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ON THE LOCATION OF THE ZEROS
OF CERTAIN COMPOSITE POLYNOMIALS

ABDUL AZIZ

Let P(z) - Σ%0 C(n, j)AjZJ and Q(z) « ΣJL0 C(m, j)BjZJ be
two polynomials of degree n and m, respectively, m < n (C(n, j) =
binomial coefficient). In this paper we study the relative location of the
zeros of P(z) and Q(z) when the coefficients of these polynomials
satisfy an apolar type relation and obtain some results. As an application
of these results, we present certain generalizations of results of Walsh,
Szegό, DeBruijn and Kakeya.

More recently [1] the author has shown that if

(1) P(z) = ΣC(n9j)Ajz', A0AnΦ0,
7-0

and
m

(2) Q(z) = Σ C(m, j)BjZ\ B0Bm Φ 0,
y = 0

are two polynomials of degree n and m, respectively, m < n, such that

C ( m , 0 ) 5 0 Λ n - C ( m , l ) 2 M n - i

+ -+(-l)mC(m,m)BmAn_m = 0,

then the following holds.
(a) If Q(z) has all its zeros in \z\ > r, then P(z) has at least one zero

in \z\ > r.
(b) If P(z) has all its zeros in \z\ < r, then Q(z) has at least one zero

in|z | < r.
Here we first show that this result equally holds if the circle \z\ = r is

replaced by a more general circle C with center at a point c and radius r.
In fact, we prove

THEOREM 1. IfP(z) is a polynomial of degree n defined by (1) and Q(z)
is a polynomial of degree m defined by (2), m < n, end if there coefficients
satisfy the relation (3), then the following holds.

(i) If Q(z) has all its zeros in \z — c\ > r, then P(z) has at least one
zero in \z — c\ > r.

17



18 ABDUL AZIZ

(ii) If P(z) has all its zeros in \z — c\< r, then Q(z) has at least one

zero in \z — c\ < r.

For the proof of Theorem 1, we need the following lemma, which is a
generalization of a result due to Markovitch [4, p. 64].

LEMMA. Let P(z) = Σ%0 C(n, j)AjZJ and Q(z) = ΣJ = 0 C(m, j)BjZJ
be two polynomials of degree n and m, respectively, m < n. If we form

then

Proof of the Lemma. Since P(z) and Q(z) are two polynomials of
degree n and m, respectively, we have

(4) P{n+l)(z) = 0 and Q(m+l)(z) = 0.

Now we can write

and

7 = 0 y=0

from which it follows that

and

(6)

Now

u'(z)= t
7 = 0

7 = 0
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so that by (4) we have

7 = 0

m - 1

= Σ (-l)J+lP{n'j){z)Q^1\z)
7 = 0

w - 1

+ Σ {-l)JP{n-J\z)Q^ι\z)
7 = 0

= 0.
Therefore, it follows that U(z) is constant and thus

u(z) = t/(o) = f (-ι)Jp(n-J)(o)Qu)(o).
7 = 0

Using (5) and (6) we obtain

7 = 0

This proves the lemma.

Proof of Theorem 1. Consider

H(z) = P(z + c) - Σ ~ Γ ^ ^ = Σ C(n, j)A*z' (say)
y-o •/' 7=o

and

G(z) = Q(z + c) = Σ j L7f z 7 = Σ C ( m ' ^ ) 5 /* z y ( s a y ) *

Then H(z) and G(z) are two polynomials of degree n and m, respectively,
m < n. Now we have

y-o

'J)C(n,n-j)(n-j)\

j-0
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Using the lemma above, we obtain

m m

Σ {-\)JC{mj)A*n_jBf = Σ (-l)JC(m9j)AH_jBj

= 0 (by hypothesis).

This shows that the coefficients of the polynomials H(z) and G(z) satisfy

(3). Hence it follows from (a) and (b) that if all the zeros of G(z) lie in

\z\ > r, then H(z) has at least one zero in -|z| > r and if all the zeros of

H(z) lie in \z < r, then G(z) has at least one zero in \z\ < r. Replacing z

by z - c and noting that P(z) = H(z - c) and, Q(z) = G(z - c), the

conclusion of Theorem 1 follows immediately.

As the first application of Theorem 1, we shall prove the following

result, which is a generalization of Walsh's Coincidence Theorem [5] for

the case when the circular region C is a circle \z — c\ = r.

THEOREM 2. Let G(zλ, z2,... ,zn) be a symmetric n-linear form of total

degree m, m < n, in zv z2,.-.<>zn and let C: \z — c\ < r be a circle

containing the n points wl9 w2,..., wn. Then in C there exists a least one point

w such that

Proof of Theorem 2. We write

P(z) = Π (z ~ *j) = Σ C(n, j)AjzJ (say),
y - l y=0

so that

(7) C(n,j)AH_j = (-l)JS(n,j)AH, j = 1,2,...,n,

where S(n, j) are the symmetric functions consisting of the sum of all

possible products of zl9 z 2 , . . . ,zw takeny at a time.

Now if G(wvw29....;wn) = G*, then the difference G(zl9 z 2,...,zn)

— G* is linear, symmetric and of total degree m < n, in the variables

zl9 z2, . ,zn. So that by the well-known theorem of algebra,

G(zv z2,...,zn) — G* can be expressed as a linear combination of the

elementary symmetric functions S(n, j)9 j
: = 0,l,...,m. That is, there
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exist constants B} so that

G(z1,z2,...,zn)-G*

+ ••• + S(n,m)Bm

n, m)BmAn_m}

by using (7).
If we define the polynomial Q(z) by

then the relation

G(wl9w29...9wH)-G* = 0

shows that the polynomials P(z) and Q(z) satisfy the condition of
Theorem 1. Since all the zeros of P(z) lie in \z — c\ < r, we conclude from
the 2nd part of Theorem 1 that Q(z) = G(z, z,...,z) - G* has at least
one zero in the circle \z — c\ < r. This is equivalent to the desired result.

We next apply Theorem 1 to deduce the following partial generaliza-
tion of a result due to Szegδ [4, p. 65].

THEOREM 3. If all the zeros of a polynomial Q(z) = ΣJLO C(m> J)BjzJ

of degree m lie in \z — c\ > r and if a is a zero of the polynomial P(z) =
Σy^o C(n, j)AjZj, A0An Φ 0, of degree n, m < n, then every zero w of the
polynomial R{z) = ΣjL0C(m, j)AjBjZj of degree m, has the form w =

— aβ, where β is a suitably chosen point in \z — c\ > r.

Proof of Theorem 3. If w is a zero of R(z), then

(8) R(w)= ΣC(m7-0

Equation (8) shows that the polynomials

znP(-w/z) = C(n,Q)(~l)nAnw
n + + C(n9 m)(-l)mAmwmzn~m

+ ••• + C{n, n)Aoz
n

and

Q(z) == C(m,0)Bo + C{m,l)Bxz + + C(m, m)Bmzm

satisfy the conditions of Theorem 1. Since all the zeros of Q(z) lie in
\z — c\> r, it follows from the first part of Theorem 1 that z"P(-w/z)
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has at least one zero in \z — c\ > r. If al9 α 2 , . . . ,αn are the zeros of P(z),
then the zeros of znP( — w/z) are — w/av — w/a1,...,—w/an. One of
these zeros must be β, where \β — c\> r. Hence we must have w = — cίjβ
for some j = 1,2,...,π. This completes the proof of Theorem 3.

REMARK 1. We may use the 2nd part of Theorem 1 to establish
Theorem 3 of [1] exactly in the same way as above for the case when the
disk \z\ < r is replaced by more general disk \z — c\ < r.

We shall now prove the following theorem, which is a generalization
of a result due to DeBruijn [2].

THEOREM 4. From the two given polynomials
n m

P(z)=ΣC(n,j)Ajz'' and Q(z) = £ C{m, j)B^
7=0 j = 0

of degree n andm, respectively, m < n, let us form the third polynomial
m

R(z)= ΣC(m9j)AjBjZ''
j = 0

of degree m. Given a subset S of the w plane, let P(z) G S for \z\ < r and
Q(z) Φ Ofor\z\ < 1. ThenR(z) e B0Sfor\z\ < r where

B0S= {Bos;s(ΞS}.

Proof of Theorem 4. Let δ be a real or a complex number. We replace
the polynomial P(z) by the polynomial F(z) = P(z) — 8 and hence R(z)
by H(z) = R(z) - 8B0. If δ £ 5, then F(z) does not vanish in \z\ < r. So
that all the zeros of F(z) lie in \z\ > r. Also, by hypothesis, the zeros of
Q(z) lie in \z\ > 1. Now if w is a zero of H(z), then by Theorem 2 of [1],
w has the form w = — aβ where a is a suitably chosen point in \z\ > r and
β is a zero of β(z). Hence \w\ = |α| |y8| > \a\ > r. This shows H(z) does
not vanish in \z\ < r. If therefore, 8B0 is a value assumed by R(z) in
|z| < r, then δ is a value assumed by P(z) in |z| < r. Since P(z) G S for
|z| < r, it follows that R(z) G i^S for |z| < r and this completes the
proof.

REMARK 2. Let P(z), <2(z) and R(z) be as in Theorem 4, and S be a
subset of the w plane. Let Q(z) G 5 for |z| < r and P(z) Φ 0 for |z| < 1.
Then by using Theorem 3 with c = 0, it can be shown, similarly as above,
that R(z) G ̂ 40S'for|z| < r, where A0S = {̂ 40̂ ; ̂  e S}

As an application of Theorem 4 and Remark 2, we deduce the
following result which is also a generalization of another result of De-
Bruijn [2].
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COROLLARY 1. If the polynomials P(z) and Q(z) defined in Theorem 4

have the properties

\P(z)\<l and \Q(z)\<l for\z\<h

then the polynomial R(z) of Theorem 4 has the property

4O |-|J5O | I for\z\ < 1.

Proof of Corollary 1. Let a be a complex number such that \a\ > 1.

Then the polynomial G(z) = (Q(z) - ot)/(Bo - a) does not vanish in

\z\ < 1. Since \P(z)\ < 1 for \z\ < 1, we use Theorem 4 with S: \z\ < 1,

r = 1, g(z) replaced by G(z), and i?(z) by (R(z) - aA0)/(B0 - a).

Hence it follows that

\R(z) — aA0\ < \B0 — a\ for \z\ < 1.

This gives

(9) | Λ ( z ) | ^ M 0 | + | Λ 0 - α | for |z| < 1

and for all a with |α| > 1.

Since |2?0| = |β(0)| < 1, we can choose an argument of a such that

\B0 — α| = |α| — |JB0|. Using this in (9) and letting |α| -» 1 we get

(10) \R(z)\<ίl+\A0\-\B0\ for|z|<l.

If we take F(z) = (P(z) - a)/(A0 — α), |α| > 1 and use the above re-

mark, we can similarly show that

(11) \R(z)\*l+\B0\-\A0\ for|z|<l.

The required result now follows by combining (10) and (11) and the proof

is complete.

As another application of Theorem 1, we shall next prove the follow-

ing generalization of a result due to Walsh [5].

THEOREM 5. From the two given polynomials
n n

P{z)=ΣajZj = o
7 = 0

and

J J

y-o 7-1
of degree n andm, respectively, m < n, let us form the thir polynomial

m

*(*) - Σ (» ~ J)K-j
j-o
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of degree m. Then the following holds:

(i) // all the zeros of P(z) lie in a circle C: \z — c\ < r, then all the

zeros of R(z) lie in the point set S consisting of the m circular regions

obtained by translating C in the magnitude and direction of the vectors βj.

(ii) If all the zeros ofQ(z) lie in the circular region A: \z — c\ > r, then

every zero w of R(z) has the form w = β + a where β is a suitably chosen

point in A and a is a zero ofP(z).

Proof of Theorem 5. If w is any zero of i?(z), then

(12) R(w) =Σ(n -jV an-jQωM = 0.
y = 0

Equation (12) shows that the polynomials

P(z)=t«j*J and Q(w-z)= £ ( - I ) Λ 2 ^ M Z ,
7 = 0 j~0 J

of degree n and m, respectively, m < n, satisfy the conditions of Theorem

1. Since all the zeros of the polynomial P(z) lie in \z — c\ < r, it follows

from the 2nd part of Theorem 1 that the polynomial Q(w — z) has at

least one zero in \z — c\ < r. But the zeros of Q(w — z) are w — βv

w — β2,.. ,,w — βm. One of these zeros must be α, where \a — c\< r.

That is, we must have w = a + βj for somey = 1,2,... ,ra, where a is a

point of C. This completes the proof of the first part of the Theorem.

To prove the 2nd part of the theorem, we observe that the polynomial

R(z) can also be written in the form

«(*) = Σ (n -j)laΛ_jQM(z) = Σ (m

so that if w is a zero of R(z), then we have
m

R(w) =Σ(™ -jV bm-jPin-m+J>(w) = 0.
7 = 0

This equation shows that the polynomials

P(w-z)= Σ^Y^ψ1^ and δ(z)=Σy

also satisfy the conditions of Theorem 1. Since all the zeros of Q(z) lie in

\z — c\ > r, it follows from the first part of Theorem 1 that P(w — z) has

at least one zero in \z — c\> r. But the zeros of P(w — z) are w — α1?

w — α 2 ? . . . ,iv — an9 therefore, it folflows that for at least one j =

1,2,...,«, we have w = α7 + β, where β is a suitably chosen point in A.

This is equivalent to the desired result.
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Exactly in the same way as Theorem 5, we may deduce the following

result from Theorem 1 of [1].

THEOREM 6. From the two given polynomials

7 = 0

and

of degree n andm, respectively, m < n, let us form the polynomials

7 = 0

of degree m and

j
7-0

of degree n. Then we have the following:

(i) If all the zeros of P{z) lie in \z\ > r, then every zero w of Rx(z) has

the form w = a + β, where a is a sutiably chosen point in\z\> r and β is a

zeroofQ(z).

(ϋ) If all the zeros ofQ(z) lie in \z\ < r, then every zero w of R2(z) has

the form w = a -f- β, where β is a suitably chosen point in\z\ < r and a is a

zero of P(z).

As an immediate consequence of Theorems 5 and 6 we have the

following corollary, which presents a generalization of a result of Kakeya

[3].

COROLLARY 2. // all the zeros of a polynomial P(z) = Σ?]s=oaJz
J of

degree n lie in \z\ < rx and all the zeros of a polynomial Q(z) = ΣJLO bjZJ of

degree m lie in\z\ < r29 then all the zeros of the polynomials

7 = 0

of degree m and

of degree n lie in \z\ < rx 4- r2.
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This follows from the fact that \a\ < rλ and \β\ < r2 imply |w| =

\a + β\ < rx + r2.
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