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A TOPOLOGICAL BOUND ON THE NUMBER

OF DISTINCT ZEROS

OF AN ANALYTIC FUNCTION

ROBERT F. BROWN

An old theorem concerning the number of fixed points of a map on
an annulus is used to obtain a lower bound for the number of distinct
zeros of an analytic function. When die function is a polynomial, the
result furnishes sufficient conditions on the coefficients so that the
polynomial has at least a specific number of zeros.

Let C denote the complex numbers and, for real numbers r, R with
0 < r < JR, let

A =ArjR= { z e C | r <\z\<R).

It has long been known [2] that a (continuous) map F: A -> A has at least
|deg(.F) — 1| fixed points, where deg(F) denotes the degree of F (see [3;
page 34] for a modern proof).

We will apply this theorem to complex functions in order to obtain
information about the number of zeros. There are well-known results,
such as Rouche's Theorem [1], which count the number of zeros of
complex functions. These results, however, count each zero as many times
as its multiplicity. In contrast, the information we obtain is always in
terms of distinct zeros.

I thank Alfred Hales for helpful discussions concerning this material.
Let Ω be a region (open, connected subset of C) containing the origin.

Suppose/(z) is a complex function analytic on Ω. By Taylor's Theorem,
for each positive integer k there is a polynomial P(z), of degree less than
or equal to k (a Taylor polynomial of f(z) at the origin), such that

(*) /W^W + ^gW
for all z in Ω, where g(z) is analytic on Ω. We will refer to (*) as a Taylor
decomposition oίf(z). The function Q(z) defined by

Q(z) = -z-kP{z)/g{z)

will be called a Taylor quotient of/(z). A fixed point of Q(z) is a zero of
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PROPOSITION 1. Let f(z) be analytic on a region Ω containing the
origin. Suppose there exist 0 < r < R and a Taylor decomposition f(z) =
P(z) + zk + ιg(z) such that

(0)|z| < R implies z e Ω
(1) r <\z\< R implies P(z) Φ 0 andg(z) Φ 0
(2) \z\ = R implies P(z) + λz*+1g(z) Φ 0 for all λ > 1
(3) \z\ = r implies P(z) + μzk + 1g(z) Φ 0 for all 0 < μ < 1

then f(z) has at least |deg(β) - 1| distinct zeros z with r < \z\ < R, where
deg(β) denotes the degree ofQ(z) as a map of Ar R into C — 0.

Proof. The Taylor quotient of /(z) is a well-defined map Q: Ar R ->
C - 0 by hypotheses (0) and (1). Define p: C - 0 -> ArR by

V-z i f θ < | z | < r

Then, by [2], the map pQ has at least |deg(pβ) - 1| = |deg(β) - 1| fixed
points. Hypotheses (2) and (3) imply that a fixed point of pQ is a fixed
point of Q. D

Proposition 1 seems difficult to work with. Even if we could verify
those rather elusive hypotheses, we still have no guidance in computing
the degree of the Taylor quotient Q(z). Consequently, we will instead
make use of the following rather weaker result.

PROPOSITION 2. Let f(z) be analytic on a region Ω containing the
origin. Suppose there exists R > 0 and a Taylor decomposition /(z) = P(z)
+ zk+ιg(z) such that

(0) \z\ < R implies z e Ω
(1) \z\ < R implies P(z) Φ 0 andg(z) Φ 0
(2) \z\ = R implies \P(z)\ < |g(z)|i?*+ 1

thenf(z) has at least k + 1 distinct zeros z with 0 < \z\ < R.

Proof. Since Hypotheses (0), (1) and (2) clearly imply the correspond-
ing hypotheses of Proposition 1, in order to show that Proposition 2 is
indeed a special case, it remains only to find r satisfying 0 < r < R for
which (3) holds. Let P(0) = a and g(0) = b, then a and b are nonzero by
hypothesis and there exist positive real numbers rλ and r2, both smaller
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thaniί, such that

\z\ < rx implies \P(z)\ > \a/2\

\z\ < r2 implies |g(z)| < \2b\.

Let r be the smallest of rl9 r2, and \a/4b\1/k+1, then

| z | - r implies \P(z)\>\g(z)\rk+1

so (3) is certainly satisfied for this choice of r. The conclusion that/(z)
has at least k + 1 zeros will now follow from Proposition 1 once we show
that the degree of the Taylor quotient Q(z) on Ar R is — k. To prove it, set
P+(z) = P(z) - a and g\z) = g(z) - b. Choose s > 0 so that \z\ < s
implies both \P\z)\ < \a/2\ and |g+(z)| < \b/2\. Define Js = {z e C| |z|
= }̂ and consider the homotopy H: Js X I -+ C — 0 given by

lί(z, /) = - * - * ( * + tg+(z)y\a + tP+{z)).

Thus β on Ar R, which is of the same degree as Q restricted to Js, is
therefore of the same degree as the map h: Js -* C — 0 defined by
h(z) = ~(a/b)z~k. It is easy to see that deg(Λ) = -k. D

REMARKS. (1) If P(0) # 0 but g(0) = 0, then g(z) = zJh(z) wherey is
the multiplicity of 0 as a zero of g(z). Thus we can write/(z) = P(z) +
zk+J+1h(z). Proposition 2 now applies to this Taylor decomposition so in
fact/(z) has at least k +j + 1 distinct zeros z with 0 < \z\ < R.

(2) If P(0) = 0, letj be the multiplicity of 0 and write

f(z) = zJ(S(z) + zk-^g{z))

so zjS{z) = P(z). Consider h(z) = S(z) + zΛ"^'+1g(z) which is a Taylor
decomposition. Remark (1) assures us that we may assume g(0) Φ 0. Thus
Proposition 2 applies to h(z) and we can still conclude something about
the zeros z of/(z) with 0 < |z| < i?, namely, there are at least k — j + 1
of them.

(3) It is easy to find examples of functions /(z) satisfying the
hypotheses of Proposition 2. We will next examine the situation when/(z)
is a polynomial. For a nonpolynomial example, let

then Proposition 2 implies that/(z) has at least k + 1 zeros z such that
0 < |z| < 1.

A Taylor decomposition of a polynomial

/(z) = a0 + axz + - + tfnz"
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is of the form

/ ( z ) = ( α o + fl1+ ••• + akz
k)

So, in this setting, Proposition 2 becomes

PROPOSITION 3. Given f(z) = aQ 4- axz + 4- anz
n, suppose there

exists k with 0 < k < n and R > 0 such that
(1) \z\ < R implies

(a) a0 + αxz + + α^z* =£ 0

(b) ak

(2) \z\ = R implies

thenf(z) has at least k + 1 zeros z such that 0 < \z\ < R.

There is an algebraic algorithm for determining the number of distinct
zeros of a polynomial [4; page 65]. However, the algorithm offers no
information on the norms of the zeros and, more significantly, since it
considers one polynomial at a time it fails to identify classes of polynomi-
als with a specific number of distinct zeros. On the other hand, Proposi-
tion 3 can be used to put conditions on the coefficients of the polynomial
that imply the existence of many zeros, as follows.

COROLLARY. // a polynomial

is such that, for some k with 0 < k < n and some R > 0.

Σ \aj\RJ<\a0\ < 2\ak+1\Rk+ι - f |*,|Λ'

thenf(z) has at least k + 1 distinct zeros z such that 0 < \z\ < R.

Proof. Hypothesis (la) of Proposition 3 follows from the left-hand
inequality and the triangle inequality because together they imply \a0 +
aλz 4- — + akz

k\> 0. Since the right-hand inequality certainly implies

•••+\an\R",
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the same argument verifies hypothesis (lb). The full power of the right-
hand inequality, again with the aid of the triangle inequality, permits us to
obtain hypothesis (2) of Proposition 3. D

It is not difficult to find polynomials whose coefficients satisfy the
hypotheses of the Corollary. A class of such examples is the following.

EXAMPLE. If f(z) — ao ¥ axz 4- 4- anz
n is a polynomial whose

coefficients satisfy the conditions

(i) Kl > Ki + + \ak\
(ii) \ak+ι\ > \ao\ + - + \ak\ 4 \ak+2\ + + \an\

thenf(z) has at least k 4 1 distinct zeros such that 0 < \z\ < 1.

Proof. Letting

and noting that

it is easy to see that the inequalities of the Corollary hold. D

The polynomial/(z) = a0 4- anz
n obviously has n distinct zeros and,

if 0 < |α o | < \an\, then for each zero z we know 0 < \z\ < 1. We would
therefore expect that if f(z) = a0 4 axz 4 4 anz

n where \an\ is larger
than |αo |, and both are much larger than \a}\ for 0 < j < n, then /(z)
should still have n distinct zeros z, all with 0 < \z\ < 1. The Example, for
the case k 4- 1 = w, supplies some precision to this observation because it
states that this conclusion holds whenever

and

For a really specific example, consider

/(z) = 5 + z 4 z2 4 z3 4 z4 4 10z5,

then the Example tells us/(z) has 5 distinct zeros z and the formula for R
in its proof further tells us that for each zero we have 0 < \z\ < (.45)1/5 <
.86.
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