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REDUCIBILITY OF POLYNOMIALS IN
SEVERAL VARIABLES. II

A. SCHINZEL

In Loving Memory of Ernst G. Straus

Let f,(x;) be non-constant rational functions over a field K (i =
1,2,...,n). A necessary and sufficient condition is given for reducibility
over K of the numerator of the sum ¥, f,(x,) in its reduced form,
provided n > 3. In particular the numerator is irreducible if char K = 0,
which generalizes a theorem of Ehrenfeucht and Pelczynski and answers
a question of M. Jarden.

A. Ehrenfeucht and A. Pelczyhski answering a question of A.
Mostowski have proved that a polynomial

F(x) + G(y) + H(Z),

where F, G, H are nonconstant polynomials over the complex field C is
irreducible over C. For the proof which extends to all fields of characteris-
tic zero see [3] or [5]. In [4] (p. 53) the following generalization to fields of
arbitrary characteristic has been proved. Let K be a field and F, G, H €
K[x]\ K. Then F(x) + G(y) + H(z) is reducible over X if and only if

F(x) - F(0) = L(F(x)), G(»)—G(0) = L(G,(»)),
H(z) - H(0) = L(H,(2)),

where L € K[t] is an additive polynomial, F;, € K[x], G, € K[y}, H, €
K[z]and L(¢t) + F(0) + G(0) + H(0) is reducible over K.
Let us adopt the following

DEFINITION 1. A rational function is reducible over K if the numera-
tor in its reduced form is reducible over K.

Recently M. Jarden has asked whether with this definition polynomi-
als in Ehrenfeucht and Pelczynski’s theorem can be replaced by rational
functions. We shall answer this question in the affirmative by proving a
more general result concerning fields of arbitrary characteristic. This
generalizes also the result quoted above. To formulate it we need some
notation.
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532 A. SCHINZEL

DEFINITION 2. For a rational function f € K(x) ord f is the order of
the pole of f at infinity and c(f) is the constant term in the Laurent
expansion of f at infinity, i.e. of f viewed as an element of K((x™')).

THEOREM. Let K be a field and let n> 3, f, € K(x)\K (i =
1,2,...,n). The rational function ¥.!_, f is reducible over K if and only if at
least one of the following three conditions is satisfied.

(i) There is an additive polynomial L and rational functions g, (i =
1,2,...,n) such that

(1) LeK]z)l, g€ K(x,),fi—c(f)=L(g)(i=1,2,...,n)and

(2) L + X7, ¢(f,) is reducible over K.

(i) char K =2 and there exist rational functions g, € K(x,) (i =
1,2,...,n) and elements c, d, g, € K such that Vd ¢ K

C

f;— c(f‘l) = glz + d (i = 1,27"’7’1)’
Ye(f)=0 or A
i=1 83"‘ d

(i) charK =2, ord £, < 0 (i = 1,2,...,n), (1) and (2) hold with K
replaced by a quadratic inseparable extension K of K and L + ¥!_, c(f,) is
not a constant multiple of the square of a polynomial irreducible over K.

COROLLARY 1. If K is a field of characteristic 0, n > 3 and f, €
K(x)\K(i=1,2,...,n) then X_, f, is irreducible over K.

COROLLARY 2. If K is an algebraically closed field of characteristic
p,n =3 andf, € K(x;)\ K, then X!, f, is reducible over K if and only if
fi(x)=h,(x)? + ch,(x), whereh, € K(x) (i =1,2,...,n)and c € K.

In the case of polynomials and n = 3 the last corollary has been
proved by Tverberg [6].

COROLLARY 3. If char K # 2 or K is perfect (i) constitutes a necessary
and sufficient condition of the reducibility of ., f; over K.

Proofs of the corollaries are given towards the end of the paper. An
example given at the end shows that for every field K of characteristic two
that is not perfect the case (iii) of the theorem actually occurs.

The proof of the theorem is rather long. It incorporates suggestions
made by J. Browkin, R. Dvornicich and M. Jarden, which are gratefully



REDUCIBILITY OF POLYNOMIALS 533

acknowledged. For the case of K of characteristic zero M. Fried has found
a different proof based on Proposition 2 of his paper [0].

For the sake of brevity we introduce the following notations and
notions.

DEerINITION 3. For a polynomial F € K[x]|F|is the degree of F, I(F)
is the leading coefficient of F and F(u, v) = v'F'\F(u/v).

DEFINITION 4. A rational function is strongly reducible over X if the
numerator in its reduced form is reducible over K and not equal to a
constant multiple of the square of a polynomial irreducible over K.

DEFINITION 5. For a field K, K is its algebraic closure.

We begin with a generalization to rational functions of the Lemma
to Theorem 11 (p. 50) of [4].

LeEMMA 1. Let f(xy,...,x,) and r(t, y,,...,y,) be rational functions over
K, the former non-constant the latter nonconstant and of non-negative order
with respect to t and to at least one y,.

If the function

r(f(xp— .. ,xk)§ Yire - a)’/)
is reducible (resp. strongly reducible) over K then
f=h(g), heK(u), g€ K(x,...,x;)
and
r(h(u);yl" .. ’YI)

is reducible (resp. strongly reducible) over K.

Proof. For the sake of brevity put (x;,...,x,) = X, (y,...,y) = Y,
and let r = R/R*, where R, R* € K[t,Y], (R, R*) = 1. Let p, p* be the
degree with respect to ¢ of R and R* respectively.

By the assumption, p > p*. If

f= fF; where F, F* € K [x], (F, F*) = 1

we get

F(f,Y)-F*°

() ") =
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The conditions (R, R*) = (F, F*) =1, p > p* easily imply that the
numerator and the denominator on the right hand side of (3) are coprime
polynomials. Therefore, reducibility of r( f, Y) over K means that

(4) R(f,Y)-F*=P(X,Y) - Q(X,Y),

where

(5) P,0 € K[X,Y]\K.

Let

©  RUT) = DADMOY), A4S KLl dy 0

(7) P(X,Y)= iB,Pi(Y), B,€K[X],B,#0
i=0

®  ox¥)= Yco ). Ceklxl.Go.

where M,, P,, Q, are distinct products of powers of y,,...,y, ordered
antilexicographically, so that M, P,, Q, are first in order. By the assump-
tion M, &€ K.

Consider the greatest common factor D(u) of the polynomials 4,(u)
O<i<m).lfDu)+1
. Ai(“)

R(u,Y)= D(u)- ; ()

M,(Y)

is a factorization of R(u, Y) and both assertions of the lemma hold with

h(u)=u,g=f.
If D(u) = 1 there exist polynomials E; € K[u] (0 < i < m) such that

iOA,.(u)E,(u) =1.
Hence
Y A(E() =1

and the greatest common divisor of A4,(f)F** (0 <i < m) divides a
power of F*. However by the definition of p, p = |a,| for some j < m and
then (A, (f)F**, F*) =1 since (F, F*) = 1. Therefore the polynomials
A, (f)F*? (0 < i < m) are relatively prime and by (4), (6) and (7) we have
(By,---,B,) = 1. Since P, is the first in the antilexicographic order among
P, and by (5) P ¢ K it follows from (7) that P, & K. Similarly Q, & K. By
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Corollary 1 to Theorem 10 in [4] (p. 48) for all positive integers i < p and
J < g there exist polynomials
Q,, SZJ* IS K[t; vl,...,vm]
with integral coefficients monic with respect to ¢ such that
N By Ap(f) 77 Ao(f) ’

G Al AN _
“( RN om)“"

It follows that the field
kB %G &,
B, B,” G, G

is over K of transcendence degree 1 and being contained in K(X), in
virtue of a theorem of Igusa [2] (for an elementary proof see [4], §3 and
Appendix) it is generated over K by a single function g € K(X) \ K. Thus
we get

C
f=n(g), -§3= b(g) O<i<p). &=cl0)0<isa).

where h, b;, ¢, € K(1) (0 <i < p,0 <j < q). Since Ay(f) F** = B,C, the
equation (4) takes the form

R((6).¥) = 48 | Ea(0)200)] | £ e 0,0
and since g & K we can pass to the equation
RO 7) = A, £ n )| £ o0, 0],

Since both factors in brackets are of positive degree with respect to Y, the
function r(A(u), Y) is reducible over K. If R(f, Y)F** is not a constant
multiple of the square of an irreducible polynomial we can assume that
PQO!' ¢ K(X). Hence the ratio of the two brackets is not in K(u) and
r(h(u), Y) is strongly reducible over K.

LEmMmA 2. If Z’j‘.=1 A(x)B(y) =0, where A;, B, € K[t] (1 <j < k)
and 1 is the dimension of the linear space spanned over K by A; (1 <j < k),
m is the dimension of the linear space spanned over K by B, (1 < j < k) then
I+ m<k.
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Proof. Assume that A4,,...,4, are linearly independent over K and
that

!
A=Y a,A, a,€K(<i<k1=<j<k).
Jj=1

We get

i=l+1

! k
g:lAj(x) Bj(y)+ by a;,B,(y) = 0.

Since A,(x),...,4,(x) are linearly independent over K they are lin-
early independent over K( y) hence

Bj()")"’ Z aijBl(y)zo (1<j<!)

i=[+1

andm < k — L

LeEMMA 3. Let f € K(z)\ K, where K is algebraically closed. There
exists a homography ( fractional linear transformation) x € K(x) such that
ord f(x) > 0.

Proof. Let f = F/F*, where F, F* € K[z] and (F, F*) = 1. If | F*| <
|F| we take x(x) = x. If | F*| > |F| we have |F|* > 0 hence there exists a
£ € K such that F*(§) = 0. Clearly F(§¢) # 0. We take

Ex +1
x

x(X) =
and get

st - FL

Now F*(§,1) =0, F(§,1) # 0, hence the degree of the numerator of
f(x(x)) is | F|*, the degree of the denominator is smaller.

LemMma 4. If f, € K(x,)\ K (i = 1,2), K is algebraically closed and
(9 fi(x) +£(x,) = h(g(xy, x5)), h € K(t), g € K(x,, x,)
then
(10) h=H(x), g=x"(&(x)+glxy)),

where H € K[z], 8, € K(x,) (i =1,2) and x(t) = tor1/(t — v) (y € K)
depending on whether h € K|[t] or not.
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Proof. Consider first the case, where # is a polynomial. Suppose that
(11) f, = F/F*, whereF,F* € K|[x,]and (F, F*)=1(i=1,2).

The assertion of the lemma is invariant with respect to rational transfor-
mation of x; (i = 1,2), hence by Lemma 3 we may assume that |F,| > |F*|
(i =1,2).

Let

(12) g=%, P,P* € K[x,, x,], (P, P*) = 1.

Clearly the denominator of h(g) is P*"!, on the other hand the
denominator of f; + f, 1s F;*F,* since ( F{*(x,;), F;*(x,)) = 1. Hence by (9)
FrFyP*Ve K

and
(13) P* = 0,0,, whereQ, € K|[x,].

Now put in (9) x; = §;, where §; € K is chosen so that F{*(£&;) # 0. We
get

H(&) +H(x,) = (g4, x,))
hence subtracting from (9)
(14)  filxy) = A(&) = h(g(x,, x,)) — k(g(&, x,))
= [g(xb x;) — g(&, %)) - hi(8(x1, x5), g(€5, x,)),

where A, is the slope of &, hence a polynomial of degree |4| — 1. We have
by (12)
P*(&1, x3) P(xy, x,) = P(&y, x,) P*(xy, X;)
s X - s X =
g(X1 2) g(gl 2) P*('fp xz)P*(xh xz)

= P(xy, x,)01(&1) = P(4,, x,) 0y(x1)
0:(£)0:(x1) Q,(x,)

and the denominator of h,(g(x;, x,), g(&;, x,)) divides (Q,0,)"~ 1. It
follows from (14) that

P(x;, x,)Q,(¢,) — P&, xZ)Ql(xl)I(Fl(xl)Fl*(gl) - F1*(x1)F1(§1))Q!2hl-
Thus

(15,) P(xy, x,)0:(£,) — P(&1, x,)01(x,) = 4,B,,

where 4, € K[x,], B, € K[x,] and

(16,) B, QY.
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Similarly choosing £, so that F;*(§,) # 0 we find

(15,) P(xp xz)Qz(gz) - P(xy, gz)Qz(xz) = A,B,,
where 4, € K|[x,], B, € K[x,] and
(16,) B,|o}".

Eliminating P(x,, x,) from the formulae (15,) and (15,) we get

(A7) Q,(&,)P(4), x,) Oi(x,) + 0,(£,) A4,(x,) By(x,)
= Ql(gl)P('xl’ éz)Qz(xz) + Q1(§1)A2(x2)31(x1)-

Let /; be the dimension of the linear space spanned over K by 4,, B,, Q,,
P(xy, x5)y, ¢, (i = 1,2). By Lemma 2 we have

L+1,<4

If fori=1ori=2wehad /, =1 it would follow that 4,/Q, € K,
hence by (15;) Q,|P and by (12) and (13) Q, € K, A4, € K. Thus by (15))
P € K[x;_,], by (13) P* € K[x,_,] and by (12) g € K(x;_;) contrary to
(9) and f; & K. Therefore

X3-1

L, =1,=2.

If, for ani < 2, B,_,, Q,_, are linearly dependent then B,_, = ¢cQ,_,,
¢ € K, and (15;) gives

P(x,, x,) _ P(x1, %) |5, N cd,(x,)
P*(xp,x,)  Qi(£)Qs_i(x5-)  0i(£)0,(x))

thus (10) holds with H = h, x(¢) = t and g;(x;) equal to the first or the
second term on the right hand side of (18) depending on whether
j=3—iorj=1i.

If, for an i <2, B; _; and Q,_, are linearly independent then since
ly_, =2, P(xy, x;)|, ¢ must be their linear combination over K hence
(B;_,, Q5_;) divides P(xy, x,)|, . and by (15) (By_,,Q, ) divides
P(x,, x,). Since (Q;_;, P)=1 by (12) and (13) it follows that
(Bs_;,Q3;) = 1and, by (16,), B, ; € K\ {0}, Q;_, € K.

Thus for A being a polynomial it remains to consider the case

B,,B,€ K\(0}, 0.0, ¢K.
In this case the condition /;, = [, = 2 gives fori = 1 and 2
4,(x;) =a,0,(x,) + bB,

(18)

P(xl’ xz)’x3_,=$3_, = CtQi(xi) +d,B,,
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where a,, b;, ¢;, d; € K (i = 1,2). Substituting this into (17) and compair-
ing the coefficients of Q,(x,) on both sides we get

a,+d,_,=0 (i=1,2).
It follows now from (15,) that
P(xy, x,)0:1(§) = ¢,0:(x1) Q,(x,) + by B, B,,
hence by (9), (12) and (13)
¢, 4 b,B,B,
0.(8)  Q1(£)0:(x1)0,(x,) )

The order of the left hand side with respect to x, is positive, the order of
the right-hand side at most 0, thus we get a contradiction.
Consider now the case, where & & K|[¢],

f(x1) + f(x,) =h

: _ S() . —
(19) h= Ok (S, $*) = 1.

If |S| <|S* and S* = c(z — y)'S"! then if we make the substitution

t=7v + z! we get

_ So(2) _
S(z2)

where S, = zIS'IS(y + z7Y), S = I5"IS*(y + z7!) € K. Since h, € K|[z]
and

h(t) ho(z),

7+ o) = o m |

we get by the already proved case of the lemma
1
——— = &i(x) + g:(x,)
g(xlaxz)_Y . 22

thus (10) holds with H = hy, x = 1/(¢ — v).
If |S| > |S*| or $* has at least two distinct zeros then the denominator
of h(g) has by (12) a factor of the form (B,P + B}P*)(B,P + B}P*),
where §,, B* € K and B,8} — BB, # 0. Since the denominator of f; + f,
is Fi*F* we get by (9) fori = 1,2
B.P + B*P* = Q0% . where Q,, OF € K[x,]\{0}.

It follows that
(20) P = 00,05 + a,0{0,, P*=af07Q, + a30,07%,
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where «;, a* € K (i =1,2), ajaf — a,ai # 0. Now comparing the
numerators of the two sides of (9) we get by (12) and (19)

(21) F(xhxz) =F1(x1)F2*(x2) +F1*(x1)F2(x2)
= '35(}), P*)p*max(O, IS*1=1SD)

Since (F,, Fi*) =1, F,F* € K we cannot have F € K. Let G be a
factor of F irreducible over K. Now we shall use an argument taken from
[1].

Consider the field M of algebraic functions on the curve G(x, X,) = 0.
Let L be the subfield of M equal to K(X;) N K(X,).

In virtue of Luroth’s theorem L /K has a single generator w = p,(X,),
where p, € K(x,) (i = 1,2).

If G(x,, x,) = 0 then F(X,, X,) = 0 and since G + F;*F,* by (11) and

(21)
fl(xl) = —fz()_cz) €L
hence
(22) D7) =1(w),  TeK(W).

It follows in particular thatw & K, p, € K (i = 1,2).
On the other hand, by (21)

S(P(fl’ 552)7 P*(xl, )_62))P*()_Cl, )—Cz)maX(O,IS*]——IS[) = O

The left-hand side is the product of linear forms in P(X;, X,), P*(X;, X,),
hence for suitable §, §* € K not both 0 we have
8P(x,, x,) + 8*P*(x;, X,) = 0.
Hence by (20)
710:(%1) 03(%,) — 1,07 (%)) Q:(%,) = 0,
where
v, = 8a; + 6*a%, Y, = -0, — 8*af.

If v, =0or y, =0 then y; = vy, = 0 since [;_, Q,0F # 0. Since a;af —
aya* # 0 this gives 8§ = 8* = 0, a contradiction. Thus

v e K\(0) (i=1,2).
Moreover
L QlF) | 0(y)
"ox(E) T 03(xy)
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and thus
Q[(xi) =
X (x,)
Substituting w = p,(X;) we get from (22) and (23)

(—1)i_1f-1(fi) = T(pi(ii)) (l = 1,2)’

0:(x,) - .
; = (X, =1,2).
Yi Ql*(il) TO(pl(xz)) (l )

The obtained identities are clearly independent of the equation G(X,, X,)

= 0 thus we can replace in them X, by x,. Substituting into (9) by means
of (12) and (20) we get

(23) Y n(w), 1 eK(w),i=1,2.

) = 7(0.(x.)) = ar Y ' (01(x1)) + ay75'1(05(x2))
(i) (palxa)) h( a3y ' (0(x,)) + a5 1 (p2(x,)) )

Since p,(x;), p,(x,) are algebraically independent it follows that for
independent variables u,, u, we have the identity

) ) — r(uy) = ho( () )

7o)

-1 -1
o zZ+ «a
where hy(z) = h e - 21> - -
ayy; z + afy,

Replacing if necessary u; by x(u,) (i = 1,2), where x is a suitable
homography we may assume by Lemma 3 that

_ Ty(u,) -
(25) To(ul) - TO*(UI-) (l - 172)’
where |Ty| > |T;*| and (7, T;*) = 1.
Thus
(26) TO(”I) _ Tb(ul)TO*(uz)

1o(u3) - To*(“1)To(u2).

Let moreover
27) ) = Ja

If h, had a pole p # 0, oo then in virtue of (24) and (26) 7(u;) — 7(u,)
would have in the denominator the factor T,(u,) Ty*(u,) — pTo*(u,) To(u,).

(T, T*) = 1.
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Since the denominator of 7(u,;) — 7(u,) is T*(u;) T*(u,) we would get
To(u) To*(u,) — pT*(uy) Ty (u,) = Ci(u,) Co(uy), C € K|u,]

and in virtue of Lemma 2 for i =1 or i = 2 Ty(u,), Ty*(u;) and C,(u,)
would span over K a linear space of dimension 1, which contradicts (25).
Therefore &, has no pole except at 0 and co and thus

R(z2)

ho(z) = , whereR € K|[z],

Substituting this in (24) and taking into account (26) and (27) we get for
ana € K\ {0}

(28)  T(u)T*(uy) — T*(u) T(u,)

= aR(To(ul)To*(uz)’ To*(ul)To(uz))(To*(ul)To(uz))
(29)  T*(uy) T*(w) = e Ty (1)) Ty*(3)) (5% () Ty () ™7,
The second equation gives for suitable ¢, e* € K\ {0}

STOrTO*max(O,|R|—r) = T* = 8*7-6*rT0max(O'lR|_r)

max(0, r—|R|)

hence by (25)
(30) r=max{0,|R|—r}; |R|=2r, |T*= r(]TOI + 'TO*‘).

Consider now the equation (28). The degree of the right-hand side with
respect to u, is in virtue of (25) equal to

R |Ty| = 2r|T| > r(|To| + | T*|) =T,

the degree of the left-hand side does not exceed max(|7T’|, |7*|) and is equal
to it, if |T'| # |T*|, hence

(31) |T| = 2r|T|.
Now the total degree of the left-hand side of (28) is by (30) and (31)

),

|T| +|T* = r(3]T0| +|To*

the total degree of the right-hand side is at most
IR|(ITyl +|T¥]) = r(21T| + 2| Tp*|) < r(3ITol +|T5]).
The obtained contradiction completes the proof.
LEMMA 5. IfH € K[t],f, € K(x,), 8, € K(x;)\K (i = 1,2) and
(32) filx) + £f(x,) = H(81(x1) + gz(xz))
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then

(33) H — H(0) is an additive polynomial

and

(34) fi—c(f)=H(g, —c(g))—H0O) (i=1,2),
(35) c(f)) + c(fy) = H(e(g) + c(g3))

Proof. (Due to J. Browkin*). We prove the assertion (33) by induction
with respect to |H|. If |H| < 1 the assertion is obvious. Assume that it is
true for all H of degree less than d > 1 and consider an H with |H| = d.

Let m be the greatest exponent such that g, € K(x%'). We have

(36) g, = g:(x3'), whereg; € K(x;)\ K
and by (32)

(37) f2=f3(x§")> fs € K(x3).
Moreover

(38) g #0

since otherwise char K = p, g, € K(x¥) and g, € K(x4™) contrary to the
choice of m. It follows from (32), (36) and (37) that

(39) hitfi=H(g +g).
Differentiating with respect to x; we get
fi=H'(g +g)g.

In virtue of (37) and (38) we get H'(g, + g;) € K(x;) and since g, &
K(x,) it follows that H' € K. Thus char K = p and

(40) H=HO):+ Hy(7), H,e K(u).
By (39)
h- H'(0)g, +/5 — H'(0)g; = Hy(gf + gf)-

However by (40) |H,| = d/p < d, hence by the inductive assumption
H, — H(0) is an additive polynomial and by (40) H — H(0) is also one.
In order to prove the last part of the lemma we observe that by the

additivity of H(t) — H(0) we have

h+hh= H(gl —c(g) + g~ C(gz)) + H(C(g1) +¢(g,)) — H(0)
2
= 2 (H(g — c(g)) — H(0)) + H(c(g,) + c(g,)).
i=1

* The author’s original proof was valid only for K algebraically closed.
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Now we expand both sides into Laurent series in powers of x; and x, and
since

c(H(g — c(g)) — H(0)) =0
we infer (34) and (35).

LEMMA 6. If K is a field
glek(x,.)\k (i=1,2), yek

1

Y +
&t &

€ K(xy, x,)

then either
YEK’ gi—c(gl)eK(xi) (l=1’2)’ c(gl)+c(g2)€K

or
(41a) charK=2, y&K, 7Yy?€Kk,

1 o
(41b) gi—c(gi)— ho+7v’ hiEK(xi) (l“ 1’2)
(41¢) c(g) +c(g,) =0o0r hy € K

hy+v’
Proof. If y € K then clearly
8 + 8 € K(xy, x,)

hence g, — ¢(g;) € K(x,) (i = 1,2), ¢(g,) + ¢(g,) € K. Therefore we as-
sume that

(42) Yyé¢ K.
Let

43)  g- Gi GG, €K[x],(G,G?) =1(i=1,2).
We assume without loss of generality that /(G*) = 1 (i = 1,2).

If for an i < 2 we had |G,| > |G*| then the leading coefficient with
respect to x; in the numerator of y + 1/(g; + g,) would be yI/(G,)G}_,,
in the denominator /(G,)G}_;, hence y € K contrary to (42). Therefore
|G,| < |G¥*|(i =1,2) and we have fori = 1,2

(44) G =aG*+H, a= c(gi)a H e Ie[xi] and —o0 < |H1I < {Gi*l'

Thus we get
1 Y(H1G2* + Gkaz) +(vay + ya, + 1)G}G}
&+ & HGS + GHH, +(ay + a,)GFG

(45) v+
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If a; + a, # 0 the leading coefficient with respect to x, in the denomina-
tor is (o) + @,)G¥ + H, in the numerator is (ya, + ya, + 1)G¥ + vH,
unless ya; + ya, + 1 = 0, hence
l(('yoz1 + ya, + 1)GF + sz) Yoy Fya, +1

(e + ,)G¥ + H,) o + a,

1
o + a,

(46)

e K.*

We have in this case

+ ya, + 1
@) o (HG + GHy) + YO T YR T 6r6r € K[ x,, x,],

o + a,

1

o + a,

(H,G¥ + GfH,) + G}G¥ € K|[x,, x,].

Multiplying the second relation by (ye; + ya, + 1)/(a, + a,) and sub-
tracting from the first we get

1

"‘_Z(Hle* + GTHz) € K[xl’ xz]-
(0‘1 + 0‘2)

(48)

The leading coefficient with respect to x, of the polynomial on the
left-hand side is

1
——-2—H3—1(x3~—i)'
(o + @)

Hence

(49) —-~1—2H, eK[x] (i=12).
(o + @)

Let1 = w,, w,,...,w, be a basis of the linear space spanned over K by the
coefficients of G}, GF and let

k
(50) G = Zl Glw,, Gl e K[x] (i=1,2).
)=
The condition (48) gives
a 1 1
Y —— G+ ——— G H, |w, € K[x;, x,]
=1\ (a; + a,) ’ (a + a;)
hence by (49)

HG} + GHH,=0 (1 <j<k).

* In the original manuscript there was an error detected and corrected by R. Dvornicich.
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This implies by Lemma 2

Gy, =BH, Gi=-BH, BeK1<j<k),
by (50) and (44)

A

(51) G} =GX+aH,, Gf=G} —aH,, a€Kk
and by (44)
(52) |H|<|Gx|  (i=1,2).

The condition (47) gives

1
o + a,

(H,G3, + G} H,) + GG,

+a(H,G% — Gt H,) — «®H\H, € K [x,, x,]

hence

+ a)Hle*l +( - a)Gl*le — oH,H, € K [x,, x,].

(a1+a2

Considering the leading coefficients with respect to x; and x, we find by
(52)

o + a,

1 1
(0‘1 T + oz)H1 € K[x], (0‘1 o a)HZEK[xz]
hence also
(53) o’H\H, € K[x;, x,].

A comparison with (49) gives

(54) o, +a,+ale, +a,) €K, o +a,—ala,+a,) €K
hence

(55) 2(a, + a,) €EK.

By (42), (46) and (55) char K = 2. On the other hand, by (49) and (55)
a*(a, + a,)* € K and then by (54) (a, + a,)? € K, by (46) y*> € K and
(41a) holds. Moreover by (54) 1/(«a; + a,) + a € K, hence by (46) v + «
€ K and (41b) holds in virtue of (43), (44), (49)—(51) with h, = G3/H, +
y + a (i = 1,2). Finally (41c) follows from (44) and (46).

It remains to consider the case, where a; + a, = 0. In this case the
leading coefficient with respect to x, of the numerator in (45) is 1, hence

(56) y(h,G} + G}H,) + G¥G} € K[x,, x,],
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(57) H,G} + G¥H, € K|[x,, x,].

The leading coefficient with respect to x, of the left-hand side of (57)
is H;_,(x;_;), hence
(58) H, € K|[x,] (i=1,2).

The argument leading from (48) to (51) applies mutatis mutandis and
we get

(59) Gy =G} +aH,, Gf=G}— aH,,
GreK[x] (i=12), a€ck,
(60) |H|<|G* (i=1,2).
Hence by (56)
(61) y(H,G} + GXH,) + GXG} + a( HG, — GXH,)
—azHle e K[xl, x2],
(v + «)H,G, +(y — @)GH, — «*H,H, € K[x,, x,].

Considering the leading coefficients with respect to x; and x, on the
left-hand side of (61) we get by (60)

(62) (y + @)H, € K[x,], (v — a)H, € K[x,],
hence by (58)
(63) y+a€K, y—a€K, 2y K.

By (42) and (63) we have char K = 2. On the other hand by (59), (61) and
(62)
o«’H H, € K[xl, x,5],
hence by (53) a* € K, by (63) y? € K and (41a) holds. Also (41b) holds in
virtue of (43), (44), (51) and (65) with h, = (GY/H,)+ v + a (i = 1,2).
Since a; + a, = 0 (41c) follows from (44).
LEMMA 7. If r € K(t,,...,t,)\ {0} is of order p, with respect to t,,
g, € K(x)\K, g=G/G* G, Gre K[xi]’

(Gi’ Gi*) =1 (i = 1’2""”’)
(64) r(g.--.8)[1G* ek
i=1
then

(65) r(ty,...,t,) =a
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Proof. We proceed by induction with respect to n. Consider first
n = 1. Let
r=al](t-7)", a€K,TcK,a, #0.
reT
The condition (64) gives
[1(G, -6r)" ek
reT

and since
(G, — 7G¥, G, — m*G}) =1 fort # 7*
we have
G, —-1GreKk (reT).

If T = & (65) holds trivially with p, = 0.

If card T > 2 we get G,, G € K, contrary to g, € K. If T = {7}
considering that the highest terms of G, and 7Gf cancel out, we get (65).

Assume now that the lemma is true for rational functions in n — 1
variables, consider an r € K[t,,...,1,]\ {0} and g, (i = 1,...,n) satisfy-
ing the assumptions of the lemma.

Let 7 = (/(G,)/I(G})) and put

(66) r(ty,..t,)= L R(t,—7)"/ X R, —7)" 7,
j=0 j=0

where R, € K[1,,...,1, ,](0 <j <r,), R* € K[t;,...,1, ,](0 < j <
rn*)’ ROR’(l; # O? Whence pn = rn - rn*.

Since g, € K(x,)\ K (i =1,2,...,n — 1) we have
(67) R(g,,...,8,.1) #0 ifReK|[t,,....,1, 1] \{0}.

Thus R,R¥(gy,---,8,-1) # 0 and r(gy,...,8,-1-t,) 1s of order p, with
respect to ¢,. Applying the already proved case n = 1 of our lemma to the
last rational function over the field K(x;,...,x,_;) we infer from (64) that

(68) r(gl""’gn——l’tn)=A(tn_T)pn’ A EK(xl"“’xn—l)

and

n—1
(69) Al] G K.
i=1
Now, by (66) and (68)
(70) A =Ry(8s--8-1)/RE(81- - 8u-1)

R, (g,-:8,-1) = AR¥(g1,....8,-1) (0 <j < min(7,, rn*)),
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(71) Rj(gl7"'7gn—1)=0 (rn* <jsrn),

R;‘(gly-"’gn—l) = O (rn <j =< rn*)'
By (67), (70) and (71) R, RE = R¥R, (0 <j < min(r,, 7)), R, = 0 (r,* <
J =< r), Ry =0(r, <j<r’) hence by (66)

R
72 r=—=2(¢t, — 7).

Thus R,/R¥ is of order p, with respect to x, (1 < i < n). By (69), and the
inductive assumption

and (65) follows from (72).

LEMMA 8. If n > 2, g, € K(x,)\K, h,€e Kt)\K (i =1,2,...,n),

the number of pairwise nonproportional divisors of the numerator of

"1 hi(g) in K[xy,...,x,] is not less than the corresponding number for
the numerator of Y7_, h,and K[t,,...,t,].

Proof. Letfori =1,2,...,n

G, H,
8= ge hmges GoGreKlx] HoHr S K1
(73) (G,G¥)=(H,H*)=1.

The numerator of ¥, A, in its reduced form equals up to constant
factor X7, H,I1}_, ;., H* thus if P,,...,P, is a maximal set of pairwise
nonproportional divisors of the said numerator we have

(74) Z‘Hzl—llij* lek (k 1927---7”1)9
i=1 J=1
J#FI

where P, O, € K|[t,,...,t,]. If p,,, q,, is the degree with respect to x; of
P,, Q, respectively, we get p,, + ¢q,, = max(|H,|, |[H*|) (i = 1,...,n). Now

*| __
H,(G,, G¥)Grmo0.IH? -1

Ht*( H,, Gz* ) Gi*max(o””rf—lH,*l)

By (73) the numerator and the denominator on the right-hand side of (75)
are coprime polynomials. Hence the numerator N of ¥, h;,(g,)isup toa
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constant factor

n h
0¥ 1H, ax(0.|H}|~|H,
Y H(G,, GF)Gxmairi-| .I)nH/*(Gi,Gl*)Gi*mm HEFI=1H,])

j=1
J*i
= 1—[1 G *max(H L) Z H (gl) I_IH*(g,
= i=1 j=1

J#Fi

U *P,;{’"I:AP gl’ -’gn)Qk(gl""’g")

= l_IGi*p"'Pk(gl’-'wgn) I_—[lGi*q"Qk(gp---’gn)-

It follows that

n

(76) I—[G*”‘PA(gI, 8N (k=1,2,....m).

i=1

Assuming that for some distinct indices k, / < m

(77) lj[1 Gx'+P.(g,,....8,) = c']j[1 Gx"P(g,....8,), c€K

we could apply Lemma 7 to the rational function P, /P,. We would get by
that lemma

M~_’_ (G) Pik = Pu .
P(t,....t,) I;[( (G*)) , a€K.

Since P, P! & K we have p,, # p,, for at least one i < n and without loss
of generality we may assume that p,, > p,,. It follows that

P(t),....t,_,7) =0 forr=1(G,)/I(G¥)
and by (74)
ZHHH*+H,,( )HH*=

/*l

Since by (73) H*(7) = H,(7) = 0 is impossible we have H*(7) # 0 and
n—1
Z hi + hn(T) = 0
i=1

which implies 4, € K. The obtained contradiction shows that (77) is
impossible, which together with (76) completes the proof.
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COROLLARY. Under the assumptions of Lemma 8 if X.I_, h, is reducible
(resp. strongly reducible) over K then X."_, h,(g,) is reducible (resp. strongly
reducible) over K.

Proof. Reducibility (resp. strong reducibility) of ¥”_, A, over K means
that the number of pairwise nonproportional divisors of its numerator in
K[x,,...,x,]1s at least three (resp. at least four).

LeMMA 9. If charK =2, ¢, d€ K, Vd € K, f, € K(x)\K (i =
1,2,...,n) and

“ c
(78) ,’;ﬁ:l)z"'d, v € K(xp,...,x,)

then
c

gl.2+d

fi—elf)= > g €K(x)(i=12,...,n)

and

c(f.)=0 or R e K.
Proof. By induction on n. Consider first n = 1. The equation (78)

implies

0 ifordv>0
c(fi) = —g———— ifordv < 0,
c(v)y +d
hence
fi—elf) = 5—
! ! g2+d’
where
v ifordv > 0
={d+
g={drul) o 4, <o.
v+ c(v)

Note that v + ¢(v) # 0 since by (78) v € K. Assume now that the lemma
is true for n — 1 rational functions (n > 1) and that (78) holds. Regarding
(78) as an equation over the field K(x,) we get by the inductive assump-
tions

(79)  fi—c(f) =

C
g2+d

1

, & €K(x;,x,)(i=1,2,...,n—1),
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n—1

(80) Elc(f,)+f,,=0 or ggid

’ gOE K(xn)'

Since the left-hand side of (79) is independent of x,, we get g, € K(x,)
(i=1,...,n — 1). Since f, & K we cannot have " ¢(f;) + f, = 0. Hence
(80) implies by the case n = 1 of our lemma
c
—¢ = ,
fo—c(f) e

n

g, € K(x,)

X

c
c(f,)=0 or , e K

1

I

and the inductive proof is complete.
LeEMMA 10. IfcharK = 2,f, € K(x,) (i = 1,2,...,n),

Y f=b? beK,vEK(x...,x,)
i=1

then
fi—c(f)=0bg:, g <€K(x,)(i=1,2,...,n)

and
Yc(f)=1bgl, sgEK.
i=1
Proof. By induction on n.

For n = 1 the equation
fi = bv?; v € K(x,)
implies
¢(fy) = be(v)’
hence
fi=e(f)=b(v~c(v)),

which proves the assertion.
Assume now that the lemma is true for n — 1 rational functions
(n = 2) and consider the equation

> /= bo?

i=1
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over the field K(x,,). Applying the inductive assumption we infer that

fi—c(f)=bg!, ge€K(x,x,)(i=1,...,n-1)
and

n—1

Yc(f)+£f=08, & €K(x,).

i=1

Since the left-hand side of the first equation is independent of x, we have
g € K(x;) (i=1,...,n — 1). The second equation gives in virtue of the
case n = 1 of our lemma

fo—elf)=bg;, 8. € K(x,),
Yc(f)=1bg, €K
i=1
and the inductive proof is complete.

LeMMa 11. If n >3, f, € K(x,)\K (i=1,2,...,n) and X', f, is
reducible (resp. strongly reducible) over K then there exist an additive
polynomial L € K|z] and rational functions g, € K(x,) (i = 1,2) such that

(81) fi—ef)=1L(g) (i=12)
and either

(82) Lek[z], &eK(x) (i=12);
(83) L(z) +c(f) +e(fy) + 2": f; is reducible

i=3
(resp. strongly reducible) over K

or charK = 2 and there exist v, 8 € K, hy€ K, h, € K(x,) (i =1,2)
satisfying

2 — .
(84) vy K, y*€K, 8—Oorh0+y,
8s) B[t —s|lek(), g=—— (i=1,2):
t""}’ ’ i h,+‘Y s ’
(86) z(ri—y - 8) +c(f,) +c(f,) + Y f is reducible
i=3

(resp. strongly reducible) over K.
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Proof. Reducibility (resp. strongly reducibility) of Y7 , f over K
implies by Lemma 1 with f = f, + f,, v = ¢ + X/, f, that

(87) fi + fr=h(g)
(88) heK(t), geK(x,x,)
and

(89) h + ) f is reducible (resp. strongly reducible) over K.
i=3

By Lemma 4 (88) implies either

(90) h=H(t), g=g +g
or
1
O h:H("Y)7 g=Y+g1igz’
where H € K[z],y € K, g € k(x,) (i = 1,2). In both cases
(92) fi+fi=H(g + &)
hence by Lemma 5
(93) H — H(0) is an additive polynomial
and
(94) fi—e(f) = H(g —c(g)) —H(O) (i=12),
(95) (1) + e 1,) = Hlelg) + e(g,)).
Put

(96) L= H - H(0), 2=g—c(g) (i=12), 8=c(g)+c(g).
By (93) L is an additive polynomial and by (94) we have (81). Moreover
by (95)
(97) H(z)=L(z—=8)+c(f) +c(fy)
In case (90) we get from (88) both (82) and & € K, hence (83) follows
from (89) and (97).

In case (91) we get from (88), (89) and (97)

(98) i(t_ly —3) e K(1),

(99) 1:( EY - 6) +c(f) +e(fy) + 2 f, is reducible

t 1=3

(resp. strongly reducible) over K.
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On the other hand by (88) and Lemma 6 either
y € K, (82) holds
or for suitable h, € K, h; € K(x,) (i = 1,2)

(84) holds and g, = (i=1,2).

In the former case in virtue of (99) and Corollary to Lemma 8 we have
(83). In the latter case by (98) we have (85) and (86) is identical with (99).

LEMMA 12. If n > 3, f, € K(x)\K (i = 1,2,...,n), max, _;_,ord f;
> 0 and !_, f, is reducible (resp. strongly reducible) over K then there exist
an additive polynomial L € K|[z] and rational functions h; € K(x,) (i =
1,...,n) such that

(100) fi—c(f)=L(g) (i=1,2,...,n)

and
n

(101) L(z) + Y. ¢(f) is reducible (resp. strongly reducible) over K .
i=1
Proof. We assume without loss of generality that
(102) ord f; > 0

and proceed by induction with respect to n. Consider first n = 3. By
Lemma 11 there exist an additive polynomial L € K[z] and rational
functions g, € K(xi) (i = 1,2) satisfying (81) and either (82), (83) or
(84)—(86). In the latter case by (85) ord g; < 0 hence by (81) ord f;, < 0
contrary to (102). Thus we have (81)—(83). Substitutingin (83) z = x; + x,
we infer that I:(xl) + i(xz) + c(fy) + c(f,) + f; is reducible (resp.
strongly reducible) over K.

Applying to the above sum the result already established but reversing
the roles of x, and x; we infer in analogy to (81)—(83) the existence of an
additive polynomial L € K[z] and rational functions 4, € K(x,) (i = 1, 3)
such that

(103) L(x) = L(hy)
(104) f3—c(f3)=L(h3)

(105) L(z) + ic(ﬁ) + L(x,) is reducible

i=1

(resp. strongly reducible) over K.
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It follows from (81) and (103), (104) that (100) is satisfied with g, = h,(g,)
(i=1,2), 8, = h,.
On the other hand by (103) and (105)

3
L(z + hy(x,)) + X c(f,) is reducible

i=1
(resp. strongly reducible) over K

hence (101) holds.

Now assume that the Lemma holds for sums of n — 1 rational
functions (n > 4) and suppose that f, € K[x, ]\ K (i = 1,2,...,n), X/_, f;
is reducible (resp. strongly reducible) over K and (102) holds.

Applying as before Lemma 11 we find that (81)—(83) hold for suitable
L and g, (i = 1,2). Applying to (83) the inductive assumption we infer the
existence of an additive polynomial L € K[¢] and rational functions
h € K(z),h, € K(x;) (i = 3,...,n) such that

(106) L(z) = L(h),

(107) fi—c(f)=L(h,) (i=3,...,n),

(108) L + Zn: ¢(f,) is reducible (resp. strongly reducible) over K.
i=1

It follows from (81) and (106), (107) that (100) is satisfied with
g =h(g) (i=12), g=h (i=3,...,n).

On the other hand (101) is identical with (108). The inductive proof is
complete.

Proof of the theorem. The condition (i) or (ii) or (iii) is necessary.
Assume w.l.o.g.

(109) oddfi>ordf (i=1,2,...,n).

Reducibility of ¥, f; implies by Lemma 11 the existence of an
additive polynomial L € K|[z] and of rational functions 8 € K (x) (i=
1, 2) satisfying (81) and either (82), (83) (Case A) or for char K = 2 and
suitable v, § € K, h, € K(x;) (i = 1,2) (84)-(86) (Case B).

We shall consider these cases successively.

A. Substituting in (83) z = x; + x, we infer that

L(x,) + L(x,) + c(f,) + c(f,) + ¥ f is reducible over K.
i=3
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By Lemma 12 there exist an additive polynomial L € K[z] and rational
functions

g € K(x,), g € K(x,) (i=3,...,n)

such that
(110) L(x)=L(g),
(111) fi—e(f)=L(g) (i=3,...,n),

L(z) + Y, c(f,) is reducible over K.

i=1

It follows from (81) and (110) that

(112) fi—e(f)=L(g(g)) (i=12)
thus condition (i) is satisfied with g, = g(g,) (i = 1,2).

B. Let K = K(v). By (84)

(113) K is a quadratic inseparable extension of K,
by (84) and (85)
(114) ek, LeK[t], g €K(x)(i=1,2).

By (85) ord g, < 0 hence by (81) ord f; < 0 and by (109)
(115) ord ;<0 (i=1,2,...,n).

We distinguish two cases.

(B1) L2 5)+c(f1)+c(f2)+éf,-

t—vy

is strongly reducible over K,

t

®) Ly -e)rn)reln)+ X

is not strongly reducible over K.
B1. By (114) and Corollary to Lemma 8
L(z) +c(fy)) +c(f,) + X f is strongly reducible over K
i=3
and on substituting z = x; + X,

L(x;) + L(x,) +c(f) +c(f,) + X f is strongly reducible over K.
i=3
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By Lemma 12 there exist an additive polynomial L € K[z] and rational
functions g € K(x,), g, € K(x,) (i = 3,...,n) such that (110) and (111)
hold and

L(z) + Y ¢(f) is strongly reducible over K.
i=1

(81) and (110) imply (112) thus in view of (113)—(114) and (115) condition
(111) 1s satisfied with g, = g(g,) (i = 1,2).
B.2 Let N be the numerator (defined only up to a constant factor) of

|
R R AR TR WA
Since N is reducible over K by (86) and not strongly reducible over K we
have |L| > 1,
(116) N =aM? forsomea € K,M € K[t, x5,...,x,].
Since by (114) L is an additive polynomial over K and char K = 2 we have

14

k
(117) L=Yc¢z¥ ¢e€K(i=0,1,..,k),c #0.
i=0

Consider first k 1 and let

n

(118) ( ) +c(fy) +e(fy) + Z F*’

F,F* € K[x5,....,x,], (F, F*) = 1.
We get for a suitable p € K
pN = (1 — v)’F + ¢o(1 — y) F* + ¢,F*.
By (116)  may occur in N in even powers only, hence
(119) " ¢o = 0.
The coefficients of 7% (i = 0,1) in N must be of the form aM? M,
K[xs,...,x,], Le.

Y2F + ¢, F* = paM¢, F = paM}.
Since f, € K(x,)\ K (i = 3,...,n) we have by (118) F # 0, thus
F* (M)’ F c
2 |20 1
(120) Y + Cl F (Ml) s

F* (MO/M1)2+Y2.
By (81), (85), (117) and (119)
fl - C(fl) = Clglz =

9!

hence ¢, € K.



REDUCIBILITY OF POLYNOMIALS 559

By (118), (120) and Lemma 9 applied with d = v we get

C
f—cf)=—"—, g,€Kk(x) (i=3,...n),
g+’
L)+ Le(f)=0 or —2—, geK.
i=1 gty

It follows from (84), (117) and (119) that

A C
L(§)=0 or L
© hy +v?

thus

Se(f)=0 o —9
i=1

9! 3! n !
or or .
g +vy'  hy+y gy hj+Y?

However
0 lng = h07
cl ! C
+ = 1 .
g +v: hi+y? if g # ho.

(goho/(go + ho))2 +v?

Therefore (ii) holds with ¢ = ¢, d = vy, g, replaced if necessary by & or

8oho/(8o + ho)and g, = h, (i = 1,2).
Consider now k > 1 and let again (118) hold. We get for a suitable
pEK

k
oN=(t—v) F+ ¥ c(t—y)" " F*

i=0
The leading coefficient of N with respect to ¢ is p~'F hence by (116)
(121) F=paM{, M,€K|[x,,...,x,].

1t follows that

2k—~1

k

k_~ 2
Yot =v)" TP =pa(M —(t—v)" M)
i=0

and since (t—y)?‘k-1 € K[t] we have for a suitable b € K, M,
K[x;,...,x,]and M, € K[t].

k
(122) Yoot —v)* ¥ =bM2,  F* = pab M2,
i=0
Hence by (117)
- o, (1 2
(123) L=Y cz*= bzzMz(; + y)
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and by (81) and (895)

fi=el) =55 Y)szz(h,)z

1

1 k=2 2
P Mz(h,.)) (i=1,2).

It follows that b € K. Furthermore, by (121) and (122)

L) +el) + () + X 1= 8( 52

=b

1

hence by Lemma 10

fz_c(fi)=bgi29 giEK(x:) (i=37""n)’
L(8)+ X c(f)=0bg3, g €K,
i=1

It follows from (84) and (123) that

2/(—1

1
M, (ho)*

h%+72

L(8)=0 or b

hence
2
M, (h,) )
2k~2 *
(h+v?)

The condition (i) is satisfied with L = bz?.

Y. c(f,) =bg; or b(go
=1

The conditions (1), (i), (iii) are sufficient.
(1) If (2) holds then also

L( o)
=1

In virtue of Corollary to Lemma 8

n n n

+ Y. c(f)= Y L(t,) + Y c(f) is reducible over K.
i=1 i=1

= ] 1=1

Y L(g)+ Y c(f,)is reducible over K

i=1 =1
and by (1) the above sum equals X7, f,.
(i1) In virtue of Corollary to Lemma 8 it is enough to show that the
rational functions
1

x> +d

1

fn(xl" . "xn) =

104

1
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and f,,(x,,...,x,, g;) are reducible over K for every g, € K and every
d € K such that yd ¢ K.
The numerator of f, equals up to a constant factor

n n-—1
N(xppex,) = X X dhn o (xf,xD X X))
i=1 k=0
n—1 n
= Z Z7n-1—/<(x125---’x12—1’x12+1>--"x3)>
k=0 i=1

where 7, is the jth fundamental symmetric function. We have by a simple
counting argument

n
)y Tn—l—k(xlz""’xiz—l’x:2+1""’x3) = (k+ 1)T1171—k(x12""’xr%);
(=1
for k odd the right hand vanishes (char K = 2), hence
n—1
N (xp,...,x,)= Y. dkTN,l_k(xf,...,x,f)
kker\_/eon

1

2
( Z dk/zTn—l—k('xl""’xn)) ’

k=0
k even

I

which proves that f,(x,,...,x,) is reducible over K. The numerator of
fno1(xy,...,x,, 8,) equals up to a constant factor

n 2
M1+1(X17' "7'xn’ gO) = ( Z dk/zTn—k(xl""’xn’ gO))
k=0

hence f, , ;(x;,...,x,, &) 1s reducible over K.
(iii) In this case L(z) + L"_, ¢( f,) is strongly reducible over K, hence

L(lélti) + | 1c(f,-) = éL(t,) + léC(f,-)

n

is strongly reducible over K. By Corollary to Lemma 8
L(g)+ X e(f)
i=1
is also strongly reducible over K. By (1) the above sum equals X7_, f, and
denoting its numerator by N we have
(124) N=PQ; P,Q€K|[x,....x,]\K,PQ' & K.
It follows that
(125) N? = p3Q?

M=

1

1
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and since K is a quadratic inseparable extension of K we have
P, Q%€ K|[x,...,x,] \ K.

If N were irreducible over K (125) would imply P?Q~? € K contrary to
(124).

Proof of Corollary 1. If char K = 0 all nonzero additive polynomials
are of degree 1, hence L(z) + X7, ¢( f,) is irreducible over K.

Proof of Corollary 2. If char K = p and K is algebraically closed then
as observed by Tverberg [6] every additive polynomial in K[z] of degree
greater than 1 is of the form L§ + ¢L,, L, € K|[z], ¢ € K. Since additive
polynomials of degree 1 do not satisfy (2) we have by (1) f, — c(f;) =
Ly(g)? +cLy(g)(i=12,...,n).

We can also find elements a, € K such that

c(f)=ar+ca, (i=1,2,...,n).
Hence
fi=kl+ch, (i=1,2,...,n)
with 4, = Ly(g;) + a, € K(x;,).

Proof of Corollary 3. If char K # 2 or K is perfect there are no
quadratic inseparable extensions of K, hence conditions (ii), (iii) are never
satisfied.

ExampLE. Let K be a field of characteristic 2 that is not perfect and
let d be an element of K, such that Vd & K. Take

X
x}+d

1

(i=1,2,...,n).

We have ¢( f;) = 0 and f; cannot be represented in the form L(g;), with
L € K[z], g, € K(x;) for any polynomial L of degree / > 1. Indeed in
that case x2 + d = ¢G/, c € K, G € K[x,], hence [ = 2, yd € K. Also
fi # ¢/(gf + d,), where ¢, d, € K, g € K(x,), since the order of the
left-hand side is —1 and that of the right-hand side is even. On the other
hand

x 1\ 1
-l
x> +d x + Vd x + Vd
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and the additive polynomial yd z2 + z is strongly reducible over K(Vd),
thus f; satisfy condition (iii). We note that

(Eljn=0 d(n-j)/zq-j(xla- .. ’xn)) (23:0 d(n_j‘_l)/zﬁrj(xl" o ’x”))

L fi= :

i=1 I—I;;l(xiz + d)

where 7, = 1, T is the jth fundamental symmetric function, X! is taken
over j = n (mod2) and X2 over j # n mod 2.

(0]
(1]
(2]
(3]

(4]
(5]

(6]
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