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NONASSOCIATIVE ALGEBRAS WITH SCALAR

INVOLUTION

KEVIN MCCRIMMON

The classical theory of nondegenerate quadratic forms permitting
composition has recently been generalized in several directions: Kunze
and Scheinberg considered degenerate forms on alternative algebras over
fields of characteristic Φ 2; Petersson and Racine briefly considered
nondegenerate forms over general rings of scalars; the generalized
Cayley-Dickson algebras of dimension 2" carry a scalar involution, but
are not alternative and do not admit composition for n > 3. In this paper
we study general algebras with scalar involution (where all norms xx*
and traces x + x* are scalars) over arbitrary rings of scalars. We locate
these among all degree 2 algebras, and derive conditions for them to be
flexible, alternative, or composition algebras. We consider Cayley ele-
ments and Cayley ^'representations, recovering the results of Kunze and
Scheinberg on radicals of norm forms. We also investigate the
Cayley-Dickson doubling process for constructing new scalar involutions
out of old ones.

Throughout, A denotes a unital nonassociative algebra over an arbi-
trary (unital, commutative, associative) ring of scalars Φ. On occasion
pathologies in the module structure of A will cause problems. Without loss
of generality (replacing Φ by Φ/A1-) we will always assume that Φ acts
faithfully on A,

(0.1) <xA = 0 =* a = 0

or equivalently that Φ is unitally faithful,

(O.Γ) αl = 0 => a = 0

(since if a kills the unit it kills all of A). In order to insure uniqueness of
traces and norms we will sometimes impose a stronger condition (unneces-
sary for free modules or for Φ without nilpotent elements) of "unital
rigidity" (cf. §2).

As usual, an involution is an anti-automorphism of period 2,

(0.2) (χy)*=y*χ*> *** = *.

A scalar involution is one for which all norms xx* are scalars in Φl, hence
by linearization all traces x* + x* are too; by faithfulness (O.Γ) these
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scalars are uniquely determined,

(0.3) xx* = N(x)l9

(0.4) x + x* = T(x)l (T(x) = JV(x, 1)),

where N9 T are quadratic and linear forms on A. In general, a quadratic
form Q is a map A -» Φ which is homogeneous of degree 2, β(αx) =
a2Q(x) for α e Φ, and such that the polarized form

Q(χ,y) = Q(χ+y)-Q(χ)-Q(y)

is bilinear. Q is nondegenerate if its radical

(0.5) Radβ= {z<=A\Q(z) = Q(z,A) = 0}

vanishes.
An algebra has (generic) degree 2 if there exists a linear trace form T

and a quadratic norm form N such that for all x in A

(0.6) x2 - T(x)x + N(x)l = 0

(0.7) Γ(l) = 2, 7V(1) = 1.

Linearization of (0.6) leads to

( 0 . 6 ' ) x°y - T ( x ) y - T ( y ) x + N ( x , y)l = 0 (x°y = x y + y x ) .

Note that in the presence of (0.6) and unital faithfulness we have Γ(l) = 2
iff J\Γ(1) = 1, and T is linear iff N is quadratic (for the "if" part set y = 1
in (0.6') to see T{x)\ is linear in x). Setting y = 1 in (0.6') and using
Γ(l) = 2 by (0.7) yields (iV(jc,l) - T(x)}\ = 0, so by faithfulness we
conclude T(x) = N(x, 1), hence by (0.7)

(0.8) T(x) = N(x, 1), N(x*) = N(x), T(x*) = T(x) (JC* = Γ(x)l - x)

(0.9) iV(x2) = iV(x)2.

Commutativity and associativity in a general nonassociative algebra
are measured by the commutators and associators

[x,y]=xy-yx and [x, y, z] = (xy)z - x(yz).

The commuter and the ««c/e/ of 4̂ are defined as

Commuter Comm(Λ) = {JC|[Λ;, A] = 0},

Left nucleusN,{A) = {x\[x, A, A] = 0 } ,

Middle nucleus Nm(A) = {x|[Λ, x, ^] = 0},

Right nucleusNr(A) = {x\[A, A, x] = 0},

Nucleus N(A) = N,(A) n Λ ^ U ) Π

Center C(A) = Comm(^ί) n
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1. Scalar involutions and degree 2. The existence of a scalar involu-

tion is closely tied to the degree 2 nature of A: degree 2 is equivalent to

the existence of a scalar "linear" involution, which is an algebra involu-

tion only under certain conditions on the norm. The precise connection is

given by

1.1. THEOREM. Let A be a unitally faithful algebra. Then there exists a

linear map * with 1* = 1 and xx* G Φl for all xiffA has degree 2 and * is

its trace involution

(1.2) x* = T(x)l - x (T(x) = N(x, 1)).

Such a map * is always of period 2, but is an algebra involution iff the trace

is normal

(1.3) N(x9 y) = T(xy*) (= T(x)T(y) - T(xy)).

In this case the trace is commutative,

(1.4) T(xy) = T(yx)9

and conversely if Φ has no 2-torsion then commutativity implies normality.

Thus the algebras with scalar involution are precisely those degree 2 algebras

with normal trace (or, ifΦ has no 2-torsion, with commutative trace).

Proof. If * satisfies xx* = N(x)\ as in (0.3) and 1* = 1, then lineari-

zation yields N{\) = 1, T{\) = 2, x + x* = T(x)\ for T(x) = N(x91), so

* is necessarily the trace involution (1.2). For the trace involution, the

scalar condition xx* = N(x)l of (0.3) is equivalent to the degree 2

condition (0.6) x1 — T(x)x + N(x)l = 0, and 1* = 1 is equivalent to

Γ(l) = 2.

The trace involution has period 2 since T{\) = 2, (or 1* = 1). The

condition (0.2) that it be an algebra anti-homomorphism can be written as

(xy*)* = yx*, and thus holds iff

0 = (xy*)* -yx* = [T(xy*)l - xy*} -yx* = {T(xy*) - N(x, y)}l

(linearizing (0.3)), hence by faithfulness iff (1.3) holds.

If (1.3) holds then T(xy) = T(x)T(y) - N(x, y) is commutative;

conversely, if T is commutative then

2{T(xy*) - N(x9 y)} = T(xy*) + T(yx*) - 2N(x, y)

= T(xy* + yx* - N(x, y)ΐ) (by (0.7)) = 0

(by linearized (0.3)), so if Φ has no 2-torsion then commutativity (1.4)

implies normality (1.3) D
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Note that (1.4) is trivial if A itself is commutative, so commutative

degree 2 algebras without 2-torsion always have scalar trace involution. In

characteristic 2 situations, commutativity of the trace is not sufficient to

imply normality, as the following examples show.

1.5 EXAMPLE. Over any Φ of characteristic 2 there exist noncommuta-

tive degree 2 algebras A with non-normal T = 0 (trivially such T are

commutative!) and N(x9 y) Φ 0. Indeed, let A be free over Φ on 1, z, w

with z2 = w2 = 0, zw = 1, wz = 0. Then x = αl + βz + yw has x2 =

N(x)l for N(x) = a2 + βy, T(x) = 0, N(x, x') = βyf + β'y Φ 0. Here
x* = x is not an algebra involution since A is not commutative. (Note if A

is commutative and traceless, T = 0, then x2 = N(x)l, N(x9 y)l = x° y

= 2xy = 0 so N(x9 y) = 0 and T is trivially normal and x* = x is

trivially an involution). D

1.6. EXAMPLE. Over any Φ of characteristic 2 there exists a non-

commutative degree 2 algebra A with nonzero non-normal commutative

trace. Indeed, let A be free on 1, e, z where e2 = e, z2 = 0, ez = z + e,

ze = e; then A is degree 2 with respect to the nonzero T(x) = β, N(x) =

a(a + /?), N(x, x') = α/Γ + α'β for x = αl + βe + γz. Γis commutative

since Γ([x, y]) = Γ(x ° j;) G Γ ( Φ Z ) = 0, but T is not normal since

N(e9 z) = 0, T(ez*) = Γ(ez) = Γ(z + e) = 1. (Again we cannot give an

example where A is commutative but some T(e) = 1: then by (0.6')

T(x)e + T(e)x + 7V(x, e) = x ° e = 2xe = 0 for all x shows A = Φl Θ

Φe, and for x = αl -f /te, 7 = γl + δe we have T(x) = β, N(x) = a2 +

α β + β2N(e), and JV(JC, j ) = αδ + βγ = Γ(xy*).) D

For constructing further examples it will be convenient to analyze

algebras A which arise as unital hulls by adjoining a unit to an algebra A.

1.7. PROPOSITION. Suppose A = Φl Θ AQ for an ideal A0<A.

(i) A has degree iff XQ = Γ 0 (x 0 )x 0 for all xQ ^ Ao and some linear

functional To: Ao -> Φ (then T(al + x 0 ) = 2α + Γ 0(x 0), Λ^(αl + x 0 ) =

a(a + Γ0(x0)));

(ii) When A has degree 2 its norm permits composition N(xy) =

N(x)N(y) iff To permits composition To(xoyo) = Γ 0 (x 0 )Γ 0 (y 0 ) iff * is an

algebra involution (and ifΦ has no 2-torsion this holds iff To is commutative;

in particular, any commutative degree 2 hull necessarily has scalar involution

and norm permitting composition).

(iii) Ifxoyo = s(x09 y0) is an alternating bilinear product on Ao and To:

Ao -> Φ a linear functional such that ΓO(^4O)^4O = 0, then A has degree 2,

and has scalar trace involution iff T0(s(A0, Ao)) = 0.
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Proof, (i) is a direct calculation from A% c Ao. (ii) This follows from
(1.1) and direct calculation

N(xy) - N(x)N(y) = aβ{To(xoyo) - T0(x0)T0(y)}

= aβ{N(x9 y) - T(xy*)} (x = al + x09 y = βl + y0).

(iii) We have xl = s(xθ9 xQ) = 0 = T0(x0)x0 by alternation of s and
annihiliation of Γo, hence

T0(A0)T0(A0) = T0(T0(A0)A0) = 0

and

- T0(x0)T0(y0) = T{s(x09 y0)). D

2. Unital rigidity. We now investigate conditions under which the
trace and norm of a degree 2 algebra are uniquely determined.

2.1. PROPOSITION. If A is a degree 2 algebra with respect to T, N then
the other possible T\ N' satisfying (0.6-7) are precisely all T = T + F9

N' = N + Gfor linear forms F and quadratic forms G satisfying

(2.2) F(JC)JC = G(JC)1 for all x^ A,

(2.3) F{\) = G(l) = 0. D

We call such a pair (F, G) satisfying (2.2-3) a compressing pair, and say A
is unitally rigid if it has no compressing pairs. In the presence of faithful-
ness this is just the condition that A cannot be linearly compressed into
Φl,

(2.2') F(x)x €= Φl for all x (F: A -> Φ linear, F(l) = 0) => F = 0

since by unital faithfulness F(x)x = G(x)l uniquely defines G making
(i% G) a compressing pair.

2.2. PROPOSITION. A degree 2 algebra has a unique trace and norm iff it
is unitally rigid. •

In most cases unital rigidity implies faithfulness, e.g. if A carries a
linear functional L taking on a cancellable value L(u) = μ in Φ: if
a A = 0 then (αL,0) would be compressing, and aL = 0 would force
aμ = 0 and hence α = 0. In particular, this holds if A has degree 2 and Φ
has no 2-torsion, since then Γ(l) = 2 is cancellable. But in characteristic 2
rigidity need not imply faithfulness: if Φ = Ψ[ε] for 2Ψ = e2 = 0 then
yl = Ψ is a non-faithful Φ-algebra via εA = 0, yet 4̂ = Φl is trivially
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unitally rigid and degree 2 under Γ(αl) = 0, N(al) = a2 (a = α0 + βoε
has α2 = αQ, αl = α0> so this is well-defined).

Almost any reasonable restriction on A or Φ guarantees unital rigid-
ity.

2.3. PROPOSITION. A unitally faithful algebra A is unitally rigid if any

one of the following conditions hold:

(ί)A = Φl.
(ii) Φ has no nilpotent elements.

(iii) A has no trivial ideals I2 = 0.
(iv) A contains a torsion-free element u (αw = 0 => α = 0) separated

from 1 (Φw Π Φl = 0).
(v) A = Φl Θ Ao where A0 contains a torsion-free u.

(vi) v4 is unitally free (free as Φ-module with basis {x,} w/iere x0 = 1).
(vii) A carries a linear map f such that /(I) = 0 and some f(u) is

torsion-free.
(viii) A contains a torsion-free commutator [u, v] or associator [u, υ9 w],

(ix) A carries a linear form F with F(l) = 0 and some F(u) is cancellable
in Φ.

(x) A has characteristic 2 and carries a quadratic form Q with cancellable
trace Q(u,\) for some u.

(xi)A carries a quadratic form Q with Q(l) = 1 and some Q(u — u*)
cancellable in Φ (x* = Q(x, 1)1 - x).

Proof. We must show that if F9 G satisfy (2.2-3) then F = 0 (whence
G(x)l = 0 forces G = 0 by faithfulness), (i) is trivial by normalization
(2.3). (iii) is a special case of (ii): if a2 = 0 in Φ then / = a A is trivial ideal
in A, and I = 0:=>aA=0=>a = 0 by faithfulness, (v)-(xi) are all
special cases of (iv): clearly (vi) => (v) => (iv), (vii) => (iv) since u is
torsion-free if f{u) is, and separated from l b y α l = / ί w e Φ l Π Φ w = »
βf(u) = α/(l) = 0 => 0 = 0 => a = 0 (by faithfulness), (viii)-(xi) are
special cases of (vii) (in (viii) take f(x) = [x, v] or [x,v,w], in (ix)
/(x) = F(JC)1, (x) => (ix) under F(JC) = β(x, 1), (xi) =* (ix) under F(x) =
Q(x, 2u - Q(u91)1) since F(l) = 2β(l, M) - 2β(M, l)β(l) = 0 if β(l) =
1 and F(M) = 4β(κ) ~ β(ιι, I ) 2 = 4β(u) + β(κ, l ) 2 β ( l ) -
2β(i/,l)β(«,l) = β(2w - β(«,l)l) = β(iι - «•)).

Thus it suffices to verify (ii) and (iv). Linearization of (2.2) yields

(2.4) F(x)y + F(y)x=G(x,y)l

and in particular for y = 1 .F(x)l + 0 = G(x, 1)1, so by faithfulness

(2.5) F(x) = G(x,l).
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In case (iv)

F(u)u e Φu Π Φl = 0 => F(u) = 0

by torsion-freeness of u, hence

F(x)u = F(x)u + F{u)x GΦlΠΦw = 0 (by (2.4))

=> F(x) = 0

for any x, so F = 0. In case (ii) it suffices to verify F(x)is nilpotent,

(2.6) F(xf = F(x)G(x) = G(xf = 0

for all x. Applying F( ), G(x9 •) to (2.2) yields (via (2.5)) F(x)2 = 0,

2F(x)G(x) = G(x)F(x), so F2 = FG = 0; but then (7(x)2l =

(?(JC)F(;C);C = 0 implies G2 = 0 by faithfulness. D

2.7. REMARK. The values of i% G generate a trivial ideal in Φ (at least
when Φ has no 2-torsion), since

2F(x)F{y) = 2G(x)F(y) = 2G(x)G(y) = 0.

Indeed, applying F to (2.4) gives 2F(x)F(y) = 0, hence multiplying (2.2)
by 2F(y) gives 2G(x)F(y) = Oby faithfulness, then multiplying (2.2) by
2G(y) gives 2G( j)G(x) = 0 again by faithfulness. D

It is easy to exhibit non-rigid degree 2 algebras over arbitrary Φ
containing nilpotent elements.

2.8. EXAMPLE. If e Φ 0 = ε2 in Φ then by (1.7) the split null extension
i = Φ θ Φε is a commutative associative degree 2 algebra with scalar
involution To = 0, T(a θ βε) = 2α, N(a ® βε) = a2 permitting composi-
tion, yet A is not unitally rigid since ε2 = 0 shows F ( α θ βε) = βε,
G(a θ βε) = aβε form a nonzero compressing pair. ϋ

Over certain rings we can even construct non-rigid commutative
associative algebras with nondegenerate norm forms permitting composi-
tion.

2.9. EXAMPLE. For any ideal Φ0<3Φ we obtain by (1.7) a unitally
faithful commutative associative Φ-algebra A = Φ θ Φo with scalar in-
volution whose norm permits composition via xy = aβ θ (aβ0 + aoβ +
aoβo) for x = α θ α0, .y = j8 θ /30, Γ0(α0) = α0, Γ(x) = 2α + α0, iV(x)
= a(a + a0), N(x, y) = 2aβ + aβ0 + αoβ. The norm will be nondegen-
erate iff

(2.10) α e Φ , 2 α e Φ 0 , α 2 = αΦ0 = 0 ^ α = 0
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since x = a Θ a0 e Rad TV (as in (0.5)) <=> iV(x, 1) = iV(x, Φo) = N(x) =
0 <=> 2α + α0 = αΦ0 = α2 = 0. We will have a nonzero compressing map
(2.2') F(x)x e Φl, JF(1) = 0 iff there exists a nonzero Φ-linear map Fo:
Φo -> Φ such that

(2.11) JFo(αo)αo = O for all α0 e Φo.

First we construct examples where Φ has no 2-torsion. Let Ψ be an
integral domain with no 2-torsion, and let Φ = Ψ[e, τ] be a polynomial
ring in T with ε2 = ετ = 0. Thus Φ = f 1 θ Ωo θ Φo is a free ψ-module
where Ωo = Φε = Ψε, Φo = Φτ = τΦ[τ] are ideals in Φ with Ω0Ω0 =
Ω0Φ0 = 0. We have a nonzero Φ-linear map Fo: Φo -> Ωo by -F0(

ατ) = ae

(which is well-defined since aτ = 0 => a e Φε => αε = 0). Clearly (2.11)
holds, i7

0(Φ0)Φ0 c Ω0Φ0 = 0, so A = Φ θ Φo is not unitally rigid. Yet
(2.10) holds since 2 α E Φ 0 n Φ 0

i = 0 ( Φ 0 c ψ[τ] is an integral domain if
Ψ is) forces a = 0 (Φ is 2 torsion-free if Ψ is), so the norm is nondegener-
ate.

In characteristic 2 situations the nondegeneracy condition (2.10)
reduces to a2 = αΦ0 = 0 => a = 0, so we must make Φo sit nicely in all of
Φ (not just in Φo). Let Φ = Λ(M) be the exterior algebra on a free
Ψ-module M with basis {x ι} when 2Ψ = 0 such Φ = Ψl θ Φo is com-
mutative with oil = 0 for all α0 e Φ0<3Φ, where Φo is free over Ψ with
basis of all xlχ A Λ xt {iλ < - < /Γ, r > 1). If M has infinite rank
then ΦQ = 0 (if a involves xl9...9xn then xn+1 e Φo, and αx π + 1 = 0 => a
= 0), so (2.10) holds and the norm is nondegenerate. Yet (2.11) holds for
the imbedding Fo (a0) = a0 of Φo in Φ, so A is not unitally rigid. D

3. Flexible degree 2 algebras. An algebra is flexible if for each x
the multiplication operators Lx, Rx commute: (xy)x = x(yx) for x and j ,

(3.1) [x,y,x] = 0 .

All commutative algebras are flexible. A noncommutatiυe Jordan algebra is
one such that for each x the multiplication operators Lx, Rx, Lxi, Rxi all
commute strictly, equivalently the identities

(3.2a) [x,y,x] = [x\y,A = 0

hold strictly (= hold in all scalar extensions = their linearizations hold in
A). A commutative Jordan algebra is one where Lx = Rx strictly commutes
with Lxi = Rxi for each x9

(3 2b) [x,y] = [x\y,x]=0.
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Since x2 e Φx + Φl in a degree 2 algebra by (0.6), we see

3.3 PROPOSITION. A degree 2 algebra is a noncommutative Jordan
algebra iff it is flexible, and a commutative Jordan algebra iff it is commuta-
tive. Any degree 2 algebra A over Φ 3 ^ has A + (under x y = \x ° y) the
Jordan algebra of the symmetric bilinear form B(x, y) = jN(x, y) with
basepoint 1:

x y = B(x9l)y + B(y9l)x - B(x, y)\. D

Flexibility is closely related to a linearized version of composition
N(xy) = N(x)N(y)9 namely the linearization y -> y9 1, N(xy9 x) =
N(x)N(y9ΐ). If A is a unitally faithful degree 2 algebra with norm N9

trace T9 and trace involution * then its norm is associative if it satisfies any
of the following equivalent conditions:

(3.4i) N{xy9x) = N{x)T(y);

(3AΪ) N(yx9x) = N(x)T(y);

(3 An)

(3.4iii) the trace is normal, N(x9 y) = T(xy*), and associative,

T((xy)z) = T(x(yz)).

If Φ has no 2-torsion these are equivalent to

(3.4iv) the trace is commutative and associative,

T([x9y])=T{[x9y9z]) = O.

(By symmetry it suffices to show (i) => (ii) => (iii) => (ir). Here (i) => (ii) by
linearizing x -> x9 z\ (ii) => normality of the trace by setting x = 1, hence
* is an algebra involution by (1.3), so (ii) => associativity of the trace by
T({xy)z) = N(xy, z*) = N(x9 z*y*) = N(x9(yz)*) = T(x(yz)); (iii) =>
(iθ by N(yx9 x) = T((yx)x*) = Γ(.y(xx*)) = 7V(x)Γ(j). If Φ has no
2-torsion we saw in (1.4) that normality is equivalent to commutativity of
the trace.) Note that normality is (3.4iii) shows associativity of the norm
implies * is a scalar involution.

3.5 THEOREM. A unitally faithful degree 2 algebra is flexible iff

F(x9 y)x = G(x, y)\ for all x9 y

where F(x9 y) = N(x9 y) — T(xy*) measures normality and G(x, y) =
N(xy, x) — N(x)T(y) measures associativity. Associativity of the norm is



94 KEVIN McCRIMMON

sufficient for flexibility, and is necessary for flexibility if the algebra is

unitally rigid or if * is a scalar involution. Thus an algebra with scalar

involution is flexible iff its norm is associative iff its trace is associative.

Proof. In any degree 2 algebra the flexibility condition (3.1) becomes,

by (0.60,

0 = (xy)χ — χ(yx) = xy ° x — χ(χ° y)

= {T(xy)x + T{x)xy - N(xy, x)l)

-χ{T(x)y + T(y)x-N(x9y)l)

= {T(xy) - T(y)T(x) + N(x9 y)}x -{N(xy, x) - T(y)N(x)}l

= F(x, y)x - G(x9 y)l.

If (3.4) holds then F = G = 0 and A is flexible. If * is an involution then

F = 0 by (1.3), so flexibility holds <* G(x, y)\ = 0 <̂> G = 0 (by faithful-

ness) <=> (3.4) holds (and (3.4) = (3.4iii) reduces to associativity of the

trace). If A is unitally rigid as in (2.2-3) then Fx = Gl**F=G = 0

(note Fy(x) = F(x9 y\ Gy{x) = G(x9 y) have Fy{\) = N{\9 y) - T(y*)

= 0 and Gy0) = N(y91) - T(y) = 0 by (0.8)), so again (3.4) holds. D

3.6. REMARK. If A has a scalar involution then

T ( [ x , y , z ] ) l = [ x , y , z] + [ χ , y , z ] *

= [ x , y , z ] ~ [ z * , y * , x * ] = [ x , y , z ] + [ z , y , x ]

(as a* = -a mod Φl), so A is flexible <=> Γis associative <=> A satisfies the

linearized flexible law (3.Γ) [x, y9 z] + [z, y9 x] = 0. Thus for algebras

with scalar involution, linearized flexibility implies flexibility, even in

characteristic 2. D

If the norm permits composition it is automatically associative. In the

next section we will give examples of flexible degree 2 algebras whose

norm is not associative and does not permit composition.

An algebra is left (resp. right) alternative if x2y = x(xy) (resp. yx2 =

(yx)x)9 i.e.

(3.7/) [χ,χ,y]=Q

(3.7r) [y,x,x] = 0

and is alternative if it is both left and right alternative. Motivated by the

Jordan algebra /(N 9 1) of a quadratic form with basepoint, we define

(3.8) Uxy = N{x, y*)x - N(x)y*.
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3.9 PROPOSITION. A degree 2 algebra is left alternative iffx(yx) = Uxy,

right alternative iff (xy)x = Uxy, and alternative iff it is flexible and

xyx = Uxy. Always 2Uxy = x °(x° y) — x2 ° y9 so if \ e Φ then Uxy =

2x - (x - y) — x2 y is the usual V-operator of the Jordan algebra A^.

Proof. x(yx) — Uxy = x(yx) — x{x*y* + yx) -f {xx*)y* =
[x, JC*> y*] = [x, x, y] and dually. By (0.6')

x °(x ° y) — x2 ° y

= χo{T{x)y + T(y)x - N(x, y)l} -{T(x)x - N(x)l} o y

= 2T(y){T(x)x - N(x)l) - 2N(x, y)x + 2N(x)y

= 2{T(x)T(y) - N(x, y)}x - 2N(x){T(y)l - y)

= 2Uxy. D

In general an algebra with scalar involution need not be flexible: if A

is free over Φ on 1, e, z with e* = 1 — e, z* = -z, e2 = e, z2 = αl,

ze = 1 - 2e + (1 — β)z, ez = -1 + 2e + βz then * is a scalar involution

but [e, z, e] = 1. Nevertheless, there are lots of flexible algebras with

scalar involution. E. Becker [1] investigated the flexible division algebras.

He has given a generalized Cayley-Dickson construction of a new scalar

involution (a, by = (0*, -b) on C(A, 1? 2 , 3) = 4̂ θ 4̂ under

( a , b ) ( c , d ) = ( a c + d* ^ b , d - 2 a + b - 2 c * + b - 3 d ) w h e r e f a r e b i -

linear products on A satisfying (i) 1 remains the unit for 2 , (ii) * remains

a scalar involution for v a* -λa = Q(a)l, (iii) 3 is alternating, a 3 a = 0.

Here tf(α, 6) = N(a) - Q(b)9 T(a9 b) = T(a)9 and when A is unitally

rigid C is flexible iff (iv) A is flexible, (v) Q(a 2 b9 c) = Λ̂ (Z?, β* x c)9 (vi)

Q(a -3b, b) = 0 for all β, /?, c in ^4. The ordinary Cayley-Dickson process

( c f . § 6 ) i s t h e c a s e a - λ b = μ a b , a 2 b = a b , a - 3 b = 0 .

4. Composition algebras. A quadratic form Q permits composition

on an algebra A if

(4.1)

(4.2)

In many cases (4.1) already implies (4.2). If EB denotes the ring-direct sum

we have

4.3. LEMMA. // Q satisfies (4.1) then Φ = Φλ ffl Φ o , A = Aλa Aθ9

Q = Qλ ffl QQ where Qλ permits composition on Aλ over Φλ and QQ = 0 on

Ao over Φo. Thus (4.1) implies (4.2) // Q is nondegenerate or Φ is an integral

domain.
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Proof. β(l) = εx has z\ = εl9 so Φ = Φλ ffl Φo for Φz = Φεz, ε0 = 1 -
ε1? A=Aι®A0 for Λ, = e,.Λ = Φ,,4, β(α) = Q(la) = ε ^ α ) = e?β(fl)
= β ί ε ^ ) shows β(α x + a0) = β(αχ). •

Linearization of (4.1) shows β is associative as in (3.4i-ii),

(4.4) Q(χy9 z) = Q(y9 x*z) = β(x ? zj*)

(χ = Γ(x)l-x,Γ(x) = β(x fl))

and (4.2) shows

(4.5) Q(x*) = Q(x), T(x*) = T{x), Γ(l) = 2

as in (0.8). In particular, if the norm Q = iV of a unitally faithful degree 2
algebra permits composition then N is associative (3.4) and * is a scalar
involution.

The existence of a nondegenerate quadratic form permitting composi-
tion is tantamount to alternativity (3.7).

4.6 THEOREM. // Q is a nondegenerate quadratic form permitting
composition on a unitally faithful algebra A, then A is alternative of degree 2
and Q is its norm form. Conversely, the norm of any unitally faithful and
rigid degree 2 alternative algebra permits composition.

Proof. If Q permits composition then x(x*y) — Q(x)y lies in Rad Q
as in (0.5):

Q(x(x*y)-Q(x)y)

= Q(χ)Q(χ*)Q(y) + Q(χ)2Q(y) - Q(χ)Q(χ(χ*y), y)

= 2Q(x)Q(x*)Q(y) - Q(x)Q(x*y, x*y) (by (4.5), (4.4))

= 0

and

Q(x(x*y) - Q(x)y9 z) = Q(x*y, x*z) - Q(x)Q{y9 z) (by (4.4))

= Q(**)Q(y, z) - Q(x)Q(y9 z) (by linearized (4.1))

= 0 (by (4.5)).

Thus if Q is nondegenerate we have

(4.7) x(x*y) = Q(x)y.

Setting y = 1 in this shows * is scalar with norm N(x) = β(x), and (4.7)
becomes [x, x*9 y] = 0, which is equivalent to left alternativity [x9 x9 y]
= 0 as in (3.7/) when x* = T(x)l — x. Dually we have right alternativity
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via the involution (or from flexibility, using (3.5) and associativity (4.4) on
Q = N). Thus A is alternative with scalar involution.

Conversely, if A is unitally faithful and rigid and alternative (hence
flexible) of degree 2, then by (3.5) its trace involution is a scalar involu-
tion, so its norm permits composition by N(xy)l = {xy){xy)* = xyy*x*
(Artin's Theorem says alternativity is equivalent to the condition that
every two elements generate an associative subalgebra) = N(y)xx* =
N(x)N(y)l. •

Rigidity is necessary for the converse in (4.6): whenever Φ contains
nilpotent elements we can exhibit a non-rigid associative degree 2 algebra
whose norm does not permit composition and whose trace involution is
not an algebra involution.

4.8. EXAMPLE. If ε Φ 0, ε2 = 0 in Φ then in (1.7iii) A = Φl Θ Ao for

Ao = Φε Θ Φε Θ Φε, T0(ae Θ βε Θ γε) = γε,

s(aε Θ βε Θ γε, a'ε Θ β'ε Θ γ'ε) = 0 Θ 0 θ ( α β ' - a'β)ε

is a degree 2 algebra which does not permit composition nor have scalar
involution since T0(s(ε θ 0 θ 0,0 θ ε θ 0)) = Γ0(0 Φ 0 θ ε) = ε Φ 0,
yet A is trivially associative since ^ Q C O θ O θ Φ ε , AlA0 = A0Al = 0,
and hence [A, A, A] = [Aθ9 AQ, AQ] = 0. D

For certain Φ of characteristic 2 we can even construct commutative
associative degree 2 algebras with nondegenerate norm but non-normal
trace (recall by (1.4) this is impossible if Φ has no 2-torsion).

4.9. EXAMPLE. If A = Φ θ Φo as in (1.7) for Φ = Λ(M) = Φl Φ Φo

of characteristic 2 as in (2.9), T0(a0) = α0, then the norm N(x) = a2 + aa0

is nondegenerate with T(x) = a0 tor x = a ® a0. We have a compressing
pair F(x) = α0, G(x) = αα0, G(x, y) = α/?0 + aoβ, F(xy) = aβ0 + aoβ
+ aQβ0 foγ y = β Θ β0. Then by (2.2-3) λi7, λG is again a compressing
pair for any λ e Φ, and by (2.1) 4̂ continues to be degree 2 with respect
to

N'(x) = iV(x) + λG(x) = α2 +(1 + λ)αα 0 .

By (1.7ii), *' is a scalar involution iff N' permits composition iff 7i'(α0j80)
= (1 + λ)α o β o equals

^o(«o)^o(iδo) = (1 + λ)2α0i80 = (1 + λ2)α0 i80,
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i.e. iff (λ + λ2)a0β0 = 0 for all α0, β0 e Φo. But if M is free of infinite
rank on {*,}, then λ = xl9 α0 = JC2, β0 = x3 e Φo c Φ have λ2 = 0,
λaQβ0 = xx Λ x2 Λ x3 Φ 0, and iV, iV' are nondegenerate by (2.10), so A
is commutative associative of degree 2 with respect to one nondegenerate
scalar involution * permitting composition, and at the same time with
respect to another nondegenerate *' which is not a scalar involution and
does not permit composition. D

4.10. REMARK. These last two examples also provide examples of
flexible degree 2 algebras whose norms are not associative as in (3.4). D

In the degenerate norm case, composition is weaker than alternativity.

4.11. THEOREM. The norm of a unitally faithful algebra A with scalar
involution permits composition iff

(4.12) [χ,y,χy] + *[j>, y,A = o

for all x, y e A. For this it is sufficient that A be alternative, and necessary
that A be flexible.

Proof. (4.2) holds automatically by (0.7), and (4.1) holds iff

0 = {N(x)N(y) - N(xy)}l (by faithfulness)

= x{N(y)x*}-(xy)(xy)*

= x{(yy*)x*} -(χy)(y*χ*) (by (0.3), (0.2))

= x[y9 y*9 x*] - [x9 y9 y*x*] = x[y9 y, x] + [x9 y, xy]

(since α* = -α mod Φl). (4.12) implies (3.1) by linearizing y -> y9 1, and
alternativity implies that both parts of (4.12) vanish by Artin. D

A scalar involution with degenerate norm permitting composition
need not be alternative: the composition property tells us nothing about
the behavior of Rad N.

4.13. EXAMPLE. If N permits composition on A, then for any v4-bi-
module Z with az = zα*, z2 = 0 for all z e Z, a e A9 the algebra Af = A
Θ Z has scalar involution (a + z)* = a* — z whose norm N\a + z) =
N(a) permits composition, yet A' need not be alternative (e.g. let A = Φl,
Z = Φzx 0 Φz2 for z[ = z\ = 0, zλz2 = z2 = -z2zx, so z1(z1z2) = z2 Φ 0
= z\z2 . D

5. Cayley elements and bimodules. Suppose M is a bimodule for an
algebra A with involution, i.e. we have unital bilinear products AM c M
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and MA c M. We say an element ra G M commutes with A if [α, m] = 0,

left-associates with A if [α, ft, m] = 0, and * -alternates with yί if [ra, a, ft]

= [#*, m, 6] = [α*, ft*, m] for α, ft e A. We say Λf is commutative, left-

associative, or *-alternative as yl-bimodule if all its elements are.

An element m is a * -element for 4̂ if

(5.1) am = raα*

for all α e A; m is a Cayley element (abbreviated k.) if

(5.2) {άb)m = (αra)ft* = ft(αm)

for all a, b €L A, and is a proper Cayley element (p.k.) if all am remain
Cayley. M is a Cayley bimodule if all its elements are Cayley (hence
properly Cayley).

5.3. PROPOSITION. Let m be an element of an A-bimodule M. Then
(i) m is proper Cayley => m is Cayley => mis a * -element)

(ii) m is a * -element <=> [α, m] = Sk(a)m <=> [m, <z] = mSk(a);

(iii) m z's Cayley ** m is a * -element which * -alternates with A

(iv) m is proper Cayley <=> m ώ Cayley and [A, A, A]m = 0;
(v) m is proper Cayley <=> m generates a Cayley bimodule N = 4̂m = m>4,

ivAίcA becomes anA-* -bimodule under n* = -n;

(vi) ι/ m w α Cayley element then [α, 6, m] = [α, δ]m? [m? ft, α] =

m[α,Z?];

(vii) if M is *-alternative {e.g. if M is alternative and * is a scalar

involution) then m is proper Cayley <=> m is a *-element.

Proof, (i) If m is p.k. then Ira is k.\ if m is k. then setting a = 1 in

(5.2) shows Z?ra = mb* for all ft e ^4. (ii) is just the definition, where

£&(α) stands for a - a*, (iii) If ra is a *-element then

(αft)ra -(am)b* = [α, ft, ra] + α(ftra - raft*) -[</, ra, ft*]

= [a,b9m] -[a, ra, ft*]

and

ft(αra) -(ab)m - ft(raα*) - ra(ft*α*)

- -[ft,ra,α*] -h(ftra- raft*)α* +[ra,ft*,α*]

= -[ft,ra,α*] +[m,6* ,α*] ,

so (5.2) reduces to *-alternativity of ra. (iv) If ra is k. then

(ab)(cm) = {c(αft)}ra,

(α(cm)}ft* = {(cα)ra}ft* = {(cα)ft}ra,

b{a(cm)} = ft{(cα)ra} = {(cα)ft}ra,
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so cm is k. iff [c, A, A]m = 0. (v) «= is clear; for => , note that N = Am =
mA is an ^4-sub-bimodule by (5.1), (5.2), whose elements are k. since m is
p.k.; if we set n* = -n then the *-bimodule conditions (αw)* = ft*α*,
(«#)* = α*«* are equivalent to (5.1). (vi) follows from a(bm) = {ba)m,
(mb)a = (b*m)a = {b*a*)m = m(ab). (vii) follows from (i)-(ϋi). •

An important source of Cayley bimodules are the radicals of norm
forms.

5.4. EXAMPLE. If A has scalar involution then Rad N consists precisely
of all skew *-elements z for A with z2 = 0 (since z + z* = N(z, 1)1,
zα* + αz* = # ( e , z)l, z2 - JV(z,l)z = iV(z)l). If 4̂ is alternative then
Rad TV is a Cayley bimodule consisting of all skew proper Cayley elements
zof^ withz2 = 0by(5.3(vii)).If Φ has no 2-torsion, Rad N = RadiV( , •)
consists precisely of all skew *-elements, and in the alternative case
precisely all skew proper Cayley elements. D

The Cayley conditions have strong consequences about the existence
and products of Cayley elements inside some enveloping algebra for A
and Af.

5.5. THEOREM. Let A be an algebra with involution.
(i) If A has cancellable associators {e.g. contains a Cayley algebra),

then A tolerates no proper Cayley elements', any Cayley bimodule has
M = 0.

(ii) If A has cancellable commutators {e.g. contains a quaternion
algebra), then A tolerates no left-associative Cayley elements, any left-as-
sociative Cayley bimodule has M = 0, and any Cayley bimodule M c A has
M2 = 0.

(iii) If A has cancellable elements Sk{a) {e.g. contains a *-extension of
Φ), then any commutative Cayley bimodule has M = 0, any left-associative
Cayley bimodule M c A has M2 = 0, and any Cayley bimodule M c A has
M 3 = 0.

(iv) In general, ifMczAisa skew Cayley bimodule then 2M4 = 0, and
2M3 = 0 if M is left-associative and 2M2 = 0 if M is commutative {so if A
has no 2-torsion we have M4 = 0, M 3 = 0, M 2 = 0 respectively).

More generally, suppose M is an A-bimodule inside an algebra E.
Suppose m* = -ms is skew, m*is a * -element, mkis a Cayley element, and
mp is a proper Cayley element for A. Then for any distribution of parentheses

(v) If ms, m*, mk e A then

[A, A, A]mp = [A, A]mkmp = Sk{A)m*mkmp = 2msm*mkmp = 0.
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(vi) Ifm^m* e A and mk left-associates with A then

[A, A]mk = Sk(A)m*mk = 2msm*mk = 0.

(vii) Ifms^A andm* commutes with A then

Sk(A)m* = 2msm* = 0.

Proof. It suffices to establish (v)-(vii). If ms is skew in A then
2ms = Sk{ms) e Sk(A), if ra* is a *-element then Sk(A)m* = [A, m*\
= m*Sk(A) by (5.3v), if m^ is /:. then [Λl, 4̂]m^ = [A, A, mk\ mk[A, A]
= [m^, 4̂, ̂ 4] by (5.3vi), if mp is p.k. then [A, A, A]mp = 0 by (5.3iv).
Parentheses are unnecessary in (vi) since mk left-associates, and also in (v)
since by (5.2)

[A,A](mkmp) = {mk[A9 A] }mp, s{m*(mkmp)} = {mk(m*s)}mp,

s{{m*mk)mp} = {{m*s)mk}mp, (sm*)(mkmp) = {mk(sm*)}mp,

{s(m*mk)}mp= {(m*s)mk}mp

where m*s, sm* e [A, A], [A, A]mk + mk[A, A] c [A, A, A] for skew
s. D

Combining this with Example 5.4. we obtain the Kunze-Scheinberg
results on the radicals of degenerate composition algebras.

5.6. COROLLARY (Kunze-Scheinberg [4]). If A is alternative with scalar
involution then

(i) Rad N = 0ifA contains a Cay ley subalgebra, or if A is associative
and contains a quaternion subalgebra, or if A is commutative and contains a
*-extension ofΦ;

(ii) (Rad N)2 = 0 is trivial if A contains a quaternion subalgebra, or is
associative and contains a * -extension ofΦ;

(iii) (Rad N)3 = 0 if A contains a * -extension ofΦ;
(iv) If A has no 2-torsion then (RadN)4 = 0, and (Rad N)3 = 0 if A is

associative, and (Rad TV)2 = 0 if A is commutative. D

In characteristic 2 situations M need not be nilpotent (even if A is
commutative associative), as the following examples show.

EXAMPLE. If Φ has characteristic 2 and A = Λ(JF) is the exterior
algebra on a free Φ-module F of infinite rank, then A is commutative
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associative with trivial scalar involution α* = a, T(a) = 0, N(a) = a2 if
a = αl + m e 4̂ = Φl Θ M for M = Σf=ϊA

k(F) an ideal with m2 = 0
for all m; here M c Rad N (and M = Rad N if Φ contains no nilpotent
elements). M is trivially a Cayley bimodule for A, yet M* =£ 0 since if
{x t} is a basis for .F then 0 # xx Λ Λ xk e Λf* for any k. D

5.8. EXAMPLE. If A is commutative associative with trivial involution
α* = α then all elements are Cayley elements, and any ideal M<A is a
Cayley bimodule; if in addition Φ has characteristic 2 then M is trivially
skew yet we need not have Mk = 0 for any A::̂ 4 = ΦfflΦ, M = 0 BB Φ =
Φe for e2 = e has M* = M for all A:. D

Cayley bimodules are the same as Cayley birepresentations, pairs (/, r)
of maps A -> Endφ(M) of the form la =/(«*), rα = f(a) for a homo-
morphism^ -> Endφ(M) (since la = rfl* by (5.1), and rarb = rab by (mb)a
= (b*m)a = (6*α*)m = m(ab) from (5.1), (5.2)). There is a canonical
construction of cyclic Cayley bimodules for A: if AT is any right ideal of A
containing all associators [A, A, A] we define Czy(A/K) to be the space
A = A /K withal -bimodule structure

(5.9) Cay(A/K): α Ί> = bα, Ί> α = bα* (K<rA, K D [A, A, A\).

The associated birepresentation has lα = Rα, rα = Rα*; these are well-de-
fined precisely when K is a right ideal, and afford a Cayley birepresenta-
tion precisely when f{α) = rα = i?α* is a homomorphism, which is pre-
cisely when [A, A, A] <z K since

Rα*Rb* = i?£*β* <=> (Rα*Rb* — Rb*α*)A = [A, b*9 α*\ c ,ίΓ.

Clearly 4̂ = >4Ϊ is cyclic with generator ϊ . The unique minimal such K is
the αssociαtor ideal Ko = [A, A, A]A = A[A, A, A], and every Cay(A/K)
is a homomorphic image of the universal cyclic Cayley bimodule
Cay(A/K0). The Cay(A/K) are in 1-1 correspondence with the right
ideals of the αssociαtivizαtion s/(A) = A/Ko, hence with the isomorphism
classes of cyclic right modules for the associative algebra s/( A). If A is
totally nonassociative in the sense that Ko = A, s/(A) = 0 (e.g. if A
contains a unital Cayley subalgebra) then A admits no Cayley bimodules.

5.10. THEOREM. The cyclic Cayley bimodules M = Am for A are, up to
isomorphism, precisely, all Cay(A/K) for right ideals A 3 K => [A, A, A].

Proof. We have a linear epimorphism A —> M via f(a) = am. Here
f(ab) = bf(a) by (5.2), so K = Ker/ is a right ideal, and K D [A, A, A)
since f([a, b, c]) = [a, b, c]m = 0 by (5.3iv). Thus we can form the
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Cayley bimodule Cay(A/K), and the induced linear isomorphism

Cay(A/K) -> M is a bimodule isomorphism since

f(a - b)=f(ba)=f(ba) = af(b) = α/

a) = /(ftά*) = /(to*) = α*/(6) = /(ft)* = f(b)a Π

5.11 REMARK. This gives another way of seeing the results (5.5i),
(5.6i): if [A, A, A] c K contains cancellable elements on A then Km = 0
=» m = 0. D

6. The Cayley-Dickson construction. There is a classical way of
generating new algebras with scalar involution out of old ones by adjoin-
ing a Cayley element. If A is a unital algebra with involution and μ a
cancellable (or faithful) scalar

μa = 0 => a = 0 in ̂ 4

μα = 0 => α = 0 inΦ

(note that if A is faithful as in (0.1) then the second condition follows
from the first, μa = 0 => μ(aA) = 0=>α^4 = 0=>α = 0) then we can
construct a new algebra A Θ A with involution (a, by = (fl*,-6) and
product (a, b)(c, d) = (ac + μb*d, da + be*). Letting / = (0,1) we can
write this as

(6.1) C(A9μ) =AΦAI9

(6.2) xy = (a + bl)(c + dl) = {ac + μd*b) + (da + bc*)l,

(6.3) x* = a* - ft/.

We say C(^4, μ) is obtained from 4̂ by the Cayley-Dickson construction.
Note that / is a Cayley element as in (5.2), and that Al is a Cayley
bimodule iff A is associative by (5.3iv). It is easily checked that * is an
involution on C(A, μ) iff it was an involution on A, and that * is scalar on
C(A9 μ) iff it is scalar on A, with

(6.4) N(a + ft/) = N(a) - μN(b)9 T(a + ft/) = Γ(α).

From this and cancellability of μ we see iV is nondegenerate on C(A9 μ) iff
it is nondegenerate on A. Thus we have a doubling process for creating
new scalar involutions out of old ones. The construction depends on the
scalar μ only up to an invertible square, C(A9 μ) = C(A9 λ2μ), or more
generally up to an invertible nuclear norm, C(A9 μ) = C(A, N(v)μ) under
a + ft/ -> 0 + (yft)/ if t> is nuclear and N(v) invertible in Φ.
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If N(x9 y) is any bilinear form on A, we say a subspace B is self-dual
if N'(x) = N(x9 •) defines an isomorphism of B onto B* (e.g. if B is
finite-dimensional over a field Φ and N(x9 y) is nondegenerate on B). In
this case A = 5 θ £ 1 : f i Π 5 1 = 0 b y injectivity, B + B± = A by surjec-
tivity of TV* (N(tf, •) = N(b, •) for some b e 5, so a- b ^ B^). If

= £ then B Φ Bl is again a self-dual subspace inside C(^4, μ), since
5/) = 0 and N(bl9 cl) = μN(Z>, c). The strange product of (6.2) is

necessary for alternativity: such a doubling process goes on constantly in
alternative algebras.

6.5. JACOBSON DOUBLING THEOREM. Suppose A is alternative with
scalar involution whose norm permits composition. If B is a self-dual
subalgebra and I e Bx has N(l) = -μ surjective on 2?, then A contains a
self-dual subalgebra C = C(5, μ).

Proof. We have Bl c 2?x by (4.4), soC = ΰ θ ΰ / i s a subspace which
is again self-dual since μB = B by hypothesis. Also

bl = 0 => 0 = N(bl, Bl) = μ#(fc, B) = #(&, B) =* b <Ξ B Π B± = 0,

so C is linearly isomorphic to C(B, μ). To prove it is algebra-isomorphic
(in particular, is itself a subalgebra), it suffices to establish the rules

c(bl) = (be) I = (W)c*, (W)(c/) = μc*b

of (6.2); but

O = ΛΓ(l,/)=> /* = -/,

0 = N{b91) = W* + »* = ft* - bl

show / is a * -element for B as in (5.1), hence by (5.3viii) is a Cayley
element by alternativity, and the first rules hold: furthermore,

(bl)(cl) = (lb*)(cl) = l(b*c)I = I2{c*b) = +μc*Z>

by the Mouf ang law in A. D

By repeated application of the Cayley-Dickson construction starting
from a * -extension Ω = Φ l θ Φ ω ( ω + ω* = l , l - 4N(ω) cancellable)
— or even from Φl, if \ e Φ — we get a 4-dimensional quaternion alge-
bra, an 8-dimensional octonion or Cayley algebra, and then generalized
Cayley-Dickson algebras of dimension 2" (w > 4). As we shall see below,
these latter are no longer alternative and no longer permit composition,
but they are flexible with scalar involution, and if Φ is a field are simple
(indeed, have no proper 1-sided ideals).
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The general associator in C(A, μ) is given by

(6.6) [x, y, z] = [α + W, c + dl,e+fl] = g + hi for

g=[a,c9e]+μ{{d*b)e-(ed*)b}

+ μ{f*(da) - a{f*d)} + μ{/*(6c*) -(c*f*)b}9

h= {f(ac)-(fc)a} + {(ώ)e*-(<fe*)α}

+ {(bc*)e* - 6(e*c*)} + μ{f{d*b) - b(d*f)},

and the general commutator by

(6.7) [JC, y] = [έi + W, e + d/] = g + A/ for

g = [Λ, c ] + μ(d*b - b*d), h = d(a- a*) + 6(c* - c).

The criteria for C to inherit algebraic properties from A are given by

6.8. THEOREM. If μ e Φ ώ cancellable then:
(ϊ) C(A, μ) has trivial involution <=> A has trivial involution and

2A = 0 .
(ϋ) C(A9 μ) is commutative <=> A is commutative with trivial involution.

(iii) C(A9 μ) is associative <=> A is commutative and associative.
(iv) C(A, μ) is flexible <=> A is flexible, all norms aa* commute with A,

and [α, b, c] = [a, b*9 c*] for all a, b,c e A (if * is a scalar involu-
tion this happens iff A is flexible).

(v) C(A, μ) is alternative <=> A is alternative, all norms aa* commute
with A, and all a + T(#) lie in the nucleus of A {if A has no 3-torsion
or 3 A = A or * is a scalar involution, this happens iff A is associative
with norms in the center).

(vi) C(A, μ) is simple <=> A is *-simple, but not commutative with trivial
involution with γ e C(A), μy2 = 1.

(vii) C(A, μ) is left-simple <^> A is simple, but has no m with μmm* = 1,
[m, A] = [A, m, A] = 0, m(ab) = (mb)a for all a, b e A.

The commuter, nuclei, and center ofC(A,μ) are given by
(viii) Comm(C(^4, μ)) = {a 4- bl\a = a*,b = 6* in Comm(^4) with

bSk(A) = 0}.
(ix) Nt(C(A, μ)) = Nr(C(A, μ)) = {« + W|α e C(^), 6 e Nm(A) Π

Comm(^4) wzϊA c ^ ^ i ) = (^2^)^ ««J (bc2)c1 = 6(c1c2) /or «//

(x)iVm(C(^, μ)) = {α + W| f l e iVm(^) Π C o m m ( i ) , Z> e
Comm(yl) w//A cx(c2b) — c2(c1b), (bc2)cι =
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(xi) N(C(A, μ)) = {a + bl\a, b e C(A) with b[A, A] = 0}.
(xii) C(C(A, μ))= {a + bl\a = a*,b = b* e C(Λ) wirt Z>5A:(̂ ) = 0}.

//Comm(Λ) = C(Λ) /Λew also Comm(C(,4, μ)) = C(C(.4, μ)).

Proof, (i) is clear from (6.3). (ii) follows directly from (6.7). (iii) =>
follows from [α, b, I] = [α, Z?]/, <= from (6.6).

For (iv) we set e = a, f = 6 in (6.6) and recall that μ is cancellable to
see [x, y9 x] = 0 for all x, j> in C(A, μ) iΐΐA is flexible,

(da)a* -(da*)a = 09

« +(bc*)a* - ft(α*c*) - 0,

(d*b)a -(ad*)b + b*(da) - a{b*d) = 0,

which can be rewritten (using flexibility) as:
(iv.l) A is flexible.
(iv.2) [d9 a\ a] - [d9 a, a*] = d[af a*].

(iv.3) [c*, b, b*] - [c*9 b*, b] = [c*, b*b].

(iv.4) [6, c, fl] - [b9 c*? α ] = b{[a9 c] + [c , β ]}.
(iv.5) [a, έ/, 6*] - [a9 d*9 b] = [α, ί/*fr + ft*rf].

Linearizing b->b,\ in (3) we see 0 = [c*,T(fc)], so all traces Ύ(b)
commute with A thus

[c*, α*] = [-c, -α] = [c, α] = -[a9 c],

so (4) becomes [6, c, α] = [fe, c*, α*]; thus all left sides of (2)-(5) vanish,
as do the right sides of (2) and (4), while the right side of (5) is a
linearization of that of (3), which in turn is just the condition that all
norms bb* commute. (If * is scalar then automatically all norms in Φl
commute, and a* = -αmodΦl, so automatically [b, c*, α*] = [b, c, a]9

hence in this case flexibility alone suffices).
For (v) we set c = α, d = b in (6.6) to see [x, x9 y] = 0 for all x9 y

(hence, via the involution, [y9 x9 x] = 0 and C is alternative) iff A is
alternative,

(b*b)e-(eb*)b = Q,

f(b*b)-b(b*f) = O9

(ba)e* ~{be*)a +(&α*)e* - b{e*a*) = 0,

f*(ba) - a{f*b) +/*(Z?α*) ~{a*f*)b = 0,
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which can be rewritten (using alternativity, and the fact that by flexibility
all norms and traces commute, so bb* = b*b) as:

(v.l) A is alternative and all norms aa* commute with A.
(v.2) [e,b*,b] = O.
(v.3) [b,b*,f] = O.
(v.4) [b,T(a) + a,e*] = 0.
(v.5) [f\b,T(a) + a] = 0.

Here (4)-(5) is the condition that all a + Ύ(a) lie in the nucleus of A, in
which case (2)-(3) follow from alternativity ([e, b*, b] = [e> b* + 2b, b]
= [e9 b + Ύ(b)9 6] = 0). (If * is scalar then Ί(a) e Φl and hence all a are
nuclear, A = iV is associative; since (T(α) + α} + (T(α*) H- α*} = 3T(α)
is nuclear, we see 3 a is nuclear, [3̂ 4, ̂ 4, A] = 0, so if 3A = A or if 4̂ has
no 3-torsion then [A, A, A] = 0 and again A is associative.)

For (vi), for C to be simple certainly A must be * -simple since if
B<A were a proper * -ideal (6.2) shows B + Bl would be a proper ideal in
C(A9 μ). Also 4 cannot have * = Id, μγ 2 = 1 since then A(l + γ/) is
easily checked to be a proper ideal in C(A9 μ). Now suppose yί is
* -simple and 2 is a proper ideal in C. When 4̂ is * -simple, μ Φ 0 in Φ is
invertible in the centroid, so μ̂ 4 = A. From (6.2) and μ̂ 4 = A we see
2 Π ̂ 4 is a * -ideal in 4 (note /(α/) = μ#*) which does not contain 1, so
2 Π A = 0, hence ̂  Π ̂ / = 0 too (since 1(2 Π Al) c ^ n 4̂ = 0 and / is
injective). Thus the elements of 2 have the form b + /(&)/ = g(c) + c/
where/, g are inverse bijections between B = {b e ^4|some b + dl ̂  2}
and C = {c e yί|some α + c/ e S } . Now from (6.2) £<U, C<r^4, 5 +
5* c C, μ(C + C*) c B, so if ^ is nonzero we have B Φ 0, the *-ideal
B + B* must be 4, so C = A, B D μ^ = ̂ l, and 5 = A too. But (6.2)
says/, g: A -> A satisfy

f(ab)=f(b)a, f(ba)=f(b)a*, g(ab) = μa*f(b),
so/(I) = m satisfies/(α) = ma = ma*,f(a — a*) = 0 => α* = α and^4 is
commutative with trivial involution, m(ab) = (mb)a shows m = γ is in
the center of A (center = left nucleus for commutative algebras) with
1 = /(#(!)) =

 /(/AW)
 = μ^ 2 = μy2, and this is precisely the case we ruled

out in (vi).

For (vii), for C to be left-simple certainly A must be simple, since if
B<A were a proper ideal then (6.2) shows that B + B*l would be a proper
left ideal in C. Also, a direct calculation shows that if m e A satisfies
[a, m] = [a, m, b] = 0, μmm* = 1, m(ab) = (mb)a for all α, b e A then
μra{(Z>*ra*)α} = αZ>* and so 2= A{1 + m/) is a proper left ideal in C.
Now suppose A is simple, so μ Φ 0 forces μA = A, and <̂  is a proper left
ideal in C. Then 2 Π A is an ideal in A (clearly left, and right since
(Al){l(d)} = μdA = dA) which doesn't contain 1, so 2 Π ̂ 4 = 0, hence
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again 3) Π Al = 0. Once more 2 consists of all b + cl where c = f(b),
b = g(c) for bijections between B and C as above. From (6.2) B<ιA,
B* c C, CM c ί , s o C = 5*, BA a B and 5<U; by simplicity 5 = C
= τ4 if 2 Φ 0. Again (6.2) says

f(ab)=f(b)a9 g(ab*) = μf(b)*a,

so/(I) = m has

/(α) = ma, m(ab) = (mί>)α,

g(α) = μm*a = μam*, (ac)m* = (cm*)a,
so

[m*, ^] = 0 => [m, ^] = 0, 1 = g(/(l)) = g(m) = p m * ,

(fc/w)a = (w*)β = m{ab) = {(ί>*α*)m*}* = {(«*m*)Z>*}* = b{ma),

so [6, w, a] = 0, and m is one of the elements forbidden by (viii).
For (viii)-(xii) recall the definitions (0.10) of commuter and nuclei,

(viii) follows immediately from (6.7) (note d*b = bd = bd* => b e
Comm(Λ)). The sufficiency of the conditions in (ix)-(x) follows easily
from (6.6); for necessity note

a + bl e Nε(C) « f l ) W e Nε(C);

a ^

a e J , ( )

=* a e Comm(/ί) n iV,(Λ) Π Λ (̂

α eiVm(C) => 0 = [c, α,/] = [c, a\l => a e Comm(^) ΠiVm(yί);

W e Λ^(C) => 0 = [W, c/, /] = μ[c*, b]l=>be Comm(y4);

0 = [bl,cΐ,c*] = [W,c2*,cf/]

=» 0 =

(so bl e iVm(^f)) and c x M ) = (

similarly,

W e JVm(C) =* 0 = [c/, W, /] =

so

- 0 = c2{bcx) - φ2b) = c*2{b*ct) - cϊ(b*c*2)

=» c2(cjί>) = cλ{c2b), {bcx)c2 = (bc2)cv

(xi) follows by combining (ix) and (x), since for commuting b c2(cφ) =
ci( c2^) = (C2ci)^ implies b e iVr(̂ 4). (xii) follows by combining (viii) and
(xi), since bSk(A) = 0 => fe[^, ̂ ] = 0 for central b (b[x, y] = Z»(xy) -
b(yx)* = bx*y - bx*y* = x*6( j - y*) = 0). D
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6.9. COROLLARY. If A is a generalized Cayley-Dickson algebra of

dimension 2n obtained from Φl (or a * -extension) by repeated application of

the Cayley-Dickson process, then

(i) Comm(Λ) = C(A)9

(ii) C*(A) = Φl ( C , μ ) = { c e φ ) | c * = c},
(iii) C(A) = Φl ifn > 2,
(iv) N(A) = Φl ifn > 3.

Proof, (i) Comm(^40) = C(A0) = Ao for Ao of dimension 1 or 2, so by
(6.8) (viϋ)-(xii) this continues to hold for all A built up from Ao. (ϋ)-(iϋ)
hold by definition if n = 0 {A = Φl) or n = 1 (A = Ω); if true for « - 1
and « > 2 then A = C(B) where 5 of dimension > 2 contains cancellable
SA:(&), so (6.8)(xii) shows C(A) = C*(5) = Φl (by induction (ii)), and so
C(A) = C*(,4) = Φl is true for n. (iv) If « > 3 then A = C(5) where 5
of dimension > 4 contains cancellable commutators, hence (6.8)(xi) shows
N(A) = C(J5) = Φl(by(ϋi)). D

6.10. REMARK. R. Erdmann [3] gave a lengthy proof that generalized
Cayley-Dickson algebras over fields of characteristic Φ 2 contain no proper
one-sided ideals. The above simple proof works for arbitrary scalars, and
doesn't require starting from a Cayley algebra. Note that if commuting
elements are central (as in all generalized Cayley-Dickson algebras, using
(6.9)(i)) then the forbidden m's in (6.8)(vii) are precisely all central γ with
μγγ* = 1, y[A, A] = 0, hence γ invertible forces [A, A] = 0 and A is
commutative. Thus the condition (vii) reduces to: A is simple but not
commutative with γ e C( i ) , μγγ* = l (the same as in the (vi) except
that the involution may be nontrivial). D
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