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AN ISOPERIMETRIC INEQUALITY FOR SURFACES

STATIONARY WITH RESPECT TO AN ELLIPTIC

INTEGRAND AND WITH AT MOST

THREE BOUNDARY COMPONENTS

STEVEN C. PINAULT

Let M be a connected C2 two dimensional submanifold with
boundary of R3, with at most three boundary components. Let Φ be a
positive even elliptic parametric integrand of degree two on R3 ([5]), and
suppose that M is stationary with respect to Φ. In this paper we show
that there is a constant C(Φ) such that M satisfies the isoperimetric
inequality

(1.1) L2>C(Φ)A,

where L is the length of ΘM and A is the surface area of M. In the proof
we also prove a lemma that M satisfies the inequality

(1.2) length( dλf) > C(Φ) diameterM.

In the case that M is simply connected (1.1) follows for C(Φ) = 4π
from the fact that such a surface must have nonpositive Gauss curvature
[4]. In the case that 3M has two components and Φ is the parametric area
integrand the inequality (1.1) with C = 4π has been proven by Osserman
and Schiffer, [9]. More generally, an inequality of the form (1.1) has been
proven for area stationary k dimensional varifolds on R* by Allard, [2].
For the case that M has two or three boundary components and Φ is
different from the area integrand the results (1.1), (1.2) are new. We note
that this result also allows us to obtain lower bounds on area for such a
manifold M using (1.1) together with the techniques of [1], [9]. For a
review of other results on the isoperimetric inequality see the paper by
Osserman [7].

In many isoperimetric inequality proofs, the equation

(1.3) 2A = -2 [ (x - c) H 4- ί (x - c) v

plays a central role, where c e R3, H is the mean curvature vector of M,
and v is the exterior normal of dM with respect to M. For example, see
Osserman [7], pp. 1203-1204. In the present work a similar equation is
used where H is replaced by a weighted combination of the principal
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curvatures of M with coefficients determined by D2Φ. A barrier argument

is then used which makes use of the ellipticity of Φ.

2. THEOREM. Suppose Φ is a positive, even, elliptic parametric integrand

of degree 2 on R3. Then there is a constant C(Φ) with the following property.

Suppose M is a bounded connected C2 two dimensional submanifold with

boundary ofR3, stationary with respect to Φ. Suppose dM = Cλ U C2 U C3,

where each Ct is connected. Then we have the isoperimetric inequality

(2.1) L2 > C(Φ)A

where A = area M, L = length dM. Note: The case that M has two boundary

components follows by setting C3 = 0.

Proof. Define Lφ: R3 -> Hom(R3,R3) by requiring that Lφ(n)(v) =

Φ(n)v — vΦ(«) y«. By Allard [3] we have the following two formulae

for the first variation of M with respect to Φ.

(2.2) δ(M; Φ)(g) = ί Dg(x) Lφ(n(x)) dH2x
JM

whenever g: R3 -> R3 has compact support in R3, where n is a normal

vector field on M. Integrating by parts yields the formula

δ(M;Φ)(g)

(2.3) = .? /M

 kM( u^2> D2Φ(n(x)))g(x) Λ ( Λ ) dH2x

[ (nι(x)9Lφ{n(x)))'g(x)dHιx,

where k^ ut are the principal curvatures and directions, respectively, to M

and nλ is the exterior normal of dM with respect to M. By our hypothesis

that M be stationary,

(2.4) Σ ^ (

for all i E M, so that

(2.5) δ(M;Φ)(g) =
dM

Note that since (2.3) is linear in g, and Φ is even, we need not assume, due

to the existence of partitions of unity, that M is orientable. Further, by

using a suitable cutoff, since M is bounded we can apply the formula to
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the vector field g(x) = x. Noting that Dg(x) Lφ(n) = 2Φ(w); we derive

from (2.5) the equation

(2.6) l\ Φ(n)dH2= Σ ί (»i> Lφ(n)) • xdHι

JM i=1

Jc,

= Σ f (n^L^n^-ix-a^dH1

• Λ J r

3

+ Σ ί {n^Lφ{n))'aιdHι

i=ιJQ

for any ai e R3, / = 1,2,3. We choose at to be the center of mass of Ci9

i.e.

(2.7) [
Jc,

Defining

λ = sup||Lφ(n
infΦ(w) '

where the indicated sup and inf are over unit vectors u, w of R3, we derive

from (2.6)

3 3

(2.8) 2A < λ Σ ί \x ~ a\dHγx + λ Σ k l 4 ,
. - C 1

where L = length Cf . Using (2.7) and a Wirtinger inequality argument

(for details see Osserman [7], p. 1204) we can derive

(2.9) ί |JC — at\dHιx < ^-.

Combining (2.8) and (2.9) we obtain

3

λ

(2.10) 2A < ̂ -(L\ + L2

2 + Lj) + λ Σ k lA

Suppose Lx > L2, L3 and choose coordinates so that aλ = 0. Then from

(2.10) we derive

^-A <L\ + L\ + L] + 2ττ(\a2\L2 4- \a3\L3)

< C{L\ + L\ + L\) + 2τr{\a2\L2 + \a3\L3)
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for any C > 1,

= C(L2 - 2LXL2 - 2L2L3 - 2LλL3) + 2π(\a2\L2 + | Λ 3 | L 3 ) .

Let r = L1/2τr, d = max{|(Z; — αy|} > max{|α2|> \a?\} Then for any
C > 1 ,

(2.11) L2-^A> 4ττ(L2 + L3)(r - ^ ) + 2L2L3.

It now remains only to prove that for some C = C(Φ) large enough, we

always have the bound

(2.12) d < 2 O .

The proof of (2.12) will be contained in the lemma of §3.

3. LEMMA. Suppose Φ satisfies the hypotheses of the theorem o/§2. Then

there is a constant C(Φ) with the following property. Suppose M is a

bounded connected C2 two dimensional submanifold with boundary of R3,

stationary with respect to Φ. Then M satisfies the inequality

(3.1) length(ΘM) > C(Φ)diam(M).

Proof. We begin by using a barrier argument to prove (2.12). Since M

is stationary, by (2.4) we have

By the ellipticity of Φ, this places upper and lower bounds

for some ε = ε(Φ). We now construct a hypersurface N with principal

curvatures cλ and c2 satisfying

o

We construct N in such a way that either (2.12) holds or by a rigid

translation of N we must be able to achieve an interior point of tangent

contact between M and N, in such a way as to contradict (3.3) and (3.4).

Since Ct is a closed connected curve we have 2 diam Ct < Lt < Lv so

that

3 3

(3.5) 3Mc (J^ί^diamC,.) c
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We assume each at lies in the xy plane, so that by the convex hull property
[8] we know that M c {(x, y9 z): \z\ < πr}. By definition of d, we know
that for one of the ai9 say aj9 the other two at are not in B(aJ9 d/2). For
sake of exposition we assume without loss of generality that 7 = 1. We
define hypersurfaces N(θ), each identical to within a rigid motion. For
each θ G [0,2ττ], N(θ) will be the inside half of a torus of minor radius
s > πr and major radius R = d/4, R > s:

N(θ) = aλ +(Rcosθ +(R + scos w)cos u,

R s inθ + (R + scos u) sin v, s sin u)

for -π < v < 7r, π/2 < u < 3ττ/2. For each θ, N(θ) has principal curva-

tures

_ cosw _ 1
1 R + s cos u' 2

 Λ

(see [6]), so that

c x s

c2 ~ d/4 — s '

Since 22? = d/2, s > πr, and a2, a3 are not in B(av d/2) we have that as

θ ranges over [0,2π\ N never intersects dM and dN never intersects M.

Further, we can choose an initial value θ0 such that N(θ0) Γ) M = 0.

Thus since M is connected there is a first value 0X > θ0 for which

N(θι) Π M Φ 0. Since 0X is the first such value, the intersection must

include an interior point p of both surfaces such that TpN(θ1) = TpM.

N o w if

< 3 6 > dTi^Γr<ΪTΊ'
we can then choose s > πr such that

c2 1 + ε ~ k2 '

Orienting the normal of TpN(θι) positive in the direction of decreasing 0,
from this we conclude that there are directions in TpM such that the
corresponding normal curvature in M is nonpositive while the normal
curvature in the same direction in N(θ) is positive. This contradicts the
assumption that θλ is the first θ > θ0 for which N(θ) Π M Φ 0. From this
we conclude that M cannot be connected if (3.6) holds, and so (2.12) is
proven with C = π(4 + 2ε).

This establishes the isoperimetric inequality. To finish the proof of
the lemma, we note that length(3M) > Lλ = 2πr, and by the convex hull
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property and (3.5) diam( Af) < 2πr + d. Thus, by (2.12), we have

(3.7) diam(M) < 2(π + C)r < Λ ^ - ^ length(ΘM).
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