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REDUCIBILITY OF POLYNOMIALS IN
SEVERAL VARIABLES. II

A. SCHINZEL

In Loving Memory of Ernst G. Straus

Let //(*/) be non-constant rational functions over a field K (i =
1,2,... ,w). A necessary and sufficient condition is given for reductibility
over K of the numerator of the sum Σf=1 f,(xt) in its reduced form,
provided n > 3. In particular the numerator is irreducible if char K = 0,
which generalizes a theorem of Ehrenfeucht and Pekzyήski and answers
a question of M. Jarden.

A. Ehrenfeucht and A. Peίczyήski answering a question of A.
Mostowski have proved that a polynomial

where F9 G, H are nonconstant polynomials over the complex field C is
irreducible over C. For the proof which extends to all fields of characteris-
tic zero see [3] or [5]. In [4] (p. 53) the following generalization to fields of
arbitrary characteristic has been proved. Let K be a field and F,G, H e
K[x] \ K. Then F(x) + G(y) + H(z) is reducible over K if and only if

F(x) - F(0) = L(fi(x)) f G(y) - G(0) =

where L G Jί[ί] is an additive polynomial, Fλ e K[x\ Gx e K[y], Hx e
Λ:[z] and L ( 0 + F(0) + G(0) + JΪ(0) is reducible over K.

Let us adopt the following

DEFINITION 1. A rational function is reducible over K if the numera-
tor in its reduced form is reducible over K.

Recently M. Jarden has asked whether with this definition polynomi-
als in Ehrenfeucht and Peίczyήski's theorem can be replaced by rational
functions. We shall answer this question in the affirmative by proving a
more general result concerning fields of arbitrary characteristic. This
generalizes also the result quoted above. To formulate it we need some
notation.
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532 A. SCHINZEL

DEFINITION 2. For a rational function / e K(x) o r d / i s the order of

the pole of / at infinity and c(f) is the constant term in the Laurent

expansion of/at infinity, i.e. of/viewed as an element of K^x'1)).

THEOREM. Let K be a field and let n > 3, / e K(xi)\K (i =

1, 2,.. .,«). The rational function Σ " = 1 /, w reducible over K if and only if at

least one of the following three conditions is satisfied.

(i) There is an additive polynomial L and rational functions gt (i =

1,2,... ,«) such that

(1) L e K[z], g i e * ( * , ) , / , - c(/ ;) = L(g,) (i = 1,2,...,«) ««J

(2) L + Σ ? . ! <:(/,) iϊ reducible over K.

(ii) char^Γ= 2 and ίλere exist rational functions g, e ^Γ(x;) (/ =

1,2,... ,n) and elements c, d, g 0 e Ksuch that \[d <£ K

^ (/ = 1,2, . . . ,«) ,
g,

= 0 or

(iii) c h a r ϋ : = 2, o r d / < 0 (/ = l,2,...,/i), (1) α«J (2) Â W w/rt K

replaced by a quadratic inseparable extension K of K and L + Σ " = 1 c{ft) is

not a constant multiple of the square of a polynomial irreducible over K.

COROLLARY 1. If K is a field of characteristic 0, n > 3 and fi e

i = 1,2,... ,/i) thenH%λ fis irreducible over K.

COROLLARY 2. // K is an algebraically closed field of characteristic

p, n > 3 and f e ^ ( x z ) \Jf, rAê z Σ " = 1 / is reducible over K if and only if

f(x) = h^x)? + cht{x\ where A, e K(x) (i = 1,2,...,/?) α/?Jc e iΓ.

In the case of polynomials and n = 3 the last corollary has been

proved by Tverberg [6].

COROLLARY 3. // char K Φ 2 or K is perfect (i) constitutes a necessary

and sufficient condition of the reducibility ί>/Σ"=1 / over K.

Proofs of the corollaries are given towards the end of the paper. An

example given at the end shows that for every field K of characteristic two

that is not perfect the case (iii) of the theorem actually occurs.

The proof of the theorem is rather long. It incorporates suggestions

made by J. Browkin, R. Dvornicich and M. Jarden, which are gratefully
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acknowledged. For the case of K of characteristic zero M. Fried has found

a different proof based on Proposition 2 of his paper [0].

For the sake of brevity we introduce the following notations and

notions.

DEFINITION 3. For a polynomial F e J£[x]|F| is the degree of F, l(F)

is the leading coefficient of Fand F{u,v) = v^F(u/υ).

DEFINITION 4. A rational function is strongly reducible over K if the

numerator in its reduced form is reducible over K and not equal to a

constant multiple of the square of a polynomial irreducible over K.

DEFINITION 5. For a field K, Kis its algebraic closure.

We begin with a generalization to rational functions of the Lemma

to Theorem 11 (p. 50) of [4].

LEMMA 1. Letf(xv ...,xk) and /*(/, yl9... ,y{) be rational functions over

K, the former non-constant the latter nonconstant and of non-negative order

with respect to t and to at least oneyy

If the function

r{f{xl9...,xk);yl,...9yl)

is reducible (resp. strongly reducible) over K then

f=h(g), heK(u), geK(Xl,...,xk)

and

is reducible {resp. strongly reducible) over K.

Proof. For the sake of brevity put (xl9... ,xk) = X, (yχ9... 9y{) = F,

and let r = Λ/Λ*, where R, R* e ίΓ[ί, 7], (Λ, JR*) - 1. Let p, p* be the

degree with respect to / of R and ϋ * respectively.

By the assumption, p > p*. If

f=~r, wbereF,F*GK[x],(F9F*) = l

we get

(3) r(f,Y)= F ( / ' 7 )

R*(f, Y) • F*p '
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The conditions (R, Λ*) = (i% F*) = 1, p > p* easily imply that the

numerator and the denominator on the right hand side of (3) are coprime

polynomials. Therefore, reducibility of r(f9 Y) over ί m e a n s that

(4) R(f, Y) - F** = P(X, Y) Q(X, 7),

where

(5) P,QeK[X9Y]\K.

Let

(6) R(f, Y) = Σ ^(/)M,.(y), A, e K[u],A0 Φ 0

(7) P(X,Y)= ΣB
i = 0

(8) Q(X,Y)= ΣCj
= 0

where Mi,PoQι are distinct products of powers of yλ,...,yι ordered

antilexicographically, so that Mo, Po, β 0 are first in order. By the assump-

tion Mo ί K.

Consider the greatest common factor D(u) of the polynomials At(u)

(0 < / < m). IfZ)(u)# 1

is a factorization of R(u, Y) and both assertions of the lemma hold with

h(u) = u,g=f.
If D(u) = 1 there exist polynomials Ei ̂  K[u] (0 < i < m) such that

ΣA,(u)E,(u) = l.
1 = 0

Hence

and the greatest common divisor of Aι(f)F*f> (0 < i < m) divides a

power of F*. However by the definition of p, p = \aj\ for some j < m and

then (AJ(f)F*p, F*) = 1 since (F, F*) = 1. Therefore the polynomials

Aι(f)F*p (0 < i < m) are relatively prime and by (4), (6) and (7) we have

(J?o,... ,Bp) = 1. Since Po is the first in the antilexicographic order among

Pi and by (5) P £ K it follows from (7) that Po £ K. Similarly Qo £ K. By
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Corollary 1 to Theorem 10 in [4] (p. 48) for all positive integers i < p and
j < q there exist polynomials

Qi9Q*eK[t'9υl9...,υm]

with integral coefficients monic with respect to / such that

t Aλ{f) Ajf)

Cj_ AJJI Am(f)
Cl 9 Λ / y \ 9 * 9 A / /• \ ^

0 ^

It follows that the field

is over K of transcendence degree 1 and being contained in K(X), in
virtue of a theorem of Igusa [2] (for an elementary proof see [4], §3 and
Appendix) it is generated over Kby a single function g ^ K(X)\K. Thus
we get

f=h(g), ^ = 6,1

where A, Z>f , c7 e A'(ί) (0 < / < /?, 0 <j < q). Since A0(f)F*p = 50C0 the
equation (4) takes the form

Λ ( * ( S ) , Y) = Λ ( M g ) ) • ( Σ M g W Y ) ) • f Σ c y )
\i=0 I \j=0

and since g <£ Kwe can pass to the equation

*(*(«), 7) = Λ(M«))f Σ ̂ (")i),(^)) ( Σ cy(«)
\/=0 / \y=0

Since both factors in brackets are of positive degree with respect to Y, the
function r(h(u), Y) is reducible over K. If /?(/, Γ)jp*^ is not a constant
multiple of the square of an irreducible polynomial we can assume that
PQ~ι & K(X). Hence the ratio of the two brackets is not in K(u) and
r(h(u), Y) is strongly reducible over K.

LEMMA 2. // Σk

J=1 Aj{x)Bj{y) = 0, where Ap 5y e K[ί] (1 < j < k)
and I is the dimension of the linear space spanned over K by Aj (1 < j < k),
m is the dimension of the linear space spanned over K by Bj(l < j < k) then
I + m <k.
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Proof. Assume that Aι,...,Aι are linearly independent over K and

that

Λ = Σ a.jAj, <*ij G κ ( ! < i < k Λ <j < k).
7 = 1

We get

ΣAJ(x)[BJ(y)+ Σ β ί ; ί ,w)"0.
y=l \ /=/+l /

Since Aι(x),...9Aι(x) are linearly independent over K they are lin-

early independent over K(y) hence

k

Bj(y)+ Σ aιJBι(y) = 0 (1 <j <l)

and m < k — I.

LEMMA 3. Let f e K(z)\K, where K is algebraically closed. There

exists a homography (fractional linear transformation) χ e K(x) such that

o r d / ( χ ) > 0 .

Proof. Let/ = F/i7*, where F, F* e J5T[z] and (F, F*) = 1. If |F*| <

| F | we take χ(x) = x. If |F*| > \F\ we have |F |* > 0 hence there exists a

ξtΞ K such that F*(£) = 0. Clearly F(ξ) Φ 0. We take

and get

n F*(fjc + l,jc) *

Now F*(|, 1) = 0, F(ξ, 1) =£ 0, hence the degree of the numerator of

f(χ(x)) is |F |*, the degree of the denominator is smaller.

LEMMA 4. ///, e iί( JC,) \ ϋΓ (/ = 1,2), ^ w algebraically closed and

(9) ΛW+AW

(10) h = H(χ), g = χ-1(g1(x1) + g2(x2)),

where H e tf[z], g, e ^(x,) (/ = 1,2) a/i</χ(r) = t or \/{t - γ) (γ e A")

depending on whether h
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Proof. Consider first the case, where h is a polynomial. Suppose that

(11) ft-F /F*, where Fi9F*eK[xt]wd{Fi9F*) = l(i = l92).

The assertion of the lemma is invariant with respect to rational transfor-
mation of xi (i = 1,2), hence by Lemma 3 we may assume that \Fέ\ > \F^\

(ι = l,2).
Let

(12) g = jϊ, P,P*eK[xl9x2],(P9P*) = l.

Clearly the denominator of h(g) is P*lΛi? on the other hand the

denominator of fλ + f2 is FX*F2* since (FfixJ, F2*(x2)) = 1. Hence by (9)

F*F*P*-\h\ e K

and

(13) P* = QiQ2, where & € = * [ * . ] .

Now put in (9) xλ = ξv where ξx & K is chosen so that FfiξJ Φ 0. We

get

hence subtracting from (9)

(14) Λ(^)

where /?x is the slope of h, hence a polynomial of degree \h\ — 1. We have

by (12)

and the denominator of Λi(g(Λx, x2), g(ζι, x2)) divides (QιQ2)
w~1- It

follows from (14) that

J»(*i, x2)QiUι) - P(ii, X2)QiM\{Fi(xi)Fι*tiι) ~ Fι*(

Thus

(15,) P(xv χ2)Q1U1) - P(ξ1, x2)Q1{x1) = A,B2,

where Ax e /sTf̂ J, 5 2 e ^[x 2 ] and

(16,) B2\Q2

hK
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Similarly choosing £2 so that F2*(ξ2) ^ 0 we find

(152) P(xl9 x2)Q2U2) - P(xl9 ξ2)Q2(x2) = A2B19

where A2 e AΊ*2], 2^ e ^ [ x j and

(162) ΛxlβfL

Eliminating P(xly x2) from the formulae (151) and (152) we get

(17) Q2(ξ2)P(ξ1, x2)QiM + QitiiUiM^M

= Q1(ξι)P(xι,ξ2)Q2(x2) + QdQA^xjB^xJ.

Let /, be the dimension of the linear space spanned over Kby Ai9 Bi9 Qi9

P(xι, ^2)L3_1=^3_I 0
 = 1>2). By Lemma 2 we have

l1 + ί2< 4.

If for i = 1 or i = 2 we had /,. = 1 it would follow that Ai/Qi e K,
hence by (15,) Q,\P and by (12) and (13) β, eK,A,e K. Thus by (15,)
P e A"[x3_,.], by (13) P* e ^[xj.,] and by (12) g e A"(^3_,) contrary to
(9) and/ £ iL Therefore

lx = /2 = 2.

If, for an ι < 2, B3_i9 Q3_ are linearly dependent then B3_i = cQ3_i9

c ^ K, and (15,) gives

thus (10) holds with H = h, χ(t) = t and gj(xj) equal to the first or the
second term on the right hand side of (18) depending on whether
j = 3 — i oτj = i.

If, for an j < 2, B3_t and β3_ z are linearly independent then since
/3_/ = 2, P(xl9 JC2)|X „{ must be their linear combination over .fiΓ hence
(*3-/>β3-, ) divides'P(jc1,x2)|JC |. t and by (15,.) (53_,., β3_f.) divides
P(jcχ, JC2). Since (Q3_i9 P) = 1 by (12) and (13) it follows that
(2?3_,, e 3_ y) = 1 and, by (16,), B3_t G tf\ {0}, 23. , « ΛΓ.

Thus for h being a polynomial it remains to consider the case

In this case the condition /x = /2 = 2 gives for / = 1 and 2
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where an b^ ci9 dt e K (i = 1,2). Substituting this into (17) and compair-

ing the coefficients of (?,-(*,) on both sides we get

, d3_, = 0 (/ = 1,2).

It follows now from (15j) that

P(xx, x2)QxUx) = c2Qx(xx)Q2(x2) + bxBxB2,

hence by (9), (12) and (13)

c2 bxBxB2

I I C I / ) j C I # J I V I I I I"V"
/ i l C i j \s.Λ V ζ i / ^ ^ 1 V 1 / }£9 V 9

The order of the left hand side with respect to xλ is positive, the order of
the right-hand side at most 0, thus we get a contradiction.

Consider now the case, where h <£ K[t\

If \S\ < |S*| and 5* = c(t - γ) | S* ! then if we make the substitution
t = γ + z~ι we get

where So = z^S(y + z'1), So* = zιs^S*(y + z~x) e K. Since h0 e K[z]
and

we get by the already proved case of the lemma

thus (10) holds with H = ho,χ = \/{t - γ).
If |S | > IS*I or S* has at least two distinct zeros then the denominator

of h(g) has by (12) a factor of the form (&P + β*P*)(β2P + β$P*),
where β,, β* e /sΓ and βλβ2* - β?β2 Φ 0. Since the denominator of fλ + f2

is F*F2* we get by (9) for i = 1,2

J8.P + i8,*P = ρ. β?.,., where Q,, Q* e ^[x,] \{0}.

It follows that

(20) P = axQλQ*2 + cc2Q?Q2, P* = «1*β1*ρ2 + o j β ^ j ,
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where ai9 a* e K (/ = 1,2), c^α* — α2α* ^ 0 Now comparing the
numerators of the two sides of (9) we get by (12) and (19)

(21) F(xl9 x2) = Fι(x1)F2*(x2) + Fι*(x1)F2(x2)

= βS(P9 p*)p*maχ(°Ί's*l-l'sl).

Since (Fl9 Ff) = 1, FxFf ί ί w e cannot have F <Ξ K. Let G be a
factor of i 7 irreducible over K. Now we shall use an argument taken from

[1]
Consider the field M of algebraic functions on the curve G(xv x2) = 0.

Let L be the subfield of M equal to K(xx) Π K(x2).
In virtue of Lύroth's theorem L/K has a single generator w = p, (3c,.),

wherep CΞ # ( * , ) ( / = 1,2).
If G(3cl9 3c2) = 0 then F(xx, x2) = 0 and since G I J F ^ * by (11) and

(21)

Λ(*i) = -f2(x2) ^ L

hence

(22) {-lY^MxJ-τiw), τeK(w).

It follows in particular that w & K9 pt & K(i = 1,2).
On the other hand, by (21)

S(P(xl9 x2)9 P*(xl9 3c2))P*(x1? 3c 2 ) m a x ( 0 ^ | - | 5 | ) = 0.

The left-hand side is the product of linear forms in P(xv x2)9 P*(xv

hence for suitable δ, 5* e K not both 0 we have

Hence by (20)

where

γx = 5«! + δ*αj, γ2 = -δα 2 - δ*αf.

If 7! = 0 or γ2 = 0 then γx = γ2 = 0 since Π, 2

= 1 β,β* # 0. Since
a2a* Φ 0 this gives δ = δ* = 0, a contradiction. Thus

ϊ, e A { 0 } (ί = 1.2).

Moreover
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and thus

(23) γ #

Substituting w =

| L - T o ( w ) , τo<=K(w),i = 1,2.

x,.) we get from (22) and (23)

ΓVΛx,.) = τ(Pί(x,)) (, = 1,2),

^ T ^ - T o ί p , ^ ) ) ( 1 - 1 , 2 ) .

The obtained identities are clearly independent of the equation G(xv x2)

= 0 thus we can replace in them x/ by xέ. Substituting into (9) by means

of (12) and (20) we get

" *

Since ρr(xι), P2{
χi) a r e algebraically independent it follows that for

independent variables ul9 u2 we have the identity

(24) τ ( M l ) - τ(u2) = h(
T O ( M 2 ) / '

Replacing if necessary w, by χ(w ;) (i = 1,2), where χ is a suitable

homography we may assume by Lemma 3 that

(25)

Thus

(26)

(i=1 2)

where |Γ 0 |> |Γ 0 * | and {To, To*) = 1.

Let moreover

(27)

If Ao had a pole/? # 0, oo then in virtue of (24) and (26) τ(uι) — τ(u2)

would have in the denominator the factor TQ(uι)T0*(u2) — jp7τ

0*(ι/1)Γ0(w2).
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Since the denominator of τ{uλ) — τ(u2) is T*(uι)T*(u2) we would get

ToMTo iut) -pτo*(Ul)τo(u2) = c^uj^M, c, e κ[Uι]

and in virtue of Lemma 2 for i = 1 or i = 2 Γ0(w,), Γ0*(M() and C,(w,)

would span over K a linear space of dimension 1, which contradicts (25).

Therefore h0 has no pole except at 0 and oo and thus

hM = ^Γ> where* £ * [ * ] ,

Substituting this in (24) and taking into account (26) and (27) we get for

a n a e K\ {0}

(28) T{ux)T*{u2) - T*{Uι)T{u2)

(29) T*(Ul)T*(u2) = α(Γ 0 ( M l )Γ 0 *( M 2 )) r (Γ 0 *( M l )Γ 0 ( M 2 )) m a x ( ° ' | Λ | - r ) .

The second equation gives for suitable ε, ε* e K \ {0}

gj^rj^*max(0,|/?|-r) _ j ^ * _ g*j^*ry^max(0,|/?|-r)

hence by (25)

(30) r = m a x { 0 , | * | - r } ; |Λ| = 2r, |Γ*| = r(|Γo | + |Γ0*|).

Consider now the equation (28). The degree of the right-hand side with

respect to uλ is in virtue of (25) equal to

the degree of the left-hand side does not exceed max(|jΓ|, \T*\) and is equal

to it, if \TI φ IΓ*I, hence

(31) m = 2r|Γ0|.

Now the total degree of the left-hand side of (28) is by (30) and (31)

the total degree of the right-hand side is at most

I*|(|ΓO| + \T0*\) = r(2|Γ0| + 2|Γ0*|) < r(3|Γ0 | + \T0*\).

The obtained contradiction completes the proof.

LEMMA 5. IfH e K[t],f, e K(Xj), g, e K(x,)\K{i = 1,2) and

(32) Mx,) +f2(x2) = H(gl(Xl) + g2(x2))
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then

(33) H — H(0) is an additive polynomial

and

(34) /. - c(/,) = H(g, - c(gi)) - H(0) (i = 1,2),

(35) c(/1) + c(/2) = /f(c(g1) + c(g2)).

Proof. (Due to J. Browkin*). We prove the assertion (33) by induction

with respect to \H\. If \H\ < 1 the assertion is obvious. Assume that it is

true for all H of degree less than d > 1 and consider an H with \H\ = d.

Let m be the greatest exponent such that g2 G JSΓ(X^). We have

(36) g2 = g3(x?), where g3<ΞK(x3)\K

and by (32)

(37) /2=/3(*2m)> / 3 ^ ( 4

Moreover

(38) g; Φ 0

since otherwise char K = /?, g3 e K(xξ) and g2 e .SΓ(xfm) contrary to the

choice of m. It follows from (32), (36) and (37) that

(39) / i + / 3 β t f ( g i + g3).

Differentiating with respect to x3 we get

£ = # '(& + g3)g3

In virtue of (37) and (38) we get H'(gι + g3) G i^(x3) and since gx ί

ίΓ(x3) it follows that Hf G ϋΓ. Thus char ϋΓ = /? and

(40) i/ = H'(0)t 4- i / 0 ( ^ ) ? ί ί 0

 e ^ ( w )

By (39)

Λ - H'(0)gl + /3 - £Γ'(0jg3 = i/0(gf + gf).

However by (40) |//0 | = J/p < d, hence by the inductive assumption

Ho — H0(0) is an additive polynomial and by (40) H — H(0) is also one.

In order to prove the last part of the lemma we observe that by the

additivity of H(t) - H(0) we have

Λ + Λ = H(gι - c(gι) + g2 - c(g2)) + H(c(gl) + c(g2)) - H(0)

= Σ (H(gi - c(gι)) - 1/(0)) + /f(c(g l) + c(g2)).

" The author's original proof was valid only for K algebraically closed.



544 A. SCHINZEL

Now we expand both sides into Laurent series in powers of xx and x2 and

since

c{H(gi-c(gl))-H(0)) = 0

we infer (34) and (35).

LEMMA 6. IfKis afield

γ + — — — G K(xl9 x2)
Si ~r 52

then either

y^K, gi-c(g,)<BK(Xi)(i = l,2), c(gl) + c(g2) e K

or

(41a) chaxK = 2, γ ί ί , γ2 e K,

(41b) g,. - c(gf.) = r - i — , Λf e ^(x,.) (, = 1,2)
At ; ~r y

(41c) c(gl) + c(g2) = Oor-r^—, ho<=K.

Proof. Ify^K then clearly

gi + g 2 e ί : ( x 1 , χ 2 )

hence gf. - c(gi) e ^Γ(x7) (/ = 1,2), c(gx) + c(g2) e .SΓ. Therefore we as-

sume that

(42) γίί.

Let

Si = ̂ , <?/, Gι G ΛΓ[χf.], (G / 9 G*) = 1 (i = 1,2).

We assume without loss of generality that /((?*) = 1 (/ = 1,2).

If for an i < 2 we had |G f | > |G*| then the leading coefficient with

respect to JC, in the numerator of γ 4- l/(gi + g2) would be γ/(G/)G3*_/,

in the denominator /(GI)G3*_I , hence y ^ K contrary to (42). Therefore

|G,.| < |G*| (/ = 1,2) and we have for i = 1,2

(44) Gf. = α.G* + J5Γ,., α, = c ( g / ) , J5Γf. G k[xt\ and -oo < |i/J < |G* | .

Thus we get

1 4- γα 2 + l)G*G2*
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If aγ 4- a2 Φ 0 the leading coefficient with respect to xλ in the denomina-

tor is («! 4- « 2 ) ^ * 4- H2 in the numerator is (γα 1 4- γα 2 4- \)G% 4- γ/f2

unless γαx 4- γ α 2 + 1 = 0, hence

(46) 7- : 7 L =
/((«! + «2)G2* + i/2) «l + «2

_ γ + _ ^ _ 6 J t . .

We have in this case

^ ' Λ < _i_ /u V 1 2 1 2 / G

G?H2) + GfG2* e K[xlt x2\.

Multiplying the second relation by (γc^ + γα 2 4- l ) / ( « 2 4- α 2 ) and sub-

tracting from the first we get

(48) ^—^{Hfii + GfH2) e K[xl9 x2].

The leading coefficient with respect to xt of the polynomial on the

left-hand side is

Hence

(49) l-—2H,eK[x,] ( i - 1 , 2 ) .
(«i + α2)

Let 1 = ωx, ω 2 , . . . ,ωA be a basis of the linear space spanned over Kby the

coefficients of Gf, G2* and let

(50)

The condition

A: /

hence by (49)

(48) gives

1

t + « 2 ) 2 J 2j

1

(«1 + «2)2

•A-o (1 < J <

, x 2 ]

* In the original manuscript there was an error detected and corrected by R. Dvornicich.



546 A. SCHINZEL

This implies by Lemma 2

Gf, = βjHx, G*, = -βfH2, βj <ΞK(Kj< k),

b y (50) a n d (44)

( 5 1 ) G * = G * ! + < * # ! , G2* = G2*i - aH2, a^K

a n d b y (44)

( 5 2 ) \H,\<\G*\ (' = 1.2).

The condition (47) gives

— ί — (^G* + G*//2) + GftGi

#1G2* - G*λH2) - a2HιH2 e ^ [ J C 1 ? JC2]

hence

ί
a2

K[xl9 x2].

Considering the leading coefficients with respect to x1 and x2 we find by

(52)

/ i \ / i

- a\H-
x 4- α 2 / L i J \ ax + a2

hence also

(53) a1HιH2^K[xι,x2\.

A comparison with (49) gives

(54) aλ 4- a2 + a(a x 4- α 2 ) 2 G ί , αx 4- α 2 - α(α x + α 2 ) 2 G X"

hence

(55) 2 K 4 α 2 ) e ΛΓ.

By (42), (46) and (55) char K = 2. On the other hand, by (49) and (55)

a2(aλ 4 α 2 ) 4 e ^ and then by (54) (aλ 4 a2)
2 e JSΓ, by (46) γ 2 e ί and

(41a) holds. Moreover by (54) \/{ax 4 α 2 ) + α £ ί , hence by (46) γ 4 a

G ^ and (41b) holds in virtue of (43), (44), (49)-(51) with hi = Gfx/Hi 4

γ + α ( / = l,2). Finally (41c) follows from (44) and (46).

It remains to consider the case, where aλ 4 a2 = 0. In this case the

leading coefficient with respect to xλ of the numerator in (45) is 1, hence

(56) γ ^ G i * + G?H2) + G*G% e K[xx, x2],
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(57) Hfiϊ + G?//2 e K[xx, x2].

The leading coefficient with respect to xt of the left-hand side of (57)
is H3_i(x3_i), hence

(58) Hi^K[Xi] (ί = l,2).

The argument leading from (48) to (51) applies mutatis mutandis and
we get

(59) G* = G* + aHv G2* = G* - α//2,

(60)

Hence by (56)

(61) γ(^G2*i

(γ + o)jy,G2*, +(γ - ^ G f ! ^ - α 2 / / ^ e ί [ x , , Λ 2 ] .

Considering the leading coefficients with respect to xx and x2 on the
left-hand side of (61) we get by (60)

(62) (γ + α ^ e j f l j c , ] , (γ - α)ff2 e K[x2],

hence by (58)

(63) γ + α e A:, γ - α e A", 2 y £ ί .

By (42) and (63) we have char A: = 2. On the other hand by (59), (61) and
(62)

a2HιH2^K[x1,x2],

hence by (53) a2 e K, by (63) y2 & K and (41a) holds. Also (41b) holds in
virtue of (43), (44), (51) and (65) with A,. = (G,f/i/,) + γ + a (i = 1,2).
Since αx + α2 = 0 (41c) follows from (44).

LEMMA 7.//> e AP(ίi,...,/n)\{0} is of order Pj with respect to th

g, e A(x,)\ A, g, = G,/G*, G,, G* e ^ [ x ; ] ,

(G,.,G*) = 1 (/ = 1,2, . . . ,/I)

(64) K?,v..,g,,)

(65) r(ί, /J = ί
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Proof. We proceed by induction with respect to n. Consider first

n = 1. Let

r = a Π {t - τ)a\ a (= K, T c K, aT Φ 0.

The condition (64) gives

and since

(Gx - T G * , G X - τ*G*) = 1 for r # r*

we have

Gx - T G * € Ξ £ ( r e Γ ) .

If Γ = 0 (65) holds trivially with px = 0.

If card T > 2 we get Gx, Gf e K, contrary to gλ £ K. If T = { T}

considering that the highest terms of Gx and T G * cancel out, we get (65).

Assume now that the lemma is true for rational functions in n — 1

variables, consider an r e K[tv.. .9tn]\{0) and gi (/ = 1,...,w) satisfy-

ing the assumptions of the lemma.

Letτ = (/(G l l)//(G ))andput

(66) r ( / l 9 . . . , r j = Σ Rj(tn ~ r)r*-'/ Σ RJ(tn - T)*'J9

7=0 y=0

where R. e ^ [ / 1 ? . . . , / ^ J (0 < y < rn), /?* e JSΓ[/l5. . . , ί / l . 1 ] (0 < y <

rπ*), i? 0Λ* # 0, whence pw = rn - rΛ*.

Since g, e Kix^Kii = I929...,n - 1) we have

(67) Λ(ft,..-,gΛ-i) ^ 0 if Λ e i φ 1 ? . . . , / ^ J \{0}.

Thus Λo

Λo(gi, -g«-i) φ 0 and r(g1 ?... ,gπ_1, ίn) is of order pn with
respect to tn. Applying the already proved case n = 1 of our lemma to the
last rational function over the field K(xl9...9xn_ι)we infer from (64) that

(68) r(gι,...,gn_l9tn) = A{tn-τ)*, A e K(xl9... ,xn_x)

and
Λ 2 - 1

(69) A Π G*Pί e K.
i = l

Now, by (66) and (68)

(70) ^ = R0(gl9... ,gw_i



REDUCIBILITY OF POLYNOMIALS 549

(71) Rj(gi, ;gn-i) = 0 {rn*<j<rn),

RJ(gi, >gn-ι) = 0 (rn<j<rn*).

By (67), (70) and (71) RjRζ = RJR0 (0 <j < min(rn, #•„•)), RJ = 0 ( r * <

j < r j , RJ = 0 (/•„ < j < r ) hence by (66)

(72) Γ.|iL(/ j t_τ)*.

Thus i? o /^o is °f order p, with respect to x. (1 < / < «). By (69), and the
inductive assumption

R% tλ \
and (65) follows from (72).

LEMMA 8. // n > 2, g. e A:(JC,)\JR:, A,, e K{tt)\K (i = 1,2,...,«),
Â̂  number of pairwise nonproportional divisors of the numerator of

Σ" = i hj(gi) in K[xv... ,xn] is not less than the corresponding number for

the numerator ofΣ"=ι hi andK[tv... , ί j .

Proof. Let for / = 1,2,..., n

(73) (G,,G*) = {Hi,H*) = l.

The numerator of Σ " = 1 Af in its reduced form equals up to constant
factor ΣjLx ^ Π y = 1 y V / AΓ7* thus if Pl9... ,P W is a maximal set of pairwise
nonproportional divisors of the said numerator we have

(74) Σ # , Γ W β Λ β * (/c = l,2,...,m),

where Pk, Qk e ^ [ / l 9 . . . , / Λ ] . If /?/A:, qιk is the degree with respect to xi of
P A , Qk respectively, we getp / Λ + <^ = max(|i/ |, |fl.*D (i = 1,... ,/i). Now

(75) h(g)- i i ' ^ ( " ^

By (73) the numerator and the denominator on the right-hand side of (75)

are coprime polynomials. Hence the numerator ./V of Σ " = 1 Λ;(g,) is up to a
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constant factor
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Λ*|-|//,|) "ΓT I T *

11 nj
7 = 1

/ - I

ι = l ι = l

It follows that

(76) N

Assuming that for some distinct indices k, I < m

(77) f

we could apply Lemma 7 to the rational function Pk/P{. We would get by

that lemma

. β 6 j r .

Since PkPfι ί AΓ we have /?/A: # /?/7 for at least one / < λ? and without loss

of generality we may assume that/?,^ > pnl. It follows that

Pk(tl9...9tn_l9 r) = 0 f o r r =

and by (74)

Σ ̂ Π
/ = 1 7 = 1

i

Π
7 = 1

= 0.

Since by (73) //,*(τ) = Hn(τ) = 0 is impossible we have //rt*(τ) # 0 and

which implies hλ ^ K. The obtained contradiction shows that (77) is

impossible, which together with (76) completes the proof.
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COROLLARY. Under the assumptions of Lemma 8 */Σ" = 1 ht is reducible
{resp. strongly reducible) over K then Σf=1 ht{gt) is reducible {resp. strongly
reducible) over K.

Proof. Reducibility (resp. strong reducibility) of Σ"= 1 ht over K means
that the number of pairwise nonproportional divisors of its numerator in
K[xv... ,xn] is at least three (resp. at least four).

LEMMA 9. // char# = 2, c, d e K, 4d £ K, f e K{Xi)\K {i =
1,2,...,«)

c
(78) 2w // =

 2 .

then

g; +

and

= 1,2,...,/i)

= U or — , g o

G A

i-i go + d

Proof. By induction on n. Consider first n = 1. The equation (78)
implies

0 if ord i; > 0
C- if ord v < 0,

( \2 . i
υ) + ί/

hence

where

( v if ord y > 0

^Mf i f o r d y < 0 .

Note that t; 4- c(ι>) Φ 0 since by (78) υ & K. Assume now that the lemma
is true for n — 1 rational functions {n > 1) and that (78) holds. Regarding
(78) as an equation over the field K{xn) we get by the inductive assump-
tions

(79) /,--
Si +
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(80) Σc(//)+Λ = 0 or ^ go^K(xn).
So + d

Since the left-hand side of (79) is independent of xn, we get g, e ΛΓ(x,-)
(/ = 1,...,« - 1). Since/„ ί ί w e cannot have Σ"ll c{ft) + /„ = 0. Hence
(80) implies by the case n = 1 of our lemma

Σ c ( / , ) - 0 or -±— go^K

and the inductive proof is complete.

LEMMA 10 .//charK= 2J. e J5Γ(jcf.)(/ = l,2,...,/ι),

L / , = to2, b <Ξ K,v <Ξ K(xl9...,xn)
i - l

= *g,2, g, e ^(x,) (i =

Σ c(/y) = 6g0

2, go € K.

/ = 1

Proof. By induction on «.

For « = 1 the equation

Λ = bv2; v e ^ ( x j

implies

hence

which proves the assertion.
Assume now that the lemma is true for n — 1 rational functions

(n > 2) and consider the equation
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over the field K(xn). Applying the inductive assumption we infer that

// " *(//) = Hh Si e K(xi9 xn) (i = 1,...,«- 1)

and

Since the left-hand side of the first equation is independent of xn we have

gi e K(xt) (i = 19... 9n — 1). The second equation gives in virtue of the

case n = 1 of our lemma

ίn ~ C(fn) = bgl gn €= K(xn),

and the inductive proof is complete.

LEMMA 11. / / n > 3, f( e A : ( J C , ) \ Λ : ( I = 1 , 2 , . . . , Λ )

reducible (resp. strongly reducible) over K then there exist an additive

polynomial L e K[z] and rational functions gt^ K(xt) (i = 1,2) such that

(81) l-cU^Lig,) ( i - l , 2 )

α«J either

(82) I6ϊ[z], fce^.) (i = 1,2);

(83) L(z) 4- c(Λ) 4- c(f2) + Σ ft is reducible
i = 3

{resp. strongly reducible) over K

or char# = 2 tfm/ /Λere β c/5/ γ, ί E ί , Ao G U:, Λ̂. G ^(Λ:,) (Z = 1,2)

satisfying

(84) γ e t f , γ 2 ^ ^ , 8 = 0 ^
n0 -r γ

0

(86) L[-^- - δ) + c(/J + c(f2) + t f,is reducible

(resp. strongly reducible) over K.
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Proof. Reducibility (resp. strongly reducibility) of Σ"=ιfι over K

implies by Lemma 1 with/ = fΎ + / 2, υ = t + Σf=3 /, that

(87) Λ + / 2 = A(g)

(88) Ae^ί), g e ^ , x 2 )

and

(89) h -f Σ / is reducible (resp. strongly reducible) over ίΓ.
7 = 3

By Lemma 4 (88) implies either

(90) h = H(t), g = g l + g2

or

where // <= ̂ [ z ] , γ e ί , g , e ^(Λ;,) (/ = 1,2). In both cases

(92) fι+f2 = H(gι + g2)

hence by Lemma 5

(93) H - H(0) is an additive polynomial

and

(94) /, - c(/f) = Jϊ(gf - c(g|)) - 7/(0) (ί = 1,2),

(95) c(/ f) + c(/2) = ̂ ( c ( g l ) + c(g 2)).

Put

(96) L = H -7/(0), ^ = g f -c(g f . ) (/ = 1,2), δ = c ( g l ) + c(g2).

By (93) L is an additive polynomial and by (94) we have (81). Moreover

by (95)

(97) H(z) = L(z-δ) + c(f1) + c(f2).

In case (90) we get from (88) both (82) and δ e ί , hence (83) follows

from (89) and (97).

In case (91) we get from (88), (89) and (97)

(98)

(99) L(-4 δ) + c(fι) + c(f2) + Σ /,is reducible
\{ y I ,=3

(resp. strongly reducible) over K.
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On the other hand by (88) and Lemma 6 either

γ e K, (82) holds

or for suitable h0 G K, hi G K(xt) (i = 1,2)

(84) holds and ^ = ^ 7 7 ( i = = 1 > 2 )

In the former case in virtue of (99) and Corollary to Lemma 8 we have
(83). In the latter case by (98) we have (85) and (86) is identical with (99).

LEMMA 12. If n > 3, /, G K(Xi)\K (i = l,2,...,w),
> 0 andΣ"=1 /, w reducible (resp. strongly reducible) over K then there exist
an additive polynomial L G K[z] and rational functions hi G jδΓ(jc ) (i =
1,...,«) ŵcΛ /Â /
(100) Λ - c ( / / ) = L(g/) (i = l,2,...,11)

(101) L(z)-f-^c(/7)/5 reducible (resp. strongly reducible) over K.

Proof. We assume without loss of generality that

(102) o r d / ! > 0

and proceed by induction with respect to n. Consider first n = 3. By
Lemma 11 there exist an additive polynomial L G K[Z] and rational
functions g, G ^(JC^) (I = 1,2) satisfying (81) and either (82), (83) or
(84)-(86). In the latter case by (85) ord gλ < 0 hence by (81) ord fλ < 0
contrary to (102). Thus we have (81)-(83). Substituting in (83) z = xλ -f x2

we infer that L(i 1 ) + L(x2)4-c(/1) + c ( / 2 ) + / 3 is reducible (resp.
strongly reducible) over K.

Applying to the above sum the result already established but reversing
the roles of x2 and x3 we infer in analogy to (81)—(83) the existence of an
additive polynomial L G K[z] and rational functions hi G K(xt) (i = 1,3)
such that

(103) L(Xι) = L(hλ)

(104) /3 - c(/3) = L(h3)

3

(105) L(z) + Σ c(ft) + L(x2) is reducible
/ = 1

(resp. strongly reducible) over K.
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It follows from (81) and (103), (104) that (100) is satisfied with gt = /^(g.)

(ι = l,2),g3 = Λ3.
On the other hand by (103) and (105)

3

L(z + h1(x2)) + Σ c(fi) is reducible
ι = l

(resp. strongly reducible) over K

hence (101) holds.

Now assume that the Lemma holds for sums of n — 1 rational

functions (n > 4) and suppose that/, e. K[xt]\K(i = 1,2,... ,π), Σ" = 1 fέ

is reducible (resp. strongly reducible) over K and (102) holds.

Applying as before Lemma 11 we find that (81)-(83) hold for suitable

L and g, (/ = 1,2). Applying to (83) the inductive assumption we infer the

existence of an additive polynomial L e K[t] and rational functions

h e K(z), hi e K{xt) (i = 3,...,«) such that

(106) L(z) = L(h),

(107) / / -

(108) L + £ c(/J is reducible (resp. strongly reducible) over # .
i = l

It follows from (81) and (106), (107) that (100) is satisfied with

On the other hand (101) is identical with (108). The inductive proof is

complete.

Proof of the theorem. The condition (i) or (ii) or (iii) is necessary.

Assume w.l.o.g.

(109) o r d / ^ o r d / , (i = 1,2,...,*).

Reducibility of Σ" β l /) implies by Lemma 11 the existence of an

additive polynomial L e K[z] and of rational functions g, e £ ( * . ) (i =

1,2) satisfying (81) and either (82), (83) (Case A) or for char K = 2 and

suitable γ, 8 e ^ , h0 e JS:(x.) (/ = 1,2) (84)-(86) (Case B).

We shall consider these cases successively.

A. Substituting in (83) z = xx + JC2 we infer that

L(JCX) + L(JC 2 ) 4- c ( / J 4- c(f2) + Σ /i^is reducible over K.
i = 3
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By Lemma 12 there exist an additive polynomial L e K[z] and rational
functions

such that

(110) L(Xl) = L(g),

(111) fi-

L(z) + Σ c(//) i s reducible over ΛΓ.
i = l

It follows from (81) and (110) that

(112) y ;-c(/ / ) = L(g(g/)) ( / - 1 , 2 ) ;

thus condition (i) is satisfied with g, = g(g,) (/ = 1,2).

B. LetΛΓ = i«:(γ). By (84)

(113) K is a quadratic inseparable extension of K,

by (84) and (85)

(114) 8<ΞK, LeK[t], iieκ(x,)(i = 1,2).

By (85) ord gx < 0 hence by (81) ord fx < 0 and by (109)

(115) ordy;.<0 (/ = 1,2,...,«).

We distinguish two cases.

(Bl) £ ( τ z - " δ) + C(A) + C(A) +Σfi

is strongly reducible over K,

(B2) ( 7 r ) Λ 2

is not strongly reducible over K.

Bl. By (114) and Corollary to Lemma 8
n

L(z) + c(/x) + c(f2) 4- Σ /7 is strongly reducible over AT
ι-3

and on substituting z = xλ + x2

n

L(xλ) + L(x2) + c(fι) + c(f2) + Σ // i s strongly reducible over
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By Lemma 12 there exist an additive polynomial L e K[z] and rational

functions g <= K(xλ), gt e K(xt) (/ = 3,.. . ,n) such that (110) and (111)

hold and
n

L(z) + Σ c(fi) i s strongly reducible over J^.
ι = l

(81) and (110) imply (112) thus in view of (113)-(114) and (115) condition

(iii) is satisfied with gι = g{g^ (/ = 1,2).

B.2 Let N be the numerator (defined only up to a constant factor) of

Since N is reducible over .SΓ by (86) and not strongly reducible over K we

have |L | > 1,

(116) iV = αM 2 forsomeα e AT, M e *:[r, J C 3 , . . . , X J .

Since by (114) L is an additive polynomial over K and char K = 2 we have

(117) L = Σ ctz
2\ ct eK(i = 0,1,...,A:), cΛ ^ 0.

1=0

Consider first fc 1 and let

(118) 4i
1 = 3

F,F*^K[x3,...,xn},(F,F*) =

We get for a suitable p & K

p N = ( t - y)2F + co(t - y)F* + c,F*.

By (116) / may occur in Λf in even powers only, hence

(119) c0 = 0.

The coefficients of t2i (i = 0,1) in N must be of the form αM,2, M,

y2F + cγF* = POMQ, F = paM2.

Since/, e K(x,)\K(i = 3,...,«) we have by (118) F Φ 0, thus

(120) Y + ^ I V hίF h k
1 F \Mλ) F*

By (81), (85), (117) and (119)

hj + y2

hence cλ e ^ .



REDUCIBILITY OF POLYNOMIALS 559

By (118), (120) and Lemma 9 applied with d — γ 2 we get

gf + y

Σ c(f.) = 0 or ^
1 1

o + y
It follows from (84), (117) and (119) that

L(δ) = 0 or — ί j -
/2 +

thus

έ c ( / / ) = O or 2 °
ι

 2 or 2 °
ι

 2 or

However

if go * *o

Therefore (ii) holds with c = clf d = γ 2 , g0 replaced if necessary by h0 or

goho/(go + *o) andg. = * , (/ = 1,2).
Consider now k > 1 and let again (118) hold. We get for a suitable

= (/ - γ) F + 2^ c, (* — y) F*.

The leading coefficient of N with respect to t is p " 1 ^ hence by (116)

It follows that

* . . .
^ ( / - y ) F* = p

i = 0

and since ( ί — γ ) 2 Λ 1 e ϋ Γ [ ί ] we have for a suitable b ^ K, Mx

(122) £ φ - γ)2

Hence by (117)

(123) 1 = 1
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and by (81) and (85)
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= b M2(h,)

It follows that i e l Furthermore, by (121) and (122)

hence by Lemma 10

/, - c{fi) = bgf, g, e K(x,) (i = 3,...,n),

It follows from (84) and (123) that

L(8) = 0 or b

hence

M2(h0)
2

or b
M2(h0)

The condition (i) is satisfied with L = bz2.

The conditions (i), (ii), (iii) are sufficient.
(i) If (2) holds then also

( n \ n n n

Σ t% + Σ c(fi) = Σ L(t,) + Σ c{ft) is reducible over K.
In virtue of Corollary to Lemma 8

n n

Σ L(gi) + Σ c(fi) *s reducible over K
ί = l i = l

and by (1) the above sum equals Σ"= 1 fr

(ii) In virtue of Corollary to Lemma 8 it is enough to show that the
rational functions

n 1

/„(*!>•••>*«) = Σi = l +
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and fn + ι(xι,. — ,xn9 go) are reducible over K for every g o e ί and every

d e K such that {d <£ K.

The numerator of fn equals up to a constant factor
n n — \

Nn(xl9...9xn) = Σ Σ ^ - i - ^ i V ^ - i ^ + i ' ' *2-)
/ = 1 A: = o

« — 1 «

k=0 ι = l

where τy is the 7 th fundamental symmetric function. We have by a simple

counting argument

for k odd the right hand vanishes (char K = 2), hence

w - l

^ n ( x i , . . . , x J = Σ ^ , , - i - * ( * i > - • • > *

/c even

k even

which proves that fn(xv... ,xn) is reducible over K. The numerator of

fn + ι(xi,' >xn9 gn) equals up to a constant factor

N χ /A

hence fn + ι(xl9... 9xn9 g0) is reducible over K.

(iii) In this case L(z) + Σ " = 1 c{ft) is strongly reducible over K, hence

is strongly reducible over K. By Corollary to Lemma 8

1 = 1 1 = 1

is also strongly reducible over K. By (1) the above sum equals Σ " = 1 ft and

denoting its numerator by iV we have

(124) N = PQ; P,QΪΞ K[xl9... 9xn] \K9 PQι £ K.

It follows that

(125) N2 = P2Q2
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and since K is a quadratic inseparable extension of K we have

P2,Q2eK[xl9...9xn]\K.

If TV were irreducible over K (125) would imply P2Q~2 e K contrary to
(124).

Proof of Corollary 1. If char K = 0 all nonzero additive polynomials
are of degree 1, hence L(z) + Σ"= 1 c(f) is irreducible over K.

Proof of Corollary 2. If char K = p and K is algebraically closed then
as observed by Tverberg [6] every additive polynomial in K[z] of degree
greater than 1 is of the form Lξ + cL0, Lo ^ K[z], c ^ K. Since additive
polynomials of degree 1 do not satisfy (2) we have by (1) /, — c(f) =
L0(g,y + cL0(gl)(i = 1,2,...,n).

W e c a n a l s o f i n d e l e m e n t s at^ K s u c h t h a t

af + cai (/ = 1,2 Λ).

Hence

f^kf + chi (/ = l,2,...,/i)

withΛ, = L 0 (g / ) + Λ |.e J?Γ(χ.).

Proof of Corollary 3. If c h a r ^ # 2 or AT is perfect there are no
quadratic inseparable extensions of K, hence conditions (ii), (iii) are never
satisfied.

EXAMPLE. Let K be a field of characteristic 2 that is not perfect and
let d be an element of K, such that {d £ K. Take

f (i h 2 )
xf

We have c(/x) = 0 and/x cannot be represented in the form L(g1), with
L ^ K[z], gλ ^ K(xλ) for any polynomial L of degree / > 1. Indeed in
that case x\ 4- d = cG7, e e l , G G ̂ [ x j , hence / = 2, {d ^ K. Also
Λ ^ c/(<?i2 + dx)9 where c, dλ ^ K, g G ̂ ( X ^ , since the order of the
left-hand side is -1 and that of the right-hand side is even. On the other
hand

x
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and the additive polynomial {dz1 4- z is strongly reducible over K(yfd),
thus/, satisfy condition (iii). We note that

where τ0 = 1, τ\ is the j th fundamental symmetric function, Σ1 is taken
over j = n (mod 2) and Σ 2 over j & n mod 2.
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