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CARATHEODORY CONVEX INTEGRAND
OPERATORS AND PROBABILITY THEORY

NIKOLAOS S. PAPAGEORGIOU

In two recent papers, the author studied extensions of several
concepts of nonsmooth analysis to vector valued operators. The purpose
of the present work is to further continue this effort and to study, from a
probabilistic viewpoint, several properties of convex operators. In partic-
ular, we will examine how various basic concepts of vectorial nonsmooth
analysis associated with an integrand/(ω, x) are related to those of the
integral operator F(x) = /Ω/(ω, x) dμ(ω) where the vector valued in-
tegral is defined in the sense of Bochner. Also we introduce a conditional
expectation for such integrands, study several of its properties, see how it
is affected by various operations of nonsmooth analysis, and derive a
vector valued martingale convergence theorem.

1. For real valued functions, the most important contributions on
this subject were made by Rockafellar [17,18,19,20], who introduced the
notion of the normal integrand. Caratheodory integrands form a subset in
the family of normal integrands. Following Rockafellar, interesting results
were also obtained by Bismut [3] and Hiriart-Urruty [10]. Our work
generalizes several of their results to a vector valued context.

In our presentation, we will use parts of the general theory of ordered
topological vector spaces. For the necessary background on this topic, we
refer the reader to the books by Peressini [16] and Schaefer [23].

2. Preliminaries. We start by recalling some basic facts from the
theory of measurable multifunctions. For more details the reader can refer
to Castaing-Valadier [4], Himmelberg [9] or Rockafellar [20].

Let F: Ω -* 2X be a multivalued function (multifunction) from a
space to the family of subsets of a space X. We introduce the set

GTF = {(ω, x) e Ω X X: x e F(ω)}

which we call the graph of F. Also for F c l , w e define Γ ( F ) = { ( o G β ;
F(ω) Π V Φ 0 } . If X is a topological space, by Pf(X) we denote the
nonempty and closed subsets of X.

The next theorem summarizes the interrelations of the different
notions of measurability of a multifunction that exist in the literature.
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THEOREM 2.1. Let (Ω, Σ) be a measurable space and X a separable

metric space. Let F: Ω -> Pf(X) be a multifunction. Consider the following

statements.

(1) F~(B) e Σ for every B e £ ( X ) = the Borel σ-fieldof X.

(2) F~(C) e Σ/or m?ry C cfo^ύίswfoίtf 6>/X

(3) F~(U) e Σ/6>r ei ery Uopen subset of X.

(4) co -> rf(x, ^(ω)) ώ α measurable function for every x e X

(5) ΓΛere e cϋ/51 ̂  sequence of measurable selectors {fn}n>ι of F(-) s.t.

cl{//2(ω)}n>1 = i ? (ω)( Castaing representation).

(6)GrF<Ξ Σ X ΰ ( I ) .

ΓΛe/? w^ have the following relations among them:

(i) (1) -> (2) - (3) ~ (4) - (6).

(ii) IfXis Polish (i.e., is, in addition, complete) then (3) <-» (5).

(iii) IfXis Polish and there is a complete o-finite measure on Ω, then (1)

to (6) αre 0// equivalent.

Following Himmelberg [9], we say that an F(-) satisfying (1) (resp.

(2), (3)) is Borel (resp. strongly, weakly) measurable.

Let (Ω, Σ, μ) be a measure space and X a separable Banach space.

For a multifunction F: Ω -» P/(X) we define the set

i.e. 5^ contains all integrable selectors of F( ).

It is easy to see that Sp is a closed subset of L ̂ (Ω) and it is convex if

and only if F(ω) is μ-a.e. convex. Furthermore, this set may very well be

empty.

Using Sp we can now define an integral for the multifunction F(-).

This integral was first introduced by Aumann [2] for X = Rn.

ί F(ω) dμ(ω) = ( ί f(ω) dμ(ω):f

As we already mentioned, the vector integrals should be interpreted as

Bochner integrals. Clearly JQF(ω) dμ(ω) = 0 if S£ = 0 .

We say that a measurable multifunction F: Ω -> Pf(X) is integrably

bounded if there is a φ( ) e LX(Ω) s.t.

\F(ω)\ = sup ||x|| < φ(ω) ju-a.e.

For an integrably bounded multifunction F(-) as above, using the

Kuratowski-Ryll Nardzewski measurable selection theorem (see [9] or

[20]), we see that Sι

FΦ 0, and /Ω F(ω) dμ(ω) Φ 0.
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In [8], Hiai and Umegaki proved that if F: Ω -> Pf(X) is integrably
bounded, then there is a unique EΣ°F: Ω -> i/(-Y) Σ0-measurable s.t.

the closure being taken in L^(Ω). Also for every A e Σ o , we have

cl / ° EΣ°F(ω) dμ(ω) = cl
JA

where

Finally, we very briefly recall some useful facts about the Hausdorff
metric. If A, B e Jy(-Y), their Hausdorff distance is defined by

h(A9 B) =

where ί/( , ) denotes the distance function. It is easy to check that h( , )
is a metric on Pf( X) which is a complete metric space (the same is true for
Pjc{ X), which is the family of all nonempty, closed convex, subsets of X).

If A, B are nonempty, bounded, closed convex subsets of X, their
Hausdorff distance can also be given through Hόrmander's formula (see
[4]).

h(A,B)= sup \σA(x*) - σB(x*)\.
II*ΊI<1

Here σA( ) (σB(-))is the support functional of A (B).

3. Convex operators. Throughout the rest of this paper (Ω, Σ, μ)
will be a complete probability space, X a separable Banach space and Y a
separable w-sequentially complete Banach lattice which is order complete
(see [16]).

An operator/: X -» Yis said to be convex if and only if for any xl9

x2 e * and all λ e [0,1],

λf(Xl) +(i - λ)f(χ2) -f{λXl +(i - λ)x2) e y+,

and, in a more suggestive notation,

f(λxx +(1 - λ)x 2 ) < λf(Xι) +(1 - λ)/(x 2 ) .

We mainly consider Caratheodory integrand operators /(ω, x), al-
though in the last section we obtain results for more general integrand
operators.
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For now, let /: Ω X X -> Y be an integrand operator with the
following properties.

(l)/(ω, •) is continuous, convex for μ-almost all ω e Ω.
(2) /( , x) is measurable for all x e X.
(3) | |/(ω, JC)|| < h(ω) μ-a.e. for some *(•) e L\Ώ) and for all x e X
Note that in (2), we don't specify the kind of measurability of/( , x),

since because of the separability of Y, strong (Bochner), weak (Pettis), and
Borel measurability all coincide (see [6]).

An operator /(•, •) satisfying (1), (2) and (3) is called a Caratheodory,
convex, Ly(Ω)-integrand operator. Consider the Lebesgue-Bochner spaces
L£(Ω) (1 <p < oo). Then on those spaces, we define the following
integral operator (usually known as the Nemitsky or superposition opera-
tor):

F(u) = ί f(ω>u(ω)) dμ(co), where w( ) e L^(Ω) (1 <p < oo).

It is easy to check that F( ) is a norm continuous convex operator on
Ω).
We start with an easy, but useful, Lemma.

LEMMA α. ///i( ),/2( ) ^ L\($l) andfλ(ω) < /2(ω) μ-a.e.,then

(ω) rfμ(ω) <

. Let y* e y*. Then (^*,/2(ω) - Λ(ω)) > 0 μ-a.e. So

) ^ 0. But

Hence for ally* e y*, (_y , /Ω(/2(ω) - /x(ω)) J/t(ω)) > 0, which implies

). D/ 1 / 2 ( ) )
•'Ω ''Ω

Another useful preliminary result is

LEMMA /?. A Caratheodory operator (not necessarily convex) is super-
positionally measurable, i.e. for every u: Ω -> Xmeasurable, ω -> /(to, w(ω))

measurable.

Proof. Since w: Ω -> X is measurable, we know there exist simple
functions sn(ω) = Σ ^ ^ ^ ^ χ ^ (ω) s.t. sn(ω) -> w(ω) μa.e. Then from the
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continuity of /(ω, •), we have /(ω, sn(ω)) -»/(co, u(ω)) μ-a.e. Let B e
B( X) and consider the set

Clearly, Un = U ^ / ^ ) Π ^ where fxjω) = /(ω, X Λ Λ ). Hence [/„ e
Σ. Therefore for « > 1, ω -»/(ω, ^(ω)) is measurable, so their limit
ω -> /(ω, w(co)) is also measurable too. D

Since i7: L£(Ω) -> 7 is a convex operator, we can define its o-direc-
tional derivative by

F ( u i ») . M "(« + λ*> - f ( » ) . o-un, F<" + λ * ) - f<»>
λ>0 A λlO A

for h e L^(Ω) (see [12]). Here o-lim denotes the order limit.

THEOREM 3.1. For all u(-), h( ) e L?(Ώ),wehave

F'(u;h)= ί f'(ω9u(ω);h(ω))dμ(ω).

Proof. We have the check that the integral in the conclusion of the
theorem is well defined. From Lemma 5 of [24],

/ ( , ( ) ; ( ) ) ,
λ|0 Λ

From Lemma β we know that the above quotients are measurable. So
f'(ω,u(ω);h((ύ)) being the weak limit of measurable operators is itself
measurable. Hence it remains to show that | |/'(ω, w(ω); A(ω))|| e L\Ω).
From the definition of the o-directional derivative, we have

/(ω, «(«)) ~ / ( ω , t/(ω) - Λ(ω))

</ '(ω, «(«); A(«)) </(ω, «(«) + A(ω)) - / ( ω , «(«))

, M ( « ) + A(ω)) -/(ω, «(ω))]

+/(«, «(«) - h(ω))

- / ( ω , «(ω) - A(ω))fl

From the inequality, since 7 is a Banach lattice, we get

||/'(ω, «(ω); A(«))|| < ||/(«, u(ω) + h(ω))\\ + | |/(«, u(ω)
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Hence ||/'(ω, w(ω); Λ(ω))|| e L*(Ω), which proves that it is Bochner
integrable. Next, for any h( •) e L£(Ω), by definition, we have

λπ |0

So for every j * e y*,

= lim / f r > /(«> «(«) + to",*(«)) /(«, «(«))) rf ( ω ) >

and from the Lebesgue dominated convergence theorem,

(y*,F'(u,h))

= f l i m / * /(ω,M(ω) + λnA(ω))-/(co,M(ω))\

= f (^*,/'(«,M(«);A(«)))^(«)

Since this is true for anyj* e Y*, we finally conclude that

). D

Because /: Lĵ (Ω) -> 7 is a convex operator, we can define its
subdifferential in the sense of convex analysis (see [12,24]):

dF(u)= [A <Ξ&(Lp

x{Q),Y)\A{u') -A(u) < F(u') - F(u)

forallwr( )

Using results of Valadier [24], we have the following complete char-
acterization of the above, generally multivalued, operator 3F( ).

THEOREM 3.2. For all w( ) e L £ ( Ω ) , df(u)Φ 0 is convex and
equicontinuous in (L£(Ω), Y) and we have the formula

A e dF(u)}9 Λ( ) e Lf (Ω).
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Furthermore, if the order intervals of Y are w-compact then dF(u) is
compact for the weak operator topology onJ£(L%(Ω), Y).

Proof. This result is an immediate consequence of Theorem 6 and
Corollary 7 in Valadier [24]. D

REMARK. If Y is reflexive then, its order intervals, being closed and
bounded (because of the normality of 7), are w-compact. For more
general conditions that imply the w-compactness of the order intervals of
a Banach lattice, we refer to Schaefer [23].

Now that we have introduced the subdifferential of F( ), it is natural
to proceed and examine how it is related to the subdifferential of the
integrand/( , ). This issue is resolved in the next theorem.

THEOREM 3.3. // Ύ has the Radon-Nikodym property then for any
u(') e L£(Ω), we have that A e 3F(w) // and only if there is A(ω, •) e

.L A(ω) e 3/(co, u(ω)) μ-a.e. andA(-) = /Ω A(ω9 •) dμ(ω).

Proof. We know (see [12]) that A e 3/(w) if and only if A{h) <
F\u; h) for all h( ) e L£(Ω). Also, from Theorem 3.1, we have

F'(u; h)= f f'(ω, «(ω); h(ω)) dμ(ω).
Ω

Note that/r(io, w(ω); •) is subhnear. Then using a result due to Neumann
[11] and Saint Pierre [22], we know that for every rfGl,

A(d)= ί A(ω9d)dμ(ω)
o

with A(ω, u(ω)) e 3/(ω, w(co)) μ-a.e. and A(-9 d) e L^(A^y)(Ω). Con-
sider a simple function s(ω) = Σ ^ - Λ χ ^ ω ) . Then we have

n \ n

= Σ
n

= Σ / ^(«» ΛA) ί/μ(ω) = Σ / ^ ( ω

? ^X^( ω

« in
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Let {sn}n^ι be a sequence of simple functions s.t. sn(ω) -> h(ω) μ-a.e.

and /Ω p π (ω) — Λ(ω)|| dμ(ω) -> 0 as « -> oo. As we just saw,

From the continuity of A( ) and ̂ 4(co, ) μ-a.e.,

^4(sn) -> ̂ 4(s) and Λ(co, 5π(ω)) -> A(ω9 h(ω)) μ-a.e.

Recall that

-/'(ω, w(ω); -A(ω)) < ^ ( ω , Λ(ω)) < /'(ω, w(ω); A(ω)) μ-a.e.,

so

\A(ωf A(ω))| < |/ '(ω, n(ω); A(ω))| V |/'(ω, u(ω); -A(ω))|

< |/'(ω, ιι(«); A(ω))| + |/'(ω, u(ω); -A(ω))| μ-a.e.

Since Y is a Banach lattice, we finally have

\\A(ω9 A(«))|| < ||/'(co, «(«); A(«))|| + ||/'(<o, u(ω); -A(ω))|| μ-a.e.

Employing the Lebesgue dominated convergence theorem for Bochner
integrals, we deduce that

hm A(sH) = A(h) = lim ί A(ω9 sn(ω)) dμ(ω)

= f A(ω9h(ω))dμ(ω).

Therefore we conclude that

A e dF(u) iff i4(ω) e 3/(co, w(ω)) μ-a.e.

as desired. D
For real valued functions, we know from the work of Rockafellar

[19,20] that if /(•, •) is a normal complex integrand (e.g. a Caratheodory
convex integrand), then the closed and convex valued multifunction
ω -> 3/(ω, u(ω))9 w( ) e L£(Ω), is measurable. But, when Y is infinite
dimensional, we are facing a technical problem. <£f{X, Y) is not separable
even if X = 7 = separable Hubert space (see Problem 83 in Halmos [7]).
So Theorem 2.1 is not applicable in this case. However, we can still say
something interesting about the measurability of the subdifferential multi-
function.

THEOREM 3.4. For all u(-) G L£(Ω), the subdifferential multifunction
/(co, w(ω)) hasaΣ X 5(X) measurable graph.
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Proof. We will start by showing the continuity of /'(co, w(co); •) on X
for every co e Ω. So fix and ω ^ Ω and recall that for all d e X,

/(co, u(ω)) -/(co, u(ω) - rf)
l * j < /'(«, «(«); </) < /(ω, iι(ω) + rf) -/(co, u(ω)).

Since/(co, •) is continuous, for every order convex neighborhood Fof the
origin in Y, there is a δ > 0 s.t. if ||d|| < δ we have

/(co, u(ω)) -/(co, u(ω) - d)9 /(co, u(ω) + d) -/(co, u(ω)) e F.

Then using (*) and the order convexity in V, we can conclude that, for all
\\d\\ < δ,/'(ω, w(ω); d) e F, which shows that/(co,u(co); •) is continuous
at the origin. Next, using the sublinearity of/'(ω, u(ω); •), we will show
that the continuity is in fact global. So let d e Jf\ {0} and let dn -> ίί.
Then because of the sublinearity of/(ω, w(ω); •), we have

\f(ω,u(ω);dn)-f(ω,u(ω);d)\

< / (« , w(ω); J n - </) V/(co, iι(ω); rf - dn),

so

< | |/(ω, u(ω); dn - d) V f(ω, u(ω); d - dn

Since the lattice operations are strongly continuous,

Urn | |/(«, «(«); dn) - / ( « , «(«); ί/)|| = 0.

Hence/(ω, w(ω); •) is continuous on all X as claimed. Now by 5( ) we
denote the multifunction co -* 3/(ω, w(ω)). Then

S(ω)= {A tΞ£?(X,Y):A(d)<f'(ω,u(ω);d)fordLlld<ΞX}.

Note that if for some A e&(X9 7), we have A{dn)<f\ω, u(ω); dn\
where {dn}n^ι is a dense subset of X, then from the continuity of
/'(ω, w(ω); •) and Λ( )» and also from the fact that Y+ is closed, we can
conclude that A(d) </(ω, w(co); d) for all </ e X, so ̂  e 3/(ω, w(ω)).
So for /ι > 1, consider the operators g ; Ω x < ί ? ( I J ) ^ y defined by
gn(ω, A) = A(dn) — f'(ω,u(ω)\ dn). These are jointly measurable. Let
Gn = {(ω, i ) 6 β χ JS?(Z, 7): gn(ω, i4) < 0}. Then for all n > 1, Gn e
Σ X # ( * ) . But observe that GrS = Π ^ ^ ^ . S o G r S e Σ x B(X). Π

REMARK. If X, Y are finite dimensional, thencS?( X, Y) is separable, so
from Theorem 3.4 and the fact that the subdifferential is closed valued, we
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can conclude, using Theorem 2.1, that ω -» 9/(ω, u{ω)) is measurable for
all u( ) e L£

However, we can show that another multifunction originating from
the integrand operator /(•, •), namely the epigraph multifunction, is
measurable.

Recall that for every ω e Ω, the epigraph of/(ω, •) is defined by

epi/(«, •) = {(x, / ) e I X 7:/(ω, x) <y).

Since/(•, •) is Caratheodory, it is easy to see that ω -> epi/(co, •) is
closed valued. (It is also convex if /(ω, •) is convex, but we do not need
this for the next theorem.)

THEOREM 3.5. The multifunction ω -» epi/(ω, •) is measurable.

Proof. By definition

epi/(co, )= {(x,y)^XX Y:f(ω,x)<y]

= {(x,y)exx Y:f(ω,x)-y<0}.

Let f(ω9x)—y = φ(co, x9 y). Clearly φ is measurable in ω and continu-
ous in (x, y). Hence using Theorem 6.4 of [9] (or Lemma IΠ-14 of [4]), we
conclude that ω -^ epi /(ω, •) is measurable as claimed. •

The next result compares the o-directional derivatives of two
Caratheodory convex integrand operators /( , ) and g( , ) which satisfy
a certain integral equality.

THEOREM 3.6. If9 for every u{ ) e L£(Ω), we have

ί f(ω9 u(ω)) dμ(ω) = f g(ω, u(ω)) dμ{ω),

then for every h( •) G L^(Ω), we Aαi e

f /'(to, «(ω); A(ω)) dμ(ω) = (g ' (« , «(«); Λ(«)) dμ(ω).

Proof. By definition
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From Lemma 8 of Valadier [24], we know that

o-lim

So for every y* e 7*,

= / lim L , /(«.»M + M(W))-/(W,u(ω))\

and from the Lebesgue dominated convergence theorem we know we can
pull the limit outside the integral. So,

f'(ω,u(ω);h(ω))dμ(ω)

- Km f

- lim [y, ( /(«.«(») + M(»))-/(", »(••)) U , , ,

= timely*, j
g(ω, w(ω) + λπΛ(ω)) - g(ω, w(ω)

dμ(ω).

Following the same reasoning as above, we easily obtain

lim y*9 ί — — ^-y^ ^ ^ ^ dμ(ω)
n^cc\ Ω̂ An J

= I gr(ω, u(ω)\ A(ω)) dμ(ω).

Therefore we conclude that

/ /r(co, u(ω); h(ω)) dμ(ω) = I g'(co, t/(co); h(ω)) dμ(ω). D

A useful notion in convex analysis, that provides us a better under-
standing of the asymptotic behavior of a convex function, is that of the
recession function. If we start with a convex operator f: X -* Y, then its
asymptotic operator / 0 + is the operator that has as its epigraph the
asymptotic cone of epi/. This definition immediately leads us to the
conclusion that (/0+)( ) is a positively homogeneous convex operator.
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Furthermore, if /(•) is continuous, then/0+ is given by

λ>0 Λ

Since the quotients are increasing with λ, we can write

λ-*oo A

If /( ) is order bounded form above, then, employing once more
Lemma 8 of Valadier [24], we can show that

λ-*oo A

In fact, and the same is true for the o-directional derivative, we can
show, using some results of [23], that the limit can actually be taken in the
norm topology. However, the weak convergence is enough for our purpo-
ses.

Then using (*) and a proof parallel to that of Theorem 3.6, we can
easily prove the following result. As always, /: Ω X X -> Y is a
Caratheodory convex integrand operator.

THEOREM 3.7. If there is a g( ) e LV(Ω) s.t. |/(ω, x)\ < g(ω) μ-a.e.
for all x e X, then for all A( ) e L£(Ω),

(F0+)(h)=f (fθ+)(ω;h(ω))dμ(ω).

4. Conditional expectations. In this section we study the condi-
tional expectation of Caratheodory convex integrand operators. In
sequential multiobjective decision making, such as multistage stochastic
programming problems, we work with the observations (information) that
we gather as the process evolves and so we need to consider the condi-
tional expectation of the cost integrand/( , ).

So suppose/(•, -): Q X X -> Y is a. Caratheodory (convex) integrand
operator s.t. /( , x) e Lx

y(Ω) for all x e X. Let Σ o be a sub σ-field of Σ.

DEFINITION 4.1. We say that g: Ω X X -> Y is a Σ0-conditional
expectation of /( , ) if and only if g( , ) is a Caratheodory (convex)
integrand operator, for all x e X, g( , x) e Ly(Ω, Σ o) and for all̂ 4 e Σ o ,

f f(ω9 x) dμ(ω) = ί g(co, x) dμ(ω),
JΛ JA

i.e. for all x e X, g(-, x) = EΣ°f( ,x).



CARATHEODORY CONVEX OPERATORS 167

Naturally enough we start with an existence and uniqueness result.

THEOREM 4.1. ///: Ώ X X is as above then /(•, •) has a ^^conditional
expectation which is unique up to μ-a.e. equality.

Proof. Since for every x e X, /(•, x) e Ly(Ω), we know from Theo-
rem 4 of [6] that g( , x) = EΣ°f( , x) exists and is unique up to μ-a.e.
equality, for x e D = dense in X we claim that for μ-almost all ω e Ω
x -> g(ω, Λ:) is continuous. So fix a n ω e Ω and let ε > 0. Then there is a
δ > 0 s.t. if || JC - *' | | < δ, where x\ x G ΰ , w e have ||/(ω, JC) - / ( ω , x')ll
< ε. Also we have

ω, x) - g(ω, xOll = l l ^ / ί ^ ^ ) ~ ^Σ°/(^9 ̂ )ll

From Jensen's inequality, we have

So eventually we get

||g(ω, x) — g(co, x )\\ < E °||/(<o, x) — /(ω, x )\\ < E °ε = ε,

which proves that g(ω, •) is continuous on D. It is also o-Lipschitz [13] and
so extends uniquely to X and EΣ°f(ω, x) = g(ω, x).

Next for all xl9 x2 ^ X and λ G (0,1) and for all A e Σ o , we have,
from the convexity of /(ω, •) and Lemma α,

g(ω, λxλ +(1 - λ)x 2) rfμ(ω) = Γ /(co,

< ί (λ/(ω, x j +(1 - λ)/(co, x2

= /^(λg(ω,x 1 ) + l ( l - λ ) g ( ω , x 2 ) )

So, for every y* e Y*,

= jf (J*, g(«, λxj +(1 - λ)x

(λg(«, xx) + (1 - λ)g(ω,

, λg(«, Xl) + (1 - λ)g(ω,
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Hence

(y*9g(ω9λXι+(l-λ)x2))

< (y*9 λg(co, xλ) + (1 - λ)g(ω9 x2)) μ-a.e.

But from Krein's theorem (see [16], p. 72), we know that Y% is generating,
i.e. Γ* = Γ* - 7*. Using that, we get

g(ω9λxι + (1 - λ)x2) ^λgiω.xj +(1 - λ)g(ω,x 2 ) μ-a.e.

By changing g( , •) on a set of μ-measure zero we get that g(co, •) is
convex for all ω e Ω. D

Actually from both a theoretical and applied viewpoint we would like
to know something stronger than the previous result. Namely, whether the
Σ0-conditional expectation is uneffected when we compose/(ω, •) with an
element in L£(Ω; Σ o). So now let /(•, •) be an L1(Ω)-bounded
Caratheodory convex integrand.

THEOREM 4.2. Ifg e EΣ°f then for all «(•) e L^(Ω, Σo), g(ω, u(ω)) is
the Σ o conditional expectation off(ω, w(ω)).

Proof. Since by hypothesis g = £ Σ o / for every x e X, and for every
Σ owe have

co) = Γ g(co, x)

Now consider a simple function s(ω) = Σ^iΛ^χ^ (co) with Ak G Σ O ,
/: = 1,... ,H. For such a function we have

ί /(co, j(ω)) rfμ(ω) = f / ω, £ ^ χ ^ (ω)

n n

«» Σ ^X^(«)U^(<°) = / g(co,5(co))ί/μ(ω).

But we know from [6] that we can find simple functions {sn}n^ι s.t.
sn(ω) -> w(co) /x-a.e. Then from the Lebesgue dominated convergence
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theorem and the continuity of/(ω, •) and g(ω, •), we get

lim ί f(ω9sn(ω))dμ(ω)

= [ lim /(«, sn(ω)) dμ(o>) = (/(ω, «(«)) dμ(a)

and

lim [ g(ω,sn(ω))dμ(ω)
n—> oo •'Λ

= /" lim g(ω, sn{ω)) dμ(ω) = /" g(ω, κ(co)) φ ( ω ) .
^ «->oo JA

(Note that for every x e A" ,

||g(ω, * ) | | = ||£Σ°/(co, *)ll < 2?Σ°||/(ω> x)| | < £Σ°φ(ω) a.e..)

Therefore for all 4̂ e Σ o ,

ί f(ω, u(ω)) dμ(ω) = [ g(ω, u(ω)) dμ(ω). D
JA JΛ

Using this result, we can easily show that for all u( •), h( •)

£ V ( ω , κ(ω); Λ(ω)) = g'(co, ιι(ω); h(ω)).

This can be viewed as a completion to Theorem 3.6.

We can generalize our result on the existence of Σ0-conditional
expectations to (convex) integrand operators that are in l}γ(Ώ) only
locally. However, before doing that we need to introduce some auxiliary
material. To our range space 7, we adjoin a greatest element + oo and
extend the vector space operations in a natural way. Therefore, we set
+ oo + (-oo) = + oo. We will denote the augmented space Y U {±00}
by Ϋ. The topology of Y is then extended to Ϋ as follows. A set U will be
said to be open in Ϋ if the trace of II on Y is open and if -00 e II (resp.
+ 00 e U)\ then for U = II Π Y we have U - 7 + = U (resp. ί/ = £/ +
Y+). We have then to extend the norm of Y to include ±00. So we define

s

II ± oo|| = 00 and we say that yn -* H- 00 if and only if \\y+\\ -> 00 and
i s bounded, while yn-> —00 if and only if ||^~|| -> 00 and
i s bounded. This definition is consistent with the extended

topology defined earlier, since, as we can easily check, the sets ΪJM =
{y G Y: \\y+\\ > Mv \\y-\\ < M2] and VM = { y e 7: | | Π | > M l s | | j

+ | | <
M2}, Ml9 M2> 0, are neighborhoods of +00 and -00, respectively, in
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that topology. The introduction of these points at infinity is very useful
for purposes of nonsmooth analysis and optimization. Among other
things, it allows us to incorporate the constraints of a constraint vectorial
optimization problem into the cost operator using the indicator function
and so to transform the problem into one without constraints.

In the next result we will consider operators with values in Ϋ. So we
have

THEOREM 4.3 ///: ίl X X -* Ϋ is a (convex) measurable operator s.t.:

(0 suP*€=*B(o,i)ll/(ω> *)ll ^ <*„(«)> where « Λ ( 0 G L\®)> n > 1, and
5(0,1)={x^X:\\x\\<\y,

(ii) for allx e X9f~( 9 x) e Lι

γ(Q) thenf(-, •) has a unique Σ0-eondi-
tional expectation in the sense that there is a unique (convex) integrand
operator g: Ω x l - ^ Y s.t. for all A e Σoandallx( ) e Z/£(0),

f /(ω, x(ω)) dμ(co) = f g(ω, x(ω)) dμ(ω),
JA JA

where the above integrals may be + oo.

Proof. For w > 1 and for a fixed J E 7 + , consider the integrand
operators

yAf(ω9x)

Clearly, fn(ω, x)t f(ω, x) as n -> oo. Since Y is separable, so is 7, and
then from Schaefer [23] we know that the latter has an order continuous
norm. So /rt(ω, n) -^/(ω, x). Observe that for all n > 1 and x e X,
/n( , x) e LV(Ω). SO/ Λ ( , X) has a Σ0-conditional expectation which we
denote by gn( , JC) e LV(Ω; Σ O ) . Hence, for all A <Ξ Σo and all JC( ) G

*n(ω,x(ω)) dμ(ω)

<c I f ->(cύ x ( ί i ύ ) ) d a ί i d ) = I Q , i ί ί x ) x (
J A J A

which implies gw(ω, x) < gΛ+i(ω, x) μ-a.e. So we see that {gn(',x)}n>ι is
increasing sequence of Y-valued operators for all x e X Let g(co, x) =
V^=1gw(ω, JC). Because the measurable operators from Ω into Y are an
order complete lattice, we deduce that g( ,x) is measurable for every
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x G X. Also observe that, for all j>* e 7* and all A <= Σ o ,

Similarly, we get

We consider two cases:
I If fAf(ω,x)dμ(ω) = + 00 then (y*9 fAg(ω,x)) = +00. So we

have

f ω) = ( g ( ω , x ) dμ(ω) = +00.
A JA

II If JAf(co, x) dμ(ω) < +00 then, since by Krein's theorem 7* is
generating,

( /(ω, x) dμ(ω) = ί g(ω, x) dμ(ω).
JA JA

If /( , •) is, in addition, convex, then, as in Theorem 4.1, we can show that
g( , ) is also. Hence EΣ°f = g. D

Now that we have established the existence of a Σ0-conditional
expectation of a Caratheodory convex integrand operator in the sense of
Definition 4.1, we will proceed and compare their subdifferentials.

THEOREM 4.4. IfS?(X, Y) has the Radon-Nikodymproperty, f: Ω X X
-> Y is an l}(Q,)-bounded Caratheodory convex integrand operator, and
g = EΣQ/, then R() e 3g(ω, x) if and only if there exists T( ) e 9/(co, x)

EΣ°T(ω, h(ω)) = i?(ω, h(ω)) μ-a.e.

Proof. First let R() e 3g( , JC). Then i?(ω) e 3g(ω, x) μ-a.e. so
i?(ω, Λ(ω)) < g'(co, x; Λ(ω)) μ-a.e. for all Λ( ) e L^(Ω). But as we men-
tioned earlier in this section,

f g'(ω, x; h(ω)) dμ(ω) = f f'(ω9 x\ Λ(ω
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Let R(h) = /Ωl?(ω, h(ω)) dμ(ω). This is linear and continuous for the
norm topology on L£(Ω). So from the result of Neumann [11] and Saint
Pierre [22], we know there exists Γ( ) e L#{X?y)(Ω, Σ) s.t.

R(h)= ί T(ω,h(ω))dμ(ω)

and

T(ω,h(ω)) <f\ω,x\ h(ω)) μ-a.e.

Observe that the latter inequality implies that T(ω) e 9/(ω, x) μ-a.e. so

Now let A(co) = Λ(co)χ/4(ω), where i E Σ 0 and Λ( ) e L£(Ω, Σ o ) .

Then

= ί T{ω, h(ω)χA(<»)) dμ(ω) = [ R{ω, h(ω)χA(ω)) dμ(ω),

which implies

T(ω9 h(ω)) dμ(ω) = f Λ(ω, h(ω)) dμ(ω)9[ f
and since this is true for all A e Σ o, we conclude that

£Σ°Γ(ω, h(ω)) = R(ω, h(ω)) /x-a.e.

as claimed.
The implication in the opposite direction is more or less obvious,

because if we let Γ( ) e 9/( > x) and i?(ω, h) = EΣ°T(ω, h) μ-a.e.> since
Γ( ) e 3 / ( , 4 w e know that for all h e JT,

Γ(ω,Λ)^/'(«,jc;Λ),

and integrating over any ̂ 4 e Σ o , we get

(1) ί Γ(ω, h) dμ{ω) < ί / '(«, x; Λ) ^ ( ω ) .

But once again, we use the fact that

(2) ί f'(ω9 x; h) dμ(ω) = ί g'(ω, x; h) dμ(ω).
JA JA

Also since £'ΣoΓ(ω, h) = i?(ω, Λ) μ-a.e., we have

(3) f T(ω9 h) dμ(ω) = [ R(ω, h) dμ(ω).
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Combining (1), (2) and (3) above, we get

( R(ω9 h) dμ(ω) < ί g'(ω, x; h) dμ(ω)
JA JA

for all A e Σ o and all K I Since both integrands are Σ0-measurable we
get that for all h e X, R(ω, h) < g'(co, x\ h) μ-a.e., which means R(ω) e
3g(ω, jc)μ-a.e. So R() e 3g( ,x). D

In the next result, we examine the conditional expectation of the other
important multifunction associated with /, namely the epigraph of /. For
that purpose, assume X and Fare, in addition, reflexive and/: Ω x I - ^ 7
is a Caratheodory convex integrand operator s.t. for all x e X, ||/(to, x)\\
< φ(ω) μ-a.e., φ( ) e L°°(Ω). Assume X, Fare locally uniformly convex.

THEOREM 4.5. //g e EΈ°fthen £'Σoepi /(ω, •)

REMARK. Note that by its nature epi /(ω, •) is not integrably bounded
so the existence result cannot be deduced from the work of Hiai-Umegaki
[8].

Proof. To prove the existence of £'Σ oepi/(ω, •), we will use an
approximation method. So for n > 1, let epi/"(ω, •) = epi/(ω, •) Π
nB(0,1). Clearly, epi/"(ω, •) is integrably bounded, so by Hiai-Umegaki
[8], we know that Eτ°epifn(ω, •) exists and is a closed, convex valued,
integrably bounded multifunction.

Note that epi/"(ω, )Tepi/(ω, •) as n -> oo for all ω e Ω. Then for
allz* E Z * = ( I X 7)* = Jί* X 7*,σepir(ω,.)(z*)ΐσepi/(ω,.)(z*).Alsofor
n > m > 1, since epi/"(ω, •) and epi/m(ω, •) are both bounded, closed
and convex, we can use Hormander's formula and obtain

= sup |σ e p i Γ ( ω / ) (z*) - σ i r ( ω f 0 ( z * )
| |z*|| = l

^ ^ sup | σ e p i r ( ω / ) n [ e p i r ( ω / ) ] C ( z * ) |
II^Ί!=i

= S U p I σ c o n v e p i f m { ω , )Π[epifm(ω,•)] cVZ ) \

IkΊI-i

Then by Aubin's [1] Proposition 6 (p. 99), we know that
σ convepi/ m (ω, )Π[epi/w(ω, )]cV /
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is norm continuous on Z*. Since Z = I X Yis reflexive, by Troyansky's
renorming theorem (see [6]), we can assume without loss of generality that
Z is locally uniformly convex. Then suppose zn-+ z with | | z j | = ||z|| = 1

s

for all n > 1. By local uniform convexity, zn -> z so
σ convepi/ m (ω, )Π[epi/m(ω,•)] c\Zn) ~~* σ convepi/ m (ω, )Π[epifm(ω,-))cVZ)

Therefore, σ ^ ^ e p i / W ( ω ) n [ e p i r ( ω ) ] c ( ) is weakly sequentially continuous.
Hence from the weak sequential compactness of the unit ball, we can see
that there exists z* e Z* (depending on ω e Ω) s.t. p * | | = 1, for which
the supremum in (*) is attained. So we have, for all ω ^ Ω,

M(ω, ),epi/w(co, .)) = σ—{cpifn{ω/))niφr{ωfΨ(z*) -> 0

as n9 m -> oo.
Therefore for every ω e β {epi /"(ω, )}«>i i s a n Λ-Cauchy sequence

in Pfc(Z). But recall that the latter endowed with the Hausdorff metric is
complete. So for all ω e Ω, epi/w(ω, •) -> *S(ω) G P / C ( X ) . Also, using the
homogeneity of the support functional, σepi^W(ω)(z*) -> σ5(ω)(z*) for all
z* e Z* and all ω e Ω. But we already saw in the beginning of the proof
that σepi/«(αv)(z*) - σe p i / ( α v )(z*) for all z* e Z* and all ω e Ω. Hence,

Since both sets are closed and convex, we can conclude that for all ω e Ω,
S(ω) = epi(ω, •)•

So we have shown that eρi/"(ω, •) -> eρif(ω, •) for all ω e Ω as

« -> oo. Next, using the results of Hiai-Umegaki [8], for all i G Σ O , we

can write

ί
JA

< f
JA
f
JA

and the latter tends to zero as n, m -> oo. So for all A e Σ o , we have

lim
«, m -* oo

Using the Lebesgue dominated convergence theorem, we can pass the
limit inside the integral and obtain

ί lim h(EΣ°epifn(ω9 )9E
Σ°epifm(ω9 ))dμ(ω) = 0.

J A n, m -* oo
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Since this holds for all A e Σ o , we conclude that

lim h{EΣ°φfn(ω, •), £Σ°epi/w(to, •)) = 0 μ . a . e .
n, m—>oo

Hence, {J?Σ°epi/"(to, )}/z>i is μ-a.e. an Λ-Cauchy sequence in Pfc{Z).
Using once again the completeness of (P / c(Z), Λ), we get that there exists
G:Ω ^ Pfc(Z) s.t.

£Σ° epi/"(to, •) -> G(to) μ-a.e.

(we just set G(ω) = M e Pfc(Z) on the exceptional μ-null set). Note that
<?(•), being the limit in the Hausdorff metric of measurable multifunc-
tions, is itself measurable. Also it is not difficult to check that

h cl / 2?Σ°epi/"(to, •) dμ(to),cl / G(ω)dμ(ω)
\ JA JA

So

cl ί £Σ°epi fn(ω, •) ί/μ(to) -^ cl [ G(ω) dμ(ω).
JA JA

But from [8] we know that

cl ί epifn(ω, )dμ(ω) = cl ί EΣ°εpifn(ω9 )dμ{ω).
JA JA

Taking /i-limits as n -> oo, we finally get

cl / epi/(to, •) dμ(ω) = cl / G(ω) rfμ(ω)

for all^ e Σ o . Hence JE:ΣOepif(to, •) = G(ω).

Now if (x, y) e epi f( to, •), then/(to, x) < y9 and integrating we get

/ f(ω, x) dμ(ω) = / g(to, x) dμ(ω) < ί ydμ(ω).
A A A

Since this is true for all A ^ Σ o , we get g( to, x) < y so(x, y) e epi g(ω9 •).
Hence epi/(to, •) c epi g(to, •) and, using the monotonicity of the set
valued conditional expectation, we finally obtain

£rΣ°epi/(to, •) c /s^epi g(ω, •) = epi g(ω, •). D

REMARKS. (1) Since/(•, •) is bounded by φ( ) e L°°(Ω), there will
be an n0 s.t. for all n > nθ9 epi fn(ω, •) Φ 0 . So the sequence
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{epi/"(co, )}π>i i s w e ^ defined in Pfc(Z) and without loss of generality

we may assume that n0 = 1.

(2) Let sn e S^Otpifniω.y Such a function exists by the Kuratowski-

Ryll Nardzewski measurable selection theorem (see [9]). From the defini-

tion of the Hausdorff metric, we have

\\sn(ω) - G(ω)\\ dμ(ω) < ί h{EΣoφf"(ω, •), G(ω)) dμ(ω) -> 0.
JA

Also, since Z is reflexive and G(ω) is convex, again by the same selection

theorem, there is a measurable function s: A -> Y s.t. s(ω) G G(ω) for all

ω G yl. Hence,

so, for all ^ G Σ O , JAG(ω) dμ(ω) Φ 0.

In §3 we introduced the recession opetator (/0+)( ). Here, once again

using the fact that, for /: Ω X X -> Y a Caratheodory integrand operator

s.t. | /(ω, JC)| < g(ω) μ-a.e. g( ) G LV(Ω), we have for all w( ), Λ( ) G

) ( , ( ) ) < ,

and we have the following result.

THEOREM 4.6. ///: Ω x X -> Y is as above then for allh( )e L\(Ώ),

EΣ°(f0+)(ω, h(ω)) = ( £

i.e. /Λe operations of conditional expectation with respect to Σo and of the

recession operator commute.

We will close this section with a result on martingales formed by

Caratheodory convex integrand operators. For that purpose consider an

increasing sequence {Σn}n^ι of sub σ-fields of Σ. We set Σ ^ = V^= 1ΣW

and assume that Y is reflexive, X is finite dimensional and h G L°°.

T H E O R E M 4.7. If {fn9 Σn}n^1 is a uniformly integrable martingale of

Caratheodory convex integrand operators s.t. [fn(ω9 )}«>i ^ equicontinu-

ous and s u p , ^ /Q | |/π(ω, x) | | dμ(ω) < oo /or α// x G X, rtew there exists
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/^ Ω x l - ^ Γ , also a Caratheodory convex integrand operator, s.t.

and furthermore, {fn9 Σn }n<=Nu{oo} *s a martingale too.

Proof. For any x G X, suprt^1/Q | |/rt(ω, x)|| dμ(ω) < ±00, we know
from Chatterji's convergence theorem (see [5]) and the Ascoli Theorem
that there exists f^'.ΏxX-^Y s.t., for all x G X, /^(ω, x) G LV(Ω),
and for which /rt(ω, x) -> /^(co, x) μ-a.e. for all x G X Fix ωeΩ\JV 0

where μ(iV0) = 0 and consider the operator x -> /(ω, x). We know that it
is continuous. Also since for each « > 1, /Λ(ω, •) is a convex operator,
then for xl9 x2 ^ X and λ e (0,1) we have

/„(«, λxx +(1 - λ)x 2 ) < λ/n(ω, Xl) +(1 - λ ) / > , x 2 ).

But recall that fn(ω, x) -^/^(ω, x) ju-a.e. and 7 + is closed. So taking

limits as n -> oo, we get

/ 0 0 ( ω , λ x 1 4 - ( l - λ ) x 2 )

< λ / j c ^ x j +(1 - λ)/00(co,x2) μ-a.e.,

which shows that/^co, •) is μ-a.e. convex. Again by appropriately redefi-
ning the function on a μ-null set, we have that /(ω, •) is convex for all
ω G Ω. Furthermore, for n > m and A G Σ m , we have

(*) / / > , x) rfμ(ω) = / / m (ω, x) rfμ(ω).

From the uniform integrability assumption, we know (see [5] or [6]) that

Jn Joo'

Hence

I /«(«» Λ:) rfμ(ω) -> ί /oo(ω

? ^) dμ(ω) as /i -• oo

for all yί G Σ m . From (*), keeping m fixed and sending « -> oo, we get

^(ω, x) dμ(ω) = / /m(ω, x) ^μ(co) for all̂ 4 e Σ m ,
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which means

EΣmfoo(ω> x) =/m(ω> x) μ-a.e. for all x.

Hence {/„, Σn}neNU{oo} is a martingale. D.

REMARKS. (1) The uniform integrability was used only in proving that
{/ w ,Σ n } n e Λ r u { o o } isa martingale too. For the first part of the conclusion
of the theorem, we only needed to know that fn(ω, x) -> /^(ω, x) μ-a.e.
for all x e X. This is always the case when Y has the Radon Nikodym
property and Doob's condition supΛ^1||//I||Liy(Ω) < + oo is satisfied.

(2) We have an analogous result for submartingales of Caratheodory
convex integrand operators by using the fact that a submartingale
{/*(•> χ))n>ι c a n b e written as fn(ω9 x) = mn(ω9 x) + pn(ω, x\ where
{mw( ,x)} w > 1 isa martingale and {pn(*> x)}n>ι a predictable sequence,
i.e.pn(-9 x) e I}γ(ίl9 Σ Π _ 1 ) , p 0 = 0 and 0 < pn(-9 x) t μ-a.e. The decom-
position is unique, and for Y = R we recognize the well-known Doob
decomposition of submartingales.

5. Nonconvex operators. In this section we prove two results where
the operators involved are no longer convex, and we close our work with a
vectorial generalization of Jensen's inequality.

We start with operators satisfying a general set-valued Lipschitz
relation. So we have

THEOREM 5.1. // 7* is separable, M: Ω -> Pfc(Y) is an integrably
bounded multifunction, and f:Ώ,XX-*Yisan l}γ{Q>)-integrand s.t.
/(ω, x) ~/(ω, z) e | |* - z||M(ω) μ-a.e.for all x, z e X, then,

EΣ°f(ω, x) - £Σ°/(ω, z) e ||x - z\\EΣ°M(ω) μ-a.e.

Proof. First note that since, by hypothesis, /(•, x) e L\(Q) for all
x e X, it has a vector valued conditional expectation with respect to Σ o

and it belongs to Lι

γ(Q9 Σo) for all x e X (see [6]). So let g(co, x) =
EΣ°f(ω,x). Since, by hypothesis, we know that f(ω9 x) ~/(ω, z) e
||x - z||Af(ω) μ-a.e., for every 4̂ G Σ O we have

JA

But

ί {f(ω,x)-f{ω,z))dμ(ω)(Ξ\\χ-z\\[ M(ω)dμ(ω).
JA JA

(f(ω,x)-f(ω,z))dμ(ω)=f (g(ω,x) - g(ω9 z)) dμ(ω)
JΔ
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and, since M( ) is a closed and convex valued integrable multifunction,
we know that EΣ°M( ) exists as a closed and convex valued integrably
bounded multifunction, and, furthermore, from Theorem 5.4 of [8], we
know that

cl ί M(ω) dμ(ω) = cl ί £Σ°M(co) dμ{ω).
JA JA

Hence,

( (g(ω, x) - g(ω, z)) dμ{ω) e ||x - z||cl ί E*°M(ω) dμ(ω)
JA JA

for all A e Σ o . But then Lemma 4.4. of [8] tells us that

g(ω, x) - g(ω, z) e ^ . . ^ Σ O ^ ,

which finally implies that

g(ω, x) - g(ω, z) e ||χ - z\\EΣ»M(ω) μ-a.e. D

For the next result we consider the extended space Ϋ = ΓU {±oo}.
In [15] Penot introduced the following radial Dini like derivative for a
general operator/: X -> Y:

J r /(x; Λ) = hm

Along with it, he introduced a corresponding lower radial subdifferential
as follows:

lf(x) = {A <Ξ£>(X, Y):A(h) < drf{x\ h) for all h e X}.

For a comparison of the subdifferential with the convex and the gener-
alized (Clarke) subdifferential (as defined in [13]), we refer to [14].

In the next theorem we study the subdifferential of an Z/yίΩ ̂ in-
tegrand for which the above directional derivative is finite. For more
generality, let Y be any normed lattice (not necessarily separable).

THEOREM 5.2. ///: Ώ X X ^> Y is an ϋγiΏyintegrand s.t., for all
h^X, drf(-9x\ h) e LV(Ω), thenJorF(x) = /Ω/(co, x) dμ(ω),

<ϊrF(x) 2 / 9r/(ω, x) dμ(ω).
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Proof. By definition

A τ?( i\ v F{x + λh)- F{x)drF(x; h) = lim — ~ ^-J-

λΐo

= lim

We know that

Um f / ( ^ ^ ^ ^ - / ( c o ^ )

ΰo"'0 λ

Λ ί /(co,*

> V ί Λ
n>lJ®λ<l/n

Let

Note that

drf
n(ω, x\ A)t drf(ω, x; h) as n -> oo.

So, for every y* e 7*,

( j * ) ^ r /
w ( ω , x ; A ) ) t ( 7 * 5 ^ r / ( ω ^ ; h)) asπ -> oo.

Applying the monotone convergence theorem, we obtain

ί (y*9drf"(ω9x;h))dμ(ω)i[ (y*9drf(ω9 x; h)) dμ(ω)
o o

as n -> oo,

so

*, f ^/"(ω, *; A) rfμ(ω)) ί U f ^/(«. *\ *) ̂ («)

as ft -> oo.

But we know from Krein's theorem (see [16]) that 7* is generating, i.e.
y* = y* _ y* S o ? f o r a U } ; * e y*?

*̂> / drf
n(ω, x; h) dμ(ω) -> j^*, / drf(ω9 x;
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which means that

ί drf
n(ω, χ; h) dμ(ω) Z ί drf(ω9 x; h) dμ(ω).

However, we know from Schaeffer [23] that in a normed lattice every
weakly convergent directed family is strongly convergent. So we obtain

f drf
n(ω9 x; h) dμ(ω) Λ f drf(ω9 x; h) dμ(ω).

yΩ Ώ
Since {judrf

n(ω,x;h)dμ(ω)}n>1 is increasing, using Lemma 5.8 of
Schaeffer [23], we obtain

V / d,ft(x; h) dμ(ω) = ί drf(ω9 x; h) dμ(ω).

Hence, we conclude that

drF(x;h)> ί drf(ω9x;h)dμ(ω).

So let T(ω) e 3r/(ω, x) μ-a.e. Then Γ(ω, h) < drf(ω> x\ h) μ-a.e. for all
/ i £ l Hence

f T(ω9h)dμ(ω) < drF(x\ h) for all h e X,
•'Ω

and if we set T(h) = /Ω T(ω, h) dμ(ω), we have T(h) < drF(x; h). Clearly
Γ G ^ I , 7). So T e dF(x). Therefore we conclude that

dF(x)Ώ ί drf(ω9x)dμ(ω). D

We close with an interesting vectorial generalization of Jensen's
inequality for both the unconditional and the conditional expectations.

THEOREM 5.3. If u: X -> Y is a continuous convex operator s.t., for all
v(-) e LV(Ω),|Ku«ι;)(ω)|| < h(ω) μ-a.e., where

then

u\ί f(ω)dμ(ω)]<ί (Uof)(ω)dμ(ω).
I/Ω J ^Ω

Furthermore,

uoEΣ°f(ω) < EΣ°(u°f)(ω) μ-a.e.
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Proof. Let {^(0}«>i be simple functions s.t. ^(ω) -> f(ω) μ-a.e. and

Jasn(ω) dμ(ω) -> faf(ω) dμ(ω). Such a sequence exists from the defini-

tion of the Bochner integral. Let sn(ω) = Σ

L Ό J |

m

V (
k = l

ω)w£ dμ(ω) = u
m

Σ μ{^k)wk

But observe that, for all k e {1,...,m}, μ(Ak) e [0,1] and Σ™=1μ(Λ) =
μ(Ω) = 1. So using the convexity of u( ), we get

(1) u\f sn(ω) dμ(ω)] < Σ μ(Ak)u(w"k).

On the other hand, we have

= Σ / « « ) Φ(") = Σ μ{Ak)u(w"k).
k l Ak k lk=l

From (1) and (2), we conclude that

(3) u\( sn(ω) dμ(u)] < [ u{sn(ω)) dμ(ω).

But, since sn(ω) -^ /(ω) ju-a.e. and fasn(ω) dμ(ω) A / Ω /(ω) φ ( ω ) , and

because u( •) is, by hypothesis, continuous, we have

and

which proves the vectorial Jensen inequality for Bochner integrals. Next,

since 2?Σ°( ) is a linear contraction on Lι

x(Ώ) (see [6]), we have
LV(Ω)

E °sn -> £ °/. By passing to a subsequence, if necessary, we may

assume EΣ°sn(ω) -> EΣ°f(ω) μ-a.e., and since, by hypothesis, u( ) is

continuous, we have

m

k=l I k=l
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However, note that 0 < J E Σ ° χ / ί ( ω ) < l f o r ω€Ω and
m

Hence, using the fact that u( •) is convex, we have
m

{u<>EΣ°sn)(ω)< ΣEΣ°χAk(ω)u(w^).
k = l

Integrating, we get

/

m

(uoEΣoSn)(ω)dμ(ω)< Σ μ(A Π Ak)u{wn

k).
Λ k = l

Also

(5)

From (4) and (5) we deduce that, for all A e Σ o ,

(wo EΣ°sn)(ω) < EΣ°(u osn)(ω) μ-a.e.,

and passing to the limit we finally have

(uoEΣ°f)(ω) < EΣ°(u°f)(ω) μ-a.e.. D
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