [4] have obtained similar examples.

This result can be interpreted in a different manner as follows. We
note that the manifold constructed is a Seifert fibered manifold which
then admits n distinct involutions where distinct here means non-con-
jugate in the automorphism group. For more on this see Plotnick [11].
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2. The modification. As a first step in the construction we exhibit a
modification discussed in detail by Montesinos which may be made on
any suitable knot (or link) which will not change the homeomorphism
type of the associated double branched cover. It may or may not change
the knot type.

Suppose that a knot K contains a section like the one shown in Figure
1 where 4 and B represent “rational tangles” as described by Conway [5].
If 4 and B are interchanged the resulting knot K’ is shown in Figure 2.
Montesinos [7] shows that M(K) ~ M(K’).

FIGURE 1

FIGURE 2

3. Pretzel knots. We now extend the technique to construct the
examples promised in the introduction. We start with a generalization of
the well-known pretzel knots.

We will denote the knot in Figure 3 by K( p,,...,p,) where the p, € Z
represent the number of half twists.
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REMARK. If more than one of the p, is even or if n is even and none of
the p, is even then K is a link. In all other cases however X is a knot. This
does not affect the results which follow.
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To construct the double branched cover of K, we apply the tech-
niques of Montesinos [6] and [7], removing and replacing the balls
B,, B,,...,B,,, as shown in Figure 4. Note the special role played by the
ball B, ,. Let ¢ be any permutation of the numbers 1,2,...,n. Then by
the previous discussion,

M(K(pl""’pn)) NM(K(p(p(,),...,pq,(,,)))

since we may interchange the first n balls at will. It is also clear that if ¢ is
a cyclic permutation of 1,2,...,n or if ¢ simply reverses the order of
1,2,...,n or is any combination of these, then

K(pl""’Pn) ~K(pq)(l)""’p(p(n))'

The above conditions turn out to be sufficient. We state this as the
following theorem:

THEOREM. Let p; > 1 € Z such that the p; are distinct, i = 1,...,n, and
such that £1/p, < 1. Let K(p,,...,p,) be as in Figure 6. Then

M(K(pl9"'9pn)) ~ M(K(Pq;(l),---apqu(n)))
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for any permutation ¢ of 1,...,n. However,

K(pl""apn) ~ K(pq)(l)"”’pqy(n))

if and only if @ is a cyclic permutation, an order reversing permutation or a
combination of these.

Before proceeding to the proof of the theorem, we will state and prove
the following corollary.

COROLLARY. There exist arbitrarily large families of distinct knots with
homeomorphic double branched covers.

Proof of Corollary. For any given n there are n! distinct permutations

of 1,...,n and only 2»n permutations which satisfy the conditions of the
theorem. Thus, there are n!/2n = (n — 1)! /2 distinct pretzel knots for
each choice of n. |

Proof of Theorem. The first part of the theorem is clear from the
discussion preceding the statement of the theorem. Thus we must show
the equivalence of the conditions on the permutation ¢ and the isotopy
between K( py,...,p,) and K(pyys- - - »Py(ny)- We start with a method first
used by Riedemeister [12]. Let IT = IT,(S* — K(p,,...,p,)). Next let H
be the normal closure in IT of the square of any meridian (and hence all
meridians). Form G = II/H. Now let F =[G, G] the commutator sub-
group of G. Let U be the center of F and form W = G/U. Make this same
construction for K” = K( py1ys- - - »Pg(n)) to form II’, G’, and W’. We want
to show the relationship between the properties of ¢ and those of K and
K’. This will be done in two steps, denoted Lemmas 1 and 2.

LEMMA 1. If K ~ K’ then W~ W',

LEMMA 2. W= W’ if and only if ¢ has the properties noted in the
theorem.

Proof of Lemma 1. If K ~ K’ then there exists an isotopy of the pair
(83, K) to the pair (S*, K’) which will induce an isomorphism from II to
IT’. We will see in what follows that the generators used to describe 11
(respectively I1’) are meridians. Geometrically these are curves which are
null-homotopic in a tubular neighborhood of K (K’). All such curves
represent conjugate elements of II (I1’). Thus the elements whose squares
generate H must map to the elements whose squares generate H'. It then
follows that G =~ G".
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The commutator subgroup F of G and its center U must be carried to
F’ and U’ respectively by any isomorphism of G to G’. Hence we have
induced an isomorphism from W to W". (|

Proof of Lemma 2. We will compute nice presentations for W and W’
and then show that they are recognizable as groups of isometries of the
hyperbolic plane. Here we are following Trotter [15].

We start by finding IT = I1(S® — K(py,...,p,)). We will use
the Wertinger generators shown in Figure 5. Let m; be defined by p, =
2m; + 1, i =1,...,n. Each two stranded braid in Figure 5 can be used
to write the generators x; in terms of the generators x; and also to
eliminate all other generators as follows: II is generated by x,,...,x,,
X{,...,x, with relations

r—
Xy —
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xp = x1"2_1)”1le1’€2("1’€2_l)_”ll_l
) o

xl(xlxz_l)
)—mz—l
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and similar pairs for x3,...,x,. We may use these to eliminate the x; so
that IT is now generated by x,,...,x, with n relations of the form

(e )™ (k)7 = (s )™ ey )T
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FIGURE 5
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Recall that H is the normal subgroup of II generated by the squares
of the x,. To form I1/H we just add the relations x> = 1,i = 1,2,...,n to
those of II. Replacing x; ' by x; and simplifying, the above relation
becomes

(2, 2)™ = (x;x,)""

We do this for each of the remaining relations to get

H/H=G= {xl""’xnl(xle)pl = (x2%3)7 = -+ = (x,x)",

xl=x}=.--=x2=1}.

Algebraic manipulations show that the commutator subgroup F of G
is generated by (x,x,), (x,X3),...,(x,x,). Thus

F= {(x,xz),..., (x,x )] (x,%,)7 = (x,x3)2 = - -+ = (x,x,)7,
xt=x2=--.=x}= 1}.

The next step is to show that the subgroup U of F generated by

(x,x,)*is the center of F. The fact that U is contained in the center of F

follows from the relations in F. To show that U is in fact the entire center

of F we show that F /U is centerless. First note that
F/U= {(xlxz)a---a (xnxl)l(xlx2)p‘ = ()‘2363)[72 == (x,x)"
:x%:ﬁx%:---:xi: }.

This however, is isomorphic to the group denoted by Q/( k) and shown
to be centerless by Raymond and Orlik [9]. Finally we have

W=G/U= {xla---’xnl()‘lxz)pl = ("2x3)P2 == (xnxl)pn

— 2 — 2 — — 2 —
=xt=xi=-=x2=1).

Now consider a permutation ¢ of 1,...,n and construct II' =
IT,(S® — K( Po(tys- - - »Py(my))- We follow exactly the same procedure as
above to get

W = {xl,“.’xnl(xlxz).”w(l) — (x2x3)17w(2) - ... = (xnxl)an(n)

— 2 — 2 — — 2 —
=X =Xy = =X, = }

We then need to prove W = W’ except for the special classes of permuta-
tions allowed in the theorem. Still following Trotter we construct an
n-gon P in the hyperbolic plane with vertex angles 7 /p,, 7/p,,...,7/p, as
in Figure 6. Let y, be reflection in the lines shown in Figure 6. Note that
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(y,»,+,) 1s rotation through an angle 27 /p, about the vertex with angle
7/p,. Thus, the map x, — y, induces an isomorphism of W to the full
group of isometries of the plane with fundamental region P. Referring to
Macbeath [8] we find that these are exactly the non-Euclidean crystallo-
graphic (NEC) groups which he classifies in Theorems 1 and la. Using his
notation

w=(0,+,[1.{(p..p.)})

and

W= (0, +,[1. {(Pq»(l)""’l’m(n))})‘

Then by the theorems just mentioned W ~ W’ if and only if ¢ is a cyclic
permutation, an order reversing permutation, or a combination of these. ]

This together with Lemma 1 concludes the proof of the theorem. [

It seems clear from the nature of the construction as well as from the
work of Montesinos that this phenomenon is fairly common. That is, if
the balls which are being permuted are more complicated than those in
the pretzel knots the same results would be expected.

FIGURE 6
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