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ON RADICALS AND PRODUCTS

MANFRED DUGAS AND RUDIGER GOBEL

An Abelian group G is called cotorsion-free if 0 is the only pure-in-
jective subgroup contained in G. If G is a cotorsion-free Abelian group,
we construct a slender, fr^-free Abelian group A such that Hom(Λ, G) =
0. This will be used to answer some questions about radicals and torsion
theories of Abelian groups.

0. Introduction. In this paper we will consider torsion free abelian
groups from I. Kaplansky's point of view: "In this strange part of the
subject anything that can conceivably happen actually does happen", cf.
[K, p. 81]. This statement which is supported by classical results holds in
an even more spectacular sense which was not expected at this time. There
are many results on torsion free abelian groups which are undecidable in
ZFC, the axioms of Zermelo-Frankel set theory including the axiom of
choice. The first suφrising result of this kind after years of stagnation was
Shelah's solution of the famous Whitehead problem [SI]. In this paper
Shelah also constructed for the first time arbitrarily large indecomposable
abelian groups, thus improving classical results of S. Pontrjagin, R. Baer,
I. Kaplansky, L. Fuchs, A. L. S. Corner and others, compare [Fu2, Vol. II]
and [K]. Indecomposable abelian groups are necessarily cotorsion-free
with only a few exceptions. These are the cyclic groups of prime power
Zp«, the Prϋfer groups Z(/?°°), the group of rational numbers Q and the
additive group Jp of /?-adic integers. A group is called cotorsion-free if and
only if it contains only the trivial cotorsion subgroup 0, cf. [GW1].
Remember that C is cotorsion (in the sense of K. H. Harrison) if
Extz(Q, C) = 0. From simple properties of cotorsion groups we conclude
that a group G is cotorsion-free if and only if G is torsion-free (Zp $£ G),
reduced (Q £ G) and Jp $t G for all primes p, cf. [GW1]. For countable
groups cotorsion-free is the same as reduced and torsion-free. A. L. S.
Corner's celebrated theorem indicates then that each ring with a countable
and cotorsion-free additive structure is the endomorphism ring of some
(cotorsion-free) abelian group, cf. [Ful, Vol. II]. This result was extended
by the authors [DG2] to arbitrary rings with cotorsion-free additive groups
which are then realized on arbitrarily large cotorsion-free abelian groups.
Using rings without non-trivial idempotents, indecomposable groups of
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any size can be obtained and the aforementioned result becomes a trivial
consequence of [DG2]. However, using other elementary ring constructions
this result supports Kaplansky's point of view in many aspects, e.g. there
are many new different counter examples for I. Kaplansky's test prob-
lems. Similar results which are in many cases even undecidable im ZFC
have been derived in [DG1], [EM], [Me], [DH1] and others.

One of the questions "close" to results undecidable in ZFC is related
with "rigid systems". A class {A^ i e /} of abelian groups is semi-rigid if
Hom(v4/? Aj) Φ 0 Φ Hom(Aj, At) implies i = j for any /, j e /. This
class is rigid if already Hom(yl2, Aj) Φ 0 implies i = j . The class is proper
if / is not a set. M. Dugas and S. Herden [DH1] constructed proper rigid
classes of (indecomposable) abelian groups using GδdePs axiom of con-
structibility V = L. Such a result cannot be expected in ZFC alone as
follows from the Vopenka principle. However, at least semi-rigid proper
classes exist in ZFC as recently shown by R. Gόbel and S. Shelah [GS].
This result is based on a construction of arbitrarily large cotorsion-free
abelian groups A with the property that U = A for any subgroup U c A
with \U\ = \A\ and A/U cotorsion free.

All these constructions are highly sophisticated using transfinite in-
duction on generating elements. The very heart of this paper is a similar
kind of result based on a much simpler construction. Due to the elemen-
tary construction of the groups (4.2) we are able to pose stronger condi-
tions on their structure, which allow us to answer some open problems
and give new solutions to some already settled problems. These extra
conditions are the properties N1-free and slender. A group is called SΓfree
if all its countable subgroups are free. The most popular non-free S1-free
groups are products Z* of the integers, in particular the Baer-Specker
group Z s°. The proof that Z*° is fc^-free and not free is due to R. Baer
and E. Specker, cf. [Ful, Vol. I]. We will use R. J. Nunke's well-known
characterization of slender groups as a definition. Hence a group is
slender if and only if it is cotorsion free and if it does not contain a copy
of the Baer-Specker group. Then we have the following quite powerful

THEOREM. // G is a cotorsion-free abelian group and λ a strong limit

cardinal of cofinality ω with \G\ < λ, then we find an ttλ-free and slender

abelian group A of size \A\ = 2 λ such that Hom z (yl, G) = 0.

There is a proper class of the required cardinals λ and hence we have
a proper class of slender and fr^-free groups A with Hom(^4, G) = 0.
Moreover there exist a proper semi-rigid class of NΓfree and slender
groups.
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First we obtain a new and totally different solution for Problem 78b
in L. Fuchs [Ful, Vol. II, p. 184]. This problem was already solved in
[GW2] and the answer is as follows. There does not exist a set of abelian
groups such that all slender groups can be obtained by constructing
inductively extensions, direct sums and subgroups. Second we obtain a
new solution for a problem stated in [GW2]. This problem was originally
solved in [GS] and the answer is as follows. The class of cotorsion-free
abelian groups is not singly cogenerated as a torsion theory. This means
that it is not possible to obtain all cotorsion-free groups by constructing
inductively extensions, cartesian products and subgroups from a given set
of groups.

Besides these new proofs of older results we simultaneously obtain
answers to some open problems which are generally known and may be
found in [FOW1, 2] for instance. These problems are related to torsion
theories and radicals. A pair (&*,&) of classes of abelian groups is a
torsion theory if the classes ̂ and J^satisfy "similar" closure properties as
the pair (torsion abelian groups, torsion free abelian groups). A precise
definition is given in the books [St] or [L] and at the beginning of §4. The
main result extends [DH1] and [GS]. It says that in a model of ZFC
without measurable cardinals [i.e. ZFC 4- $ Nm ( = first measurable cardi-
nal)] the torsion theory (T3P, strongly cotorsion-free) is neither singly
generated nor singly cogenerated. The existence of such torsion theories in
ZFC 4- $ Nm was unknown. By TέP we denote the torsion class generated
by 0* = \TLK/ΊJ<K, K any regular cardinal} compare §1. Strongly
cotorsion-free groups are special cotorsion-free groups and may be de-
fined as the torsion-free class associated with Γ^9, cf. §4.

Torsion theories naturally lead to radicals. They are considered first
in §2. Our main result is (2.4). We will show that radicals related to
strongly cotorsion-free groups commute with products of size less than
Kw. This does not hold for the more general class of cotorsion-free groups
and the radical Rz related to the integers does not commute with products
of size S m . Here we will use results of J. Los and answer a question which
goes back to B. Charles, compare also [Ful, Vol. I, p. 71, Problem 7].

In §5 we will investigate the Chase radical vxA = Π{U c A, A/Uis
Sj-free} of an abelian group A. The Chase radical has a related torsion
theory ({A^v^ = A}, Xrfree). This is singly generated (5.1) but not
singly cogenerated. This was another open problem answered by the
Theorem above. Finally we will compute some radicals explicitly in §6.

1. Definitions and notations. ZFC = Zermelo-Frankel set theory
and axiom of choice, K will always denote a cardinal and κ+ its successor
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cardinal. Some special cardinals are
N 0 = ω = first infinite cardinal,
I X\ = cardinality of a set X,
S m = first measurable cardinal.

The axiom "0# exists" can be found in T. Jech [J, p. 339]. It is
equivalent to each of the following two statements (Kunen, cf. [J, p. 339]).
(1) For a limit ordinal λ, the model ( L λ , P) has an uncountable set

of indiscernibles.
(2) There exists a nontrivial elementary embedding of L into L.

Let {Aiy i e K] be a family of abelian groups. We let Y\i^κAi =
(cartesian) product. If /<E ΠieκAi9 then [/] = {/ e /c, /(/) = / Φ 0} is
the support of /. Π / e κ ^ί / = Aκ if ^f. = A for all i e /c. Some special
subgroups are

/ e K

and in particular

Let Aκ = Aκ/A <κ and in particular Zκ = ZK/Z<κ.
Let F be a subfunctor of the identity if FA c 4̂ for all abelian groups

4̂ such that if a: A -> B is a homomorphism, then (i 7 ^)" c FB. If
{C// c Ai9 i e K}, we identify Π / e κ ί7z c Π / e κ >4f. in the natural way. We
say that F commutes with Πκ (with products of size < /c) if FΠieκ At =
Πi^κFAi for all families {Ai9 i e K) of abelian groups.

Let JC|J> denote that x divides y.
If/: ΛΓ -» y and Γ c l , then/ Γ ΛΓ = /^denotes the restriction map.

2. Singly generated radicals. Let 3Γbe a class of groups. With every
abelian group A we associate a subgroup R%A = Πφ.^^^e^ker φ. This is
a well-known construction and ϋ^-is a subfunctor of the identity compare
L. Fuchs [Ful, Vol. I, §6] and §1. Using some terminology of Philip Hall
this functor is R&= 3ΓQ and the groups on which R% operates as the
identity are called ^perfect, compare D. J. S. Robinson [Ro, part 2], R.
Baer [B, p. 287] and [Gl]. If 3T= {X) is a singleton, we write R^= Rx

and JR x is then called a singly generated radical compare T. H. Fay, E. P.
Oxford and G. L. Walls [FOW2]. Observe that R^is always a radical, i.e.

A) = 0.
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Since R% is a subfunctor of the identity, R% commutes with direct
sums, i.e. -R jr(φ/6/^4J.) = φ / e / i ϊ j r^[ J .; compare L. Fuchs [Ful, Vol. I, p.
29, Exercis 9]. Therefore the natural question arises under which condi-
tions R% commutes with direct products. This is a special case of Problem
7 in the book of L. Fuchs [Ful, Vol. I, p. 71]. [FOW1] show that Rx

commutes with countable products if and only if X is stout in the sense of
[Gl]. This is equivalent to saying that X is cotorsion-free. Recall that X is
cotorsion-free iff X has only the trivial cotorsion subgroup 0 or equiva-
lently X is reduced, torsion-free and has no subgroup isomorphic to the
/7-adic integers Jp, compare R. Gόbel [Gl, p. 41 and p. 49, Theorem 4.1],
R. Gobel and B. Wald [GW1, p. 210, Folgerung 4.2]. Further equivalent
conditions may be found in M. Dugas and R. Gobel [DG1]. In the same
paper [FOW1] say that it is an open problem whether Rx commutes with
arbitrary products. In order to answer this question we will use the
following

DEFINITION 2.1. A group X is strongly cotorsion-free if and only if
Hom(Zκ, X) = 0 for all regular cardinals K > 8 1 with K < S m . Recall our
notation Zκ = Z κ/Z< ι c .

A simple application of a well-known result of S. Balcerzyk shows
that Hom(Zω, X) = 0 if and only if JΠs cotorsion-free, compare R. Gobel
and B. Wald [GW1, p. 213, Satz 4.6]. We will see in (2.3) that strongly
cotorsion-free implies cotorsion-free. Strongly cotorsion-free is the same
class as all groups which are μ//c-reduced for all cardinals μ e K in B.
Wald [W2]. We have the immediate observation that every countable
cotorsion-free group is slender. It follows from B. Wald [W2, Theorem
3.4], that cotorsion-free groups of cardinality ϋ1 are also strongly cotor-
sion-free in V = L.

Sometimes we use the following homomorphism μ: Z*m -> Z which is
induced from a σ-additive measure μ: &(#m) -* {0,1}. If/=(/)),• e K ^
Z*" and z~x = {/ e Nm,/; = z) for z e Z , then Km = O^zZ"1. Hence
there is precisely one Z G Z such that μ(z~ι) = 1. Therefore

(2.2) £(/) = * iff μ ( ^ 1 ) = l

defines a homomorphism from ZNm onto Z.
Since Xw is measurable we have J U ( Z < 8 W ) = 0 and μ induces an

epimorphism from Zs> to Z. Hence we see that Hom(Zx , X) = 0 implies
m m

X = 0. This explains our assumption K < Nm in (2.1).

PROPOSITION 2.3.

(a) Strongly cotorsion-free implies cotorsion-free,
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(b) residually slender implies strongly cotorsion-free,

(c) slender implies residually slender.

Proof, (a) If 0 Φ C c X is cotorsion and X is strongly cotorsion-free

then we may assume w.l.o.g. that C is algebraically compact. Take any

pure and countable subgroup A of Z κ (which always exists). Since K is

regular and K > N1 ? also Zκ is SΓfree as follows from B. Franzen [Fr] or

B. Wald [Wl]. Therefore^ is free. We remark that this can also be derived

from the Wald-Los-Lemma 2.6 which implies A Q Zκ. Then A is free by a

result of Baer and Specker, cf. L. Fuchs [Ful, Vol. I, p. 94, Theorem 19.2].

Therefore we find a non-trivial homomorphism from A into C. Since A is

a pure subgroup of TLK and C is pure injective, this homomorphism

extends to a non-trivial homomorphism from Z κ into X which is excluded

by Definition 2.1.

(b) and (c). Here we only have to recall a theorem of J. Los and the

definition residually-^*: A group Xhas this property if

Γ\{UQX,X/U^3T} = 0.

This is equivalent to say that X is a subgroup of a product of ^groups. If

X is residually slender and 0 # σ G Hom(Zκ, X) for some cardinal K,

then we find a homomorphism π e Hom(^ί, S) for some slender group S

such that om Φ 0. From the theorem of Los we obtain that K > S m ,

compare L. Fuchs [Ful, Vol. II, p. 161, Theorem 94.4(ii)]. Therefore X is

strongly cotorsion free.

THEOREM 2.4.

(1) // 2C is a class of strongly cotorsion-free abelian groups, then R%

commutes with Y\κfor all cardinals K < S m .

(2) If K is a regular cardinal, K > S o , there is a cotorsion-free group

G = G(κ) of size \G\ = 2K+ such that RG does not commute with Πκ+. More

precisely there are groups Ga (a e κ+) with RGGa = Gafor all a e κ+ and

* c Π α e κ + Ga Φ Π α e κ + Ga.

From (2.3) and (2.4) we have an immediate

COROLLARY 2.5. If & is a class of residually slender groups, then R%

commutes with Y\κfor all cardinals K < S m .

REMARK. (2.4)(1) and (2.5) improve Theorem 3.2 in [FOW2] which is

the case K = S o . Part of (2.5) is contained in [Ga]. (2.4)(2) answers an

open problem, mentioned in [FOW2].
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Proof of {2 A).
(1) will be proved by contradiction. Assume that K is a minimal

cardinal such that (1) does not hold.
First we will show that K must be regular and K > tf1# If K is not

regular, then λ = cf(κ) < K. Hence K = U α e λ / α for some sets Ia of
cardinality |/J < /c. We conclude

from the minimality of K. Therefore K must be regular. If K = Xo, then i ? x

commutes with Π«o for all cotorsion-free groups X as shown in [FOW2,
Theorem 3.2]. Therefore

i- Π T\RχAi
ίeK0

= π ( n RXA] = π

and (1) is shown for K = Xo. Hence fc > N1#

Since K is a minimal counterexample, we find groups Ai such that
Π ^ . Λ J Λ # Λ ^ Π ^ ^ , . However Λ^Π^.^i, c Π i e , M i holds triv-
ially and so we find a ^TliGκR^Ai\R^Yli^κAr By definition of
Ra TlieκAi9 there is a homomorphism φ: TlieκAi -* Γ̂ for some l e i
such that φ(α) # 0. If x e Π ^ i ? ^ ^ , then x e Π / e λ Λ ^ , for some
λ < fc. From the minimality of K we have i?^Π / e λ Ai = Π / e λ i?^^4, and
we conclude φ(x) = 0. Therefore φ(K) = 0 where îΓ = Π j ^ Λ^^, and φ
induces a homomoφhism φ: ΠiGκR^Ai/K -» X with (α 4- ΛΓ)φ # 0.
Define σ: Z κ ~> Π i € l ί M i bY (*«)?« = (β,Λ)/6« w h e r e ^ = (^)ieκ
Then σφ: Z κ -* Z and (!)?!* = (« + # ) φ ^ 0. Since ^ ^ = 0, also
(Z< < c) σ φ = 0. Hence σφ induces a non-trivial homomorphism from Zκ into
X. This contradicts that X is strongly cotorsion-free.

(2) If K is regular or K = Ko, we choose an orthogonal system (Gα,
α e κ+} of groups such that \Ga\ == K. By orthogonal we understand
Hom((?α, G )̂ = 0 for all different α, β e ιc. If »c = No such a system was
constructed by R. Baer, using rank-1 groups, compare L. Fuchs [Ful, Vol.
II, p. 110]. Systems for cardinals K less than the first strongly inaccessible
cardinal are due to A. L. S. Corner and L. Fuchs, compare L. Fuchs [Ful,
Vol. II, p. 130, Theorem 89.2]. Later L. Fuchs [Fu2] constructed orthog-
onal systems for K < Nw and independently S. Shelah [SI] proved the
existence of such systems for all regular cardinals K.

Now choose G = G(κ) = Π α e κ + GJYY^^ Ga and let m denote the
canonical epimorphism from Πα€ΞίC+ Ga onto G. Then we will use the
Wald-Los-Lemma which is shown below.
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If φ: Gβ -> G is any homomorphism, there exists γ: Gβ -> Π α e κ + Ga

such that yπ = φ. Since {Ga, a ^ κ+} is orthogonal, we have G$ Q Gβ c:

Π«ίκ + Gα and therefore φ = yπ = 0. We conclude i?GGα = Ga for all

α e /c from the definition of i?G. On the other hand, by definition of G we

have

Π G c Π <KG .
X X a I — X X a

We combine these results and conclude

RG[ I 1+

 Gaj £ 11 +

 Ga C I 1+

 Ga = I 1+ ̂ G 6 *

and (2) is shown.

The following lemma was used in (2.4)(2). A special case was first

shown by J. Los [L] and the idea of its proof is also contained (implicitly)

in G. A. Reid [R, p. 27]. It is stated in a quite general form by B. Wald

[Wl] which uses complete filters. His elegant proof extends trivially. Since

it is also very short, we will include it as

WALD-LO§-LEMMA 2.6. Let {Ga, a e /c) be a family of groups and φ a

K-complete filter on K, i.e. φ is a filter on K and intersections of less than K

elements of φ belong to φ. If K is regular and A -*Tla(ΞκGa/φ is an

embedding with \A\ < K, then there is an induced monomorphism γ: A ->

Π α e κ Ga with yπ = a for the canonical map π: Πa(Eκ Ga -* Π α e κ Ga/φ.

REMARK. If ί / = {g e Π α G κ G α , κ \ [ g ] e φ } , then Π α e κ G α / φ =

Πa€ΞK GJU. The particular filter {/ c fc, |κ \ I\ < K} is used in (2.4)(2).

Proof (cf. B. Wald [Wl]). Let π: Πa(ΞκGa ^ Πa€ΞκGa/φ = G be the

canonical projection σ = id and ( 5 G Π β € κ G β , a e A] a set of repre-

sentatives of A in Γίaeκ Ga such that cΓ = a for all a ^ A.

For g e G, let O(g) = {α < /c, g(α) = 0).

If a, b Ξ >4, then a + fe-(a-fft) = 0 and therefore

θ(ά + 6 - (α + fe)) e φ.

Let JD = Π β > f c e > ί O(a + b - (a + Z>)), which is an element of φ as follows

from |^4| < K. We denote by ay = a\D the restriction of a to D. Then

γ: 4̂ -> Π α e ι c Gα is a monomorphism with yπ = id^.

The next theorem will show that the requirement K < Kw in (2.4)(1) is

also necessary.
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THEOREM 2.7. Rz does not commute with Tlχm.

Proof1. Let μ be a (0,1}-measure onXm. Then μ may be replaced by
a normal measure on Nm which we also denote by μ; apply T. Jech [J, p.
317, Lemma 28.11]. Recall that μ is normal on S w if the following holds:

If/: Km -» S w is any regressive function (i.e. f(a)<a for all
α G « w \ 0) and if S c Km with μS = 1, then there exists a set Γ c S
such that μΓ = 1 and/ f Γis constant; cf. T. Jech [J, p. 316].

Since μ is normal, we derive

μ({α G Km, a regular cardinal}) = 1;

cf. T. Jech [J, p. 317, Lemma 28.12]. Let a be order isomorphic to a for all
a e frίm and construct the disjoint union / = Uα€ΞiSα with S the set of all
regular cardinals < NOT. Assume α e S in the following. Each subset
X Q I will be associated with a set F( Z) c Nm if we let β (= F(X) if and
only if μ({ α, β e Z n α}) = 1. We define X G ί/ if and only if μF(X) -
1. This is a kind of product measure. Now we want to show that U is an
ultrafilter on /. If X <£ U then μF(X) = 0 and F(X) c == F(ZC) implies
μF(Xc) = 1. Since ί/ is obviously a filter it is also an ultrafilter. To see
that ί/is Kw-complete, we assume K < Nm and JSQ e (7 for / e /c.

If β G Π/<fc F ( ^ ) then for all i < ic, μ({ α, jδ G Xi Π δ}) = 1. Hence

1 = μ( Π {«, i» € AT, Π α}) = μ({α, ]8 G f| ^ Π δ\)
^ / < κ ' \^ i<κ 'I

and Πi<κXi G C/. We want to show that the Km-complete ultrafilter U
extends the following Sw-complete filter

#-= { X C /,μ({α G S, |ά\X|<|α |}) = 1}.

We will show that l e f implies I G I / .
Define a function/: tfm -> Hm setting/(α) = sup(α \Jf) ifa&S and

/ O ) = 0 if a G Kw \ S. Since /(α) < α, / is a regressive function. From
X G J^we have μ({α e S, |α\ΛΓ| < \a\}) = 1 and since/is regressive and
μ is normal we also find Γ c f α G j , I«\X| < \a\} with measure 1 and
f\T = const. = β G N w . If we pick any γ G Nm \ Ŝ then obviously {a G 5,
γ G δ\X} D Γ Π {α G S, α > γ}. However

1 > μ({α,γ G δ\ΛΓ}) > μ(Tn{a,a> γ})

>min[μΓ ) ( {α,ά>γ}) ] = 1.

xWe would like to thank Alan Mekler for explaining to us how the normal measure can be
used to show the Theorem. Due to this we are able to present the stronger form (2.7) of
our original result.
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We obtain μ({α, γ e ά\X}) = 1 and by definition of F also γ e F(X).
Therefore F(X) D (#m\β) are sets of measure 1. So I £ Ufollows from

Let p be the Nw-additive measure induced by U. Hence we have the
epimorphism

p : Z 7 = Π Z ^ Z from (2.2).

Remember that |α| is a regular cardinal. Let Π α e 5 Z < | θ ί | where Z < | α | is the
set of all maps/: 5 -» Z with support of cardinality < |α|. If/ e Π α e ^ Z < | α |

and O{f) = {i e J, /(/) = 0}, then | α \ O ( / ) | < |α| and therefore O(f)
GfC ί/.

By definition of p and p(O(f)) = 1 we obtain p(/) = 0. Therefore p
induces an epimorphism

p: Π Z 7 Z < W = Π Z W - Z -

So we see that Hom(Π α e 5 Z | α ( , Z) # 0. From a theorem of J. Los and
\a\ < Nm we have Hom(Z|α)? Z) = 0 for all α e 5; compare L. Fuchs [Ful,
Vol. II, p. 161, Theorem 94.4(ii)]. In terms of the radical Rz we have
shown

and

Since |S| = Nm, (2.7) is shown.

REMARK 1. If we want to extend the 8w-complete filter ^"without any
effort to an S m-complete ultrafilter U of /, we may assume that N m is a
strongly compact cardinal. Then this holds by the very definition; cf. T.
Jech [J, p. 398]. From a result of M. Magidor [M] we know that
Con(ZFC + 3 strongly compact cardinal) implies that Con(ZFC + S m is
strongly compact). In this case we derive consistency of (ZFC + Rz does
not commute with Π) from the existence of strongly compact cardinals. In
(2.7) we have the stronger result following from the existence of S m that
Rz does not commute with products. D. Scott [Sc] has shown that there
are no measurable cardinals in V = L. Consequently, from (2.4) we derive
in L (and many other models without Sm) that Rz commutes with Π

REMARK 2. A simple modification of the argument above will show
even more that i? z Π α e sZ ) f t | = 0, compare also §3.
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REMARK 3. Another way to look at the proof of (2.7) is as follows.
Start from the universe and build its ultrapower over the normal measure
μ and collapse this to μ or equivalently show that Πα € Ξ SZ ( α (/μ = Zτ/μ.
Then observe that (Z7/μ)* = 0.

3. Cardinal conditions. Let R be a radical and /c a cardinal, then we
define

R«A = £ RB
BQA
\B\<κ

for all abelian groups A. We use the following well known

DEFINITION 3.1. A radical R satisfies the cardinal condition if and
only if there exists a cardinal K such that R = Rκ.

In [FOW2, Problem 2.4] the authors asked whether Rτ satisfies the
cardinal condition. Assuming (ZFC + "jfi Nm) we will show that the answer
is no. In (3.2) we will present a more general result. Before we will do this
we would like to illustrate the action of Rz on abelian groups.

(a)I f/c<« m , theni? z Z κ = Zκ.
(b) If K is a measurable cardinal then RZZK = 0.
Remark (a) was a consequence of Los's theorem, cf. §2; Remark. Let

0 # J C E Z l ί \ Z < ( C and K a measurable cardinal. Then we can find a
number O ^ Z G Z such that \z~ι\ = /c. Let μ be the σ-additive measure on
z~ι and μ: Zκ -> Z the induced homomorphism, cf. (2.1). By definition of
μ we have μ(x) = z Φ 0. Therefore x e kerμ and since μ induces
μ: Z y Z < κ -> Z, we derive x £ RZZK. This implies (b).

The radical functor Rz also takes intermediate values, as follows from
[FOW2, Lemma 1.3].

(c) If 0 -> Z -> A -> Z* -» 0, /c < Nm, is an extension of infinite
order then RXA = Z.

In our next theorem the restrictions due to our set theoretic axioms
will depend nicely balanced on the algebraic information of the given
group X. Recall from T. Jech [J, p. 339] the notion of an inner model 0#.
There are many models which satisfy (ZFC + GCH + ^0#), e.g. V = L
implies this. However, V = L is a much stronger assumption, compare T.
Jech [J, §13] and S. Shelah [S2].

THEOREM 3.2. (a) (ZFC + GCH + $ 0#) If X Φ 0 is cotorsion-free,
then R x does not satisfy the cardinal condition.

(b) (ZFC + ^ X J / / I # 0 w strongly cotorsion-free, then Rxdoes not
satisfy the cardinal condition.
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Proof. In (a) we collect results from [DG1], [DH1] and [GS]. Suppose
Rx= Rκ

x for some cardinal K. Then we can choose a cardinal μ >
max(|ΛΊ, K) such that the axiom v μ holds, compare [DG1] and [GS]. Then
there exists a strongly μ-free group A of cardinality μ with Hom(yl, X) = 0
as follows from [DH1] using techniques from [DG1], cf. also [GS, §5].
From Hom(^ί, X) = 0 we have RXA = A. Since K < μ and A is strongly
μ-free, all subgroups of A of cardinality < K are free. If F is free,
obviously i ϊ^i 7 = Πφ: F _ x ker φ = 0. Therefore we conclude RK

XA = 0 Φ
A = RXA and (a) is shown.

(b) Suppose Rx= Rκ

x for some strongly cotorsion-free group X Φ 0
and some cardinal /c. Choose a regular cardinal p > K and let ̂ 4 = Xp/X<p.
Since X is strongly cotorsion-free also Hom(^4, X) = 0 by Definition 2.1.
We derive RXA = A Φ 0. If B Q A and \B\ < /c, then \B\ < p. From the
Wald-Los-Lemma 2.6 we have B c Xp. Since i?^^ p = 0 and i?^ is a
subfunctor of the identity, also RXB = 0. We conclude i ? ^ = 0 ¥= A =
i? ̂ 4̂ and (b) is shown.

4. Torsion theories which are neither singly generated nor singly
cogenerated. Using the strongly cotorsion-free groups investigated in §2
and §3 we answer some open problems of torsion theories. In order to do
this we will first collect some well-known facts and definitions on torsion
theories. This concept was introduced by several authors in the last two
decades for different reasons. The most obvious motivation is that the
notion of torsion subgroups should be put into a more general and
transparent frame, compare J. Lambek [L], B. Stenstrδm [St] and refer-
ences given in these books.

We will use P. Hall's notation of closure operators A of classes #*of
abelian groups, i.e. AX is a new class of abelian groups such that
&Q A&= A(A&). The class #*is closed with respect to A if A&= .Tand
{A, B)^denotes the smallest class of abelian groups containing3Cwhich
is closed with respect to A and B. Some special operators we use are:

= all subgroups of Sgroups,

= all epimorphic images of ^groups,

© 3Γ= all direct sums of ^groups,

Y\KX= all cartesian products of < K groups in 3C,

= all cartesian products of ^groups,

= all extensions of ^groups by ^groups,

and the derived operators T = {E, Q, Θ} and F = {£, Π, S}.
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If y and J^ are classes of abelian groups, we say that &Ί. 3F are
orthogonal if Hom(Γ, F) = 0 for all T e ^"and F E , f , Let #* be the
class of all groups Y with X JL 7 and similarly let ±X be all 7 ± X. A
pair ( ^ , J^) is a torsion theory if ^ Π J^"= 0, Q^= SΓ, SS^== J^and for
any abelian group A there are T e ^and F e J^such that

This is the case if and only if a pair ( y , J^) is maximal with respect to
^ ± jε*. Then y = T^is the torsion class and J^= FJΠs the torsion-free
class of the torsion theory ( ^ , &). If (ΓS?, i 7^) is a torsion theory then ^
generates and ^ cogenerates the torsion theory, compare [St, p. 139]. We
also say that ^ cogenerates T& and ^ generates FΉ. A torsion theory is
singly generated if ^ can be a set and equivalently a group. Similarly
( 7 ^ , i 7 ^) is singly cogenerated if ^ is a set and equivalently a singleton.
Hereditary torsion theories are singly generated and singly cogenerated. A
theory (&",&) is hereditary if SέΓ=$~. The classical torsion theory
( J P Q / Z , FQ) is hereditary. Here we are interested in nonhereditary tor-
sion theories. There are torsion theories in ZFC which are not singly
cogenerated, cf. [GS, Theorem 4.1]. There are also torsion theories which
are not singly generated, if we assume (ZFC + GCH + $ O#), cf. [GS,
§5]. The latter follows with the help of a result of [DH1]. Here we want to
derive an even stronger result assuming only (ZFC 4- $ Nw).

Let & be the class of groups Zκ for all regular K < «m. Then # = ^
is the class of all strongly cotorsion-free abelian groups defined in (2.1)
and ( 7 ^ , ^ ) is a torsion theory. First we want to show the

THEOREM 4.1. (ZFC + t Nm) The torsion class T0> is not singly gener-
ated.

Proof. Suppose that T3P = TG is singly generated by an abelian group
G. In particular we have Hom(G, Z J Φ 0 for all regular cardinals K.
Choose any regular K > \G\ and apply the Wald-Los-Lemma 2.6 to show
that Z is an epimorphic image of G and therefore Z e T&>. On the
other hand Z E ^ = ^ which follows from the J. Los-Theorem, cf. L.
Fuchs [Ful, Vol. II, p. 161, Theorem 94.4]. Therefore Z e &1- = # and

^ = 0 i s a contradiction. D

We can say more about the torsion theory (T&, %>) after the next
theorem which is the main result of this paper, cf. (4.4). This theorem will
also be used to answer some open questions.
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THEOREM 4.2. // G is a cotorsion-free group and λ a strong limit

cardinal of cofinality ω with \G\ < λ. Then we can find an Άx-free and

slender abelian group A of size \A\ = 2 λ such that Hom(A, G) = 0.

REMARK. In [GS] S. Shelah and one of the authors proved a similar
result. Here we require less about the cardinal λ and we also derive a
weaker implication which is Hom(v4, G) = 0. Hence the proof becomes
much simpler and this allows to pose more conditions on the group A. We
want to point out that we consider the simplicity of the following proof
and the additional properties SΓfree and slender as a good bargain! The
construction of the group A will be similar to [DG2], but much simpler. It
is trivial to find a suitable λ for a given G.

Proof. Let G be a given cotorsion-free abelian group and λ a strong
limit cardinal of cofinality ω with \G\ < λ. Choose an increasing sequence
(λw, n G ω} of cardinals such that sup{λn, n G ω] = λ and λn+ι > 2λ\
Then B = φ λ « Z is a free abelian group. We can find 2λ such strictly
increasing sequences (λa

n)n(Ξω(a G 2λ) converging to λ such that any two
have only finite intersection.

Let B and G be the Z-adic completion of B respectively of G. If
x G B, then x = Σa(Ξλ(xxa with xa G Z and [x] = {a G λ, xa Φ 0} de-
notes the support of x. Since |G| < λ also

Therefore we can label all homomorphisms from B into G different from 0
b y { φ f l , α E 2 λ } . I f α E 2 λ then ψa Φ 0 and therefore we find βα G λ such
that ψa(βa) Φ 0. Observe that φα is uniquely defined by its action on λ.
Since sup{ λ^, n e ω) = λ and βa < λ there is A20 G ω such that λ^ > βa

for all n > n0. Changing the label n into n — «0 we may assume λ" > βa

for all π G ω. Since G is cotorsion-free we derive Hom(Z, G) = 0, cf. §2.
From βaZ Q B we find ττ f tEZ such that φa(βaπa) G G \ G . In order to
choose generators for^1 we let λ" = Σn(=ωλa

nn\ and decompose 2λ = A ύ 5
as follows. Let a^A if φα(λα) G G \ G a n d α G ί i f <P«(λα) G G. If
α e y4 choose Oa = λa and if a G 5 let Oα = j8α7τα 4- λα. In case ̂ 4 we have
Ψa(Oa) £ G and in case B also φα(OJ = φa(βjra) + φα(λΛ) ί G b y our
choice of πa. Observe that this construction does not use a transfinite
induction!

We will consider the groups = (β U {θaJ a G 2λ}}* c 5. If ί/ c β,
then C/# is the pure closure. In this case of torsion-free groups we have
u G [/*, if u G 2? and if there is a natural number n such that ra G si/,
i.e. t/* is the preimage of the torsion subgroup of B/U.
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We want to show that

Suppose that φ: A -> G is a homomorphism different from 0. Since

B c A and G is complete, there is a unique extension φ: A -* G of φ and

Λ = B. Since φ # 0, we find α G 2λ such that φ = <pα. We derive φ(OJ =

φ(Oa) = φΛ(0α) e C \ G . This contradicts Oα G Λ and φ(A) c G.

Now we continue in a new direction and want to show that

(b) A is Si-free [and hence is cotorsion-free].

If a G 2λwe can choose rf G Z and z" e Z such that irα = IT" Λ! +

z". Simply observe that Z is dense in Z with respect to the Z-adic

topology. Hence we can divide πaby n\ modulo Z. If a G V4 and m ^ ω

let

n w — V λ«-^i-
ϋ« " ^ λ « m ! '

i f α e ί let

In particular we have

(*) (m

The new elements O™ can be used to determine the purification of

( f i u { θ f t , α e 2 λ } ) explicitly. We derive

(**) ^ ( 5 U { O ; , « E 2\ m G ω}).

Similar divisibility chains {O^1, m G CO } have been used in the/?-group

constructions, cf. [DG3]. Condition (**) follows immediately from (*) and

the constructed elements.

In order to show (b) we will use Pontrjagin's criterion for freeness,

compare L. Fuchs [Fu2, Vol. I, p. 93]. Since subgroups of free groups are

free, it remains to show that

(***) F = ( f i u { 0 > G £ , 5 G ί o } ) i s free for all finite sets E c 2λ.

We find a free basis M U N of F. Decompose E into K = E Π A and

L = E Π B. Pick any m G ω sufficiently large such that

(i) [Oft

m] Π [Oγ

m] = 0 for all a G Jίand γ G L and

/ 0 iΐβ Φ β
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Let

and

M = {O^s >m,a e E}.

First we want to show that M U N is linearly independent.
Consider any sum Σa^Naza + Σy€ΞEΣs>mO*zsy = 0 for integers za9

zsy which are 0 for almost all α, s9 γ. Then γ e K implies Σ 5 > m OγZ5γ = 0
and therefore zsy = 0. If γ e L we have [Σs>mO°zsy]Q {β γ }. Then
zsy = 0 also in this case by our choice of Oy. We derive Σa^Naza = 0 and
za = 0 holds trivially. Therefore M U N must be linearly independent.

Finally we want to show that M U N generates F. The inclusion
(M U N) Q F holds trivially by definition of F. From the definition of
O™ and of M and TV we see that B c ( M U iV). If γ e £ then Oγ =
OγΛ ! mod 5 which implies Oγ

5 e (M U N) for all Λ e ω. We conclude
F = (M U N) and (***) and (b) are shown.

Now we will show that
(c) A is slender.
Since we want to avoid the use of too many brackets, let a { a = a(a)

be the value of a G A at a < 2 λ.
By R. Nunke's well-known characterization of slender groups, (c) is

equivalent to saying that Z ω £ A, Jp % A (Jp = /?-adic integers), Q £ 4̂
and 4̂ is torsion-free, compare L. Fuchs [Ful, Vol. II, p. 165 Theorem
95.3]. Since A is NΓfree by (b) and Jp, Q, Z/pZ are not KΓfree, it remains
to show that Zω £ A.

Suppose for contradiction that φ: Z ω -> A is a monomorphism. If
en = (8JiGω e Z ω , then Z<ω> = e n e ω e n Z and Z<ω> = Θ w e ω φ ( e J Z has
infinite rank, which is used below. In order to derive the desired con-
tradiction, we first show

(c*) There does not exist an increasing sequence {r(n))n(=ω of natural
numbers such that

" [ K ) ]
 0

for all n e ω.

Suppose that (r(n))nfΞω is a sequence satisfying (c*) and let r(n) = n

without loss of generality. By induction we can find another sequence
(k(n))n€Ξωof natural numbers such that

(1) k(l) = 1

(2) k(n) < k{n + 1) for all n e ω
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(3) There is n* e M O l X U ^ I X e , ) ] such that

{φ(en)t n*)-k(n)\£k(n + l)\Z.

Let x — Σ n e ω

 e

nk(nV and compute

φ(x) Γ m* = Σ M O Γ m*) • k(n)\ = (φ(em) { m*)k(m)\

& Omod k(m + l)!Z.

Hence m* e [φ(x)] for all sequence (k(n))n<Ξω satisfying (l)-(3).
Since φ: Z ω -> A, also φ(x) e y4 and we find 0 # ί, k e Z, α e 2λ and
an infinite subset Γ c ω such that

$φ(x) Γ m* = (Oα Γ w*) k for all m e Γ.

Now we choose a «ew sequence (k'(n))n(Ξω of natural numbers with
the properties:

(10 *'(1) = 1
(20 A:r(π) < k\n + 1) for all * e ω
(30 ( φ ( O Γ n*)k\ή)\ € k\n + 1)!Z with Λ* from (3) for all n e ω

and in addition
(40 (Oα Γ n*)2\k'(n)\ for all n > 1.

This can be arranged easily by induction. Observe that Oa is determined
already by our first sequence!

Using the same argument from above we obtain integers sf and kf

different from 0 and an infinite subset V of T such that

x' = Σ*nk'(n)\ and JV(JC') t m* = (Oβ Γ m*) - kf

for all m e Γ'.
We also derive

n>m

( « ) Γ w*)ί'A:'(m

and summarize

(Oβ Γ m*)k' = ( φ ( e m ) r m*)s' • k'(m)\ mod k'(m

This equation, together with (4'), implies

k' 3 (Oα r m*)ymmodk'(m + l)!(Oβ f m*)" 1 ^ for some^m e Z.

But because of (2') and (4') we get that

(Oa Γ m*) divides k'(m + 1)!(OΛ Γ m*)~\

Hence (OΛ f m*) divides k' for all m e T.
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Since V is infinite we derive kf = 0 from the definition of 0a, which
is a contradiction and (c*) is shown.

Now we continue our proof of (c) investigating the given monomor-
phism φ: Z ω -* A. Since Z ( ω ) = ®n€_ωφ(en)Zy the set UM€Eω[φ(eJ] m u s t

be infinite. From (c*) we see that |[φ(en)]l must be infinite for almost all
n ^ ω. Hence we may assume that [φ(e r t)] *s infinite for all n G ω. Since
φ(en) ^ A, we find a natural number sn and bn e B, 0 Φ zan e Z such
that J π φ ( O = 6Λ + Σ α e Δ π Oαzαπ for some Δrt c λ. If we replace en by 5wert

we may also assume that ψ(en) = bn + Σ α e Δ / i Oαzα n.

If U n e ω Δ n is infinite we easily produce a sequence (r(n))n^ω con-
tradicting (c*). Hence U n e ω Δ n must be finite. Obviously there exists an
infinite set T c ω and some Δ c U n G ω Δ r t such that ΔM = Δ for all n e Γ.
We also assume w.l.o.g. that T = ω and summarize

( + ) Φ ( O = &„ + Σ Oftzαn and zan Φ 0 for all n e ω.

Since φ <p(^Λ)Z has infinite rank and Δ is finite, ΌnGω[bn] must be
infinite. If (jn€=ω[bn]\Ua<=A[Oa] is infinite, we can easily find a sequence
(r(«)) Λ € Ξ ω contradicting (c*). Hence we can assume that

U [K\ \ U [oa]

is finite. Changing names we find n* e ([fej Π ̂ e A l O J i X U f Γ ^ ^ ] for
all « G ( o . Since Δ is finite and {[OJ, α e Δ} are almost disjoint there
exists ] 8 E A such that

is infinite. We may assume T = ω without restriction and summarize that

(O) *• * {M n\0B])\ "\J[b,]u U [0a)\.

We also choose by induction a sequence (&(«))π ( Ξ ω of natural numbers
such that

(II) A:(«) < yt(« + 1) for all n e ω

(III) ife(ιi + 1)! + k{n)\n\{bn \ «*) in Z for all « e ω
(IV) (Cjj Γ «*)2|A:(«)! and
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Now we consider x = Σn^ωenk(n)\ and compute with (O), (II) and

( + ) φ(x) Γ m* = Σ (K f m*)*(n)! + ( ^ Γ m ) - Σ zβn k{n)\
new

! +(0^Γ m*)zmodA:(m 4- l)!Z
n>m

' wherez =

Suppose that φ( c) f m* = 0, then we derive from (+ + )

and (II) and (IV) imply (O^ Γ m*)2|(ί>/* Γ m*)z. We conclude (0^ Γ m*)|z
for all m e ω and z = 0 by definition of Oβ. In particular 0 = z =
z x̂ mod k(2)\Z which contradicts (V). Hence we have φ(i) f m* # 0 and
m* e [φ(x)] Π [Oβ] for almost all m e ω.

Since φ(x) e Λ, we find an infinite subset T c ω and A;, ̂  e Z \ {0}
such that

) Γ m* = (Og Γ m*) A: for all G T.

From ( + + ) we derive

*(*m Γ m*)k{rn)\ + s(θβ f rn*)z = (O^ Γ m*)fcmod k(m

Now we use (II) and (IV) and obtain (Oβ \ m*)2|A:(m)!|A:(m 4- 1)!.
Then the last equation implies (Oβ f m*)\(sz — k) and therefore

sz - k = 0 and &(m + l)\\k(m)lm\(bm Γ m*)

for all m e Γ with m > 5. This contradicts (III) and A is slender. D

At the beginning of this section we introduced the torsion theory
(T&>, <£). Now we use (4.2) to show the

COROLLARY 4.3. The torsion theory (T£P, %>) is not singly cogenerated.

Proof. Assume that ( 7 ^ , ^) is singly cogenerated, i.e. there exists a
group H such that ^ = F{H). Since H e #, H must be cotorsion-free.
From Theorem 4.2 we obtain a slender group A such that Hom(y4, H) = 0.
This implies i ί F { ί ί } = «'= 7 ^ = 9^ . By definition of 9> we find a
regular cardinal N w > K > Xx such that Hom(Zκ> A) Φ 0. However, yί is
slender and a theorem of J. Los implies that K is a measurable cardinal, cf.
L. Fuchs [Ful, Vol. II, p. 161, Theorem 94.4]. We conclude that ( 7 ^ , V)
is not singly cogenerated. D
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We summarize (4.1) and (4.3).

COROLLARY 4.4. (ZFC -f t S w ) . The torsion theory (T0>, <£) is neither

singly generated nor singly cogenerated.

The existence of such torsion theories was unknown in (ZFC + ^ K m );

(4.4) answers a problem in [FOW1].
Now 4.3 implies

COROLLARY 4.5. (ZFC). The class Ή of all strongly cotorsion-free

abelian groups cannot be obtained from an abelian group H and iterated

applications of the operators S, Π and E, i.e. <€ Φ F{H} for all groups H.

The class of all cotorsion-free groups, in particular, is not of the form

F{H). This also answers a question in R. Gδbel and B. Wald [GW2].
Using V = L, this was already answered in M. Dugas and G. Herden

[DH1] and a different proof in ZFC was given in R. Gδbel and S. Shelah

[GS].

L. Fuchs [Ful, p. 184] posed the following Problem 78 b. Is the class

^ o f slender groups of the form {S, θ , E}{H) for some slender groups

HΊ

This problem was answered negatively in R. Gόbel and B. Wald

[GW2] using generalized growth types. Growth types which are certain

subgroups of Z ω are introduced by E. Specker. This notation can be

extended to certain subgroups of Z*. In [GWW] we followed "classical

proofs" on slender groups to obtain the same result more naturally. Here

we obtain once more an answer to this problem of L. Fuchs as a

by-product.

COROLLARY 4.6. There does not exist an abelian group H such that

S?= {S, θ , E}{H} is the class of all slender groups.

Proof. Assume S?= {S, ®9 E}{H}. Then H e Sf is slender and,

in particular, cotorsion-free. From (4.2) we obtain a slender group A

such that Hom(A,H) = 0. Therefore A <£ {5, θ , E}{H) and ό?=

{ 5, θ , E}{ H} cannot hold. D

5. The Chase-radical vλ. In this section we will use Theorem 4.2 to

derive results on the Chase-radical vv which will answer an open problem.

Remember that an abelian group is /c-free for some cardinal K if all its

subgroups of cardinality less than K are free. If J^ is the class of all /c-free
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abelian groups, we denote by vκ the radical

vκA = R^A = P| kerφ,
φ:A-*X

compare §2. For K = Xw and « e ω we simply say vn = ^s^ and vγ is the
Chase-radical. This radical was investigated thoroughly by S. U. Chase in
[C]. We denote its torsion class by Tλ = {A, vλA = A], and (Tv J ^ ) is a
torsion theory.

First we prove

THEOREM 5.1. The torsion theory (7\, ^ ) is singly generated, i.e.
7\ = T{H} for some abelian group H. We can choose H = ®[A, A* = 0,
\A\ < « 0 ] .

REMARK. Recall that A* = Hom(A, Z) and let [A,...] denote a class
of representatives of the isomorphism classes of all groups A with the
property.... In (5.1) this class is a set of cardinality 2S°.

Proof. Let H = 0[Λ, Λ* = 0, |Λ| < So] and X e 7\. We consider
the largest "/J-torsion subgroup" of X; this is Y = Σ{ [/ c X, U e Γ{ i/}}.
Therefore we have 0-> y->X-> F->0 with Hom(#, K) = 0. Suppose
V Φ 0. Since I G J 1 ; also F e g7\ = 7\ and F # 0 cannot be NΓfree.
Hence we find a countable subgroup A Q V which is not free. From a
theorem of K. Stein we also find 0 Φ C c A with C* = 0, cf. L. Fuchs
[Ful, Vol. 1, p. 94, Corollary 19.3]. By definition of H, this group C is a
summand of H. Hence Hom(/f, F) Φ 0 is a contradiction. We conclude
F = 0 and equivalently X= Y<ΞT{H}, i.e. 7\ c Γ{//}. Since H e Γ1?

also Γ{ i^} c Γ7; = Tx and Γ{^} = Γx is shown. D

Before we continue to investigate vx we add some general and quite
trivial remarks connecting radicals and torsion theories.

PROPOSITION 5.2. Let R be an idempotent radical and TR = {A, RA =
A} its tortion-class. Then the following conditions are equivalent

(1) R satisfies the cardinal condition, i.e. R = Rκ for some cardinal,
compare §3.

(2) There is an abelian group Hsuch that TR = {Q, ®}{H}.

Proof. (2) -» (1) Assume TR = {Q, ®}{H} and let K = | # | + . It is
easy to see that TR = [A, SHA = A} where SHA = Σ φ : H ^ A Imφ. Since
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I m φ G g { i / } c TR and |Imφ| < \H\ < K, also jR(Imφ) = Imφ and RA
= RKA.

(1) -> (2) If H = 0[Λ, Ml < K A RA = Λ], then RH = H, H ^ TR

and hence { g, Θ}{//} c ΓΛ. Conversely we consider G & TR. We derive
from (1) that G = RG = RKG = Σ{i?#, 5 c 6 , | £ | < JC}. If Bf = i?£,
then RBf = B' and |J?'| < K. Hence 5 ' is a summand of # and G e
{β, θ}{//}. Therefore ΓΛ = {β, θ}{if} and (2) is shown.

We will also use another trivial

Observation 5.3. If Rx is a singly generated radical, then its torsion
class Tx = {y, i? χ y = y} is singly cogenerated by X.

Proof. We haveΛ e Tx <=> Λ ^ = ̂ ί «• Hom(^, Jf) = 0 <=̂  ̂  e -1 X
Therefore TX =

 ±X9 i.e. Γ^ is singly cogenerated. D

[FOW2] ask the following question: Does the Chase-radical vx satisfy
the cardinal condition?

Using (5.2) this is equivalent to ask whether we find a group H such

From (5.1) we know a little less that Tλ = {g, θ , E}{H) is singly
generated (as a torsion theory). Another problem asked in [FOW1, §2] is
whether vx = Rx is singly generated as a radical. From (5.3) we see that
this implies that the torsion class 7\ is singly cogenerated. From (5.1) we
obtain that (7\, β^ ) is singly generated and singly cogenerated. Using an
extension of a result of [DH2] which is shown in [GS] under the hy-
pothesis (ZFC + GCH 4- 310*) then (Tv J ^ ) should be one of the 2*°
torsion theories derived from prime-distributions and listed in [DH2].
Since (7\, β^ ) does not occur, vλ is not singly generated as radical in
(ZFC + GCH 4- $ 0#). However, we derive a stronger result in ZFC from
(4.2).

THEOREM 5.4. Tλ is not singly cogenerated [and in particular vx is not

singly generated as a radical].

Proof. Suppose that 7\ is singly cogenerated. Then we find a group G
such that 7\ = ± G = {A, Hom(A, G) = 0} and G is necessarily cotor-
sion-free, since G e ( x G)L = Tf = J ^ is the class of all KΓfree groups.

From Theorem 4.2 we obtain a Sx-free abelian group A Φ 0 such that
Hom(^4, G) = 0. Since A is i^-free we have A e ^ and since
Hom(^4, G) = 0 we also have A e 7\. However O ^ i G ^ n ^ con-
tradicts the definition of a torsion theory (Tl9 β^ ).
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We will close this section with an open problem concerning Tv From

a theorem of S. Balcerzyk we easily see that Π N o Tx = Tv compare L.

Fuchs [Ful, Vol. I, p. 177, Exercise 7 and p. °176, Corollary 42.2].

However, we do not know whether Π κ 7\ = Tx holds in general. We

conjecture that already Π S i 7\ Φ Tv

6. Radicals which are socles. In §5 we used already the notation Sx

of a socle. This is dual to the radical and in general we have

Φ : x ~* A X e SC)

for a class 3C of groups X. A socle Sx is singly generated if Sx = Sx for

some group X. Many of the "classical" radicals share this property and

are socles at the same time. Hence the question arose which radicals are

also socles. [FOW2] derived the following result (Theorem 1.5):

Let X be a group. Suppose for every index set / that Ext( X\ X) = 0.

Then R x is a socle.

In this section we will show that this result unfortunately leads to the

known classical socles only. Here we will use an older result of [GP]

concerning the structure of Ext.

THEOREM 6.1. The following conditions for a group X are equivalent:

(1) Έxt(X\ X) = Ofor all cardinals K.

(2) There are cardinals cc(p), β(p) > 0 and p for primes p from two

disjoint sets π and π\ respectively, such that

X s Q<"> Θ e Z(p«>)("ip)) Θ Y\7j?ip)).

Proof. (1) -> (2). First we want to show that (1) implies

(2*) A'is cotorsion.

Since bounded groups are cotorsion we may assume that X is un-

bounded. Hence Z c Γ and also Zκ c X\ The sequence 0 -> Z κ -> X*

-> B -> 0 implies the exact sequence Ext( Xκ, X) -» Ext(Zκ, X) -> 0.

We apply (1) to obtain Ext(Zκ, X) = 0 for all cardinals /c.

From a result in R. Gόbel and R. Prelle [GP, p. 424, Theorem] we

conclude that XΊs cotorsion and (2*) is shown.

If Zp c X, the same argument applies to show Έxt(Zp, X) = 0. On

the other hand we have E x t ^ , X) = X/pX and therefore X/pX = 0.

Hence X is /^-divisible. This shows that the torsion part tX of X must be

divisible and therefore X = X/tX θ tX. If tX = 0, then X is torsion-free

and algebraically compact by (2*). The structure of X is then well-known
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and (2) is shown in this case. If tX Φ 0, then tX = θ ^Z(p°°){a(p)) for
cardinals α( p) > 0 and a set π Φ 0 of primes. Therefore

Ext(Z(/>°°), X//X) = 0 for/? e 7r

and

= Q(p) θ Γf^

for cardinals β(p) > 0 and another set π' of primes.
Obviously Ext(Z(/?°°), /^) = 0 holds for all p <= 77 and # e 77'. This

implies that /^ is ^-divisible, cf. L. Fuchs [Ful, Vol. 1, p. 224]. We
conclude /? # 9 and therefore 77 Π TΓ' = 0 .

(2) - (1). Let

and observe that D is torsion-free and cotorsion-free. Denote also

Xκ ~ Q^> γ{y)

Since X = Q ( p ) θ φ e7rZ(^°°)( f t(/?)) θ Z) and divisible groups are injec-
tive we compute Ext(Xκ, X) = Έxt(Xκ, D). From elementary properties
of cotorsion groups which can be found in L. Fuchs [Ful, Vol. I, §54] we
compute

Ext(Xκ, X) = Extf Q(pΊ Θ 0 Z(/?°°)(α(/7y) θ D\

= Extί φ Z(Jp»)») ( β ( ' ) ' )

Since TΓ Π ττr = 0, we derive Ext(Z(p°°), D) = 0 and also Ext(X*, Z)
= 0. D

COROLLARY 6.2. // Ext(Xκ, X) = 0 /or α// cardinals K, then Rx is a
socle, in fact one of the following classical radicals: Let tA be the torsion
of A and tp = φ (t-A)q where (tA) is the q-component of tA. Let
(pω: t)A = Ufor U/tA = pω(A/tA) be the cocomposition of pω and t (in
the sense o/[FOW2]). IfXis as in (6.1)(2) and εp = id if p = 0, respectively,
ep = tifpΦ 0, then we have Rx = εp Π Πp^tp Π Γip(ΞAPω'' 0-

REMARK. Observe that i?y = (pω' t). Then (6.2) follows immediately
from (6.1). Hence Theorem 1.5 in [FOW2] leads only to known socles.
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COROLLARY 6.3. // X is an abelian group such that End z X c id Q?

then Rx is not a socle.

REMARK. Many classes (not even sets) of such groups X have been
constructed in a number of papers, compare [DG1] and [DG2].

Proof. Since End z I c Q , the endomorphism ring End z X is cotor-
sion-free by definition. Hence X is also cotorsion-free as shown in [DG1,
p. 323, Theorem 2.4]. From (6.1) we derive Ext(Xκ, X) Φ 0 for some
cardinal K > No. The inclusion map (X κ ) ( * o ) c Xκ leads to the exact
sequence

Ext(Xκ, X) -> Ext((Jr) ( W o ), X) = Ext(Xκ, Xf° -» 0.

Since Ext(Xκ, X) Φ 0 is divisible, Ext(yfκ, X)* contains an element of
infinite order. From [FOW1, Theorem 1.4] and E n d z X c i d Q we
derive that R x cannot be a socle.
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