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INFINITELY INTEGER-VALUED POLYNOMIALS
OVER AN ALGEBRAIC NUMBER FIELD

KENNETH ROGERS AND E. G. STRAUS

In memory of Ernst Straus

Let K be an algebraic number field and R its ring of integers. A
polynomial f over K is integer-valued iff f(R) C R: it is infinitely
integer-valued, written f € D*(R), iff f and all its derivatives are
integer-valued. For each K we construct a sequence of ideals 4, of R,
and a sequence of polynomials H, (x) over R, such that a polynomial f of
degree n lies in D*(R) if and only if it is of the form a, H,(x)/0! +
-+ a,H (x)/n!,witha, inA4,, k=0,1,...,n.

n*n

1. Introduction. It is well-known that (), » = 0,1,2,... 1s a basis
for the integer-valued polynomials over Z: for any polynomial of degree n
over a field of characteristic zero can be written as

(1.1) () = 1) 5) + 87O ) + - + ar0)(3)

where Ag(x) = g(x + 1) — g(x). Let D, denote the R-module of all
polynomials of degree at most » that lie in D*(R):

g(x)eD, iff degg<nandg®”(R)c R, k=0,1,2,....
Note that n!'D, C R[x], by (1.1). In 1919, Polya [2] found a basis for the

integer-valued polynomials over R when R is principal, analogous to (})
for Z. Then Ostrowski [1] found a condition on K for such a basis to exist

even in cases of non-principal R. In 1951, Straus [3] showed that
feD*®(Z) iff Ja, €Z, f(x)= ) ak(z)np[k/p}
k=0 )4

where p always denotes primes.
To state our results we need some standard notation: for each prime
ideal P of R, the quotient field is finite, so we write

(1.2) R/P = GF[N], N =NormP =)/
Since p is the rational prime in P, there is a positive integer e such that

(1.3) e=ep=max{ slp € P*}.

507



508 KENNETH ROGERS AND E. G. STRAUS

As we shall see, the real difficulties arise when e > p.

THEOREM 1. Let K be an algebraic number field, R its ring of integers,
and D, (R) the set of polynomials f of degree at most n, such that f ®(R) lies
in R for all k. Let

(1.4) I,= {88 €R[x],VfeD,(R)}.

Then 1, is an ideal of R, contains n!, and hence there is an ideal A , of R such
that

(1.5) A, I, =n!R.
There exists a sequence 3, in R such that
feD, iff 3a,€A,,0<k<n,

W(x) = a0+ T ay(x = B) o (v = Bi).

Furthermore

(1.6) 1= [] Pp®
P, NormP<n

where

(1) b ze ]

If e < p, then (1.7) holds with equality.

REMARKS. At most finitely many P have e > p, since then p divides
the discriminant of K. Both the formula for ¢, (P) and the construction of
the sequence 3, are greatly complicated by these few P.

2. The local ring R,. We denote by Ry, Up the ring of P-adic
integers in K and its group of units:

RP={a/B|aER,,BER,,B$P}
Up={0l0 Ry, 07" €Rp}.

Let 7 denote an element of P that is not in P?: with it we can write each
nonzero element of K in the form 7”8 with a uniquely determined integer
v and a unit . This exponent is the same for all choices of #: it is the
additive valuation, defined as

(2.1) ordpa = max{ »|la € P'Rp = 7R }.
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In particular, ord , 0 = co. We frequently use the properties:

(2.2) ordpaB = ordpa + ordpf

(2.3) ordp(a + B) = min(ord pa, ord p8)

with equality if ord p« # ord . Since e is the exact power of P dividing
p, we have for all m in Z:

(2.4) ordpm = epord , m

where ord , m is the exact power of p dividing m. Since we are concerned

with how highly divisible the values of a polynomial and all its derivatives
can be, we define a P valuation on polynomials: for nonzero fin K[ x]

(2.5) ordp f(x) = min{ordpf*(a),Va € R,V k > 0}.

This minimum does exist: there is a § in R such that §f(x) € R[x], 8 # 0,
so ordp f(x) > —ordp 6. By Leibnitz’ rule,

()™ = § ()

k=0
we have an analog of (2.2):

(2.6) ordpf(x)g(x) > ordpf(x) + ordpg(x).
The analog of (2.3) holds unchanged:

(2.7) ordp(f(x) + g(x)) = min(ordp f(x), ordpg(x))
with equality if ordp f # ordp g.

LEMMA 2.1. If f(x) is in Rp[x] and some coefficient is a unit, then

(2.8) ordpf(x) <e, Z [degf]

Proof. Let ay,...,ay_, be elements of R forming a complete set of
residues mod P:
{@y,...,ay_,}) =R/P=R,/PRp, =R

the bar denoting the image under the mod P mapping. There is nothing to
prove if ord f < 0, so we may assume that ordpf > 0 and hence f*)(a)
lies in PR, for all k > 0, all « in R. Therefore, in R[x]

f(x) = (x =) (x = @_,)"™ 'h(x)
say, where each s, > 0 and 4(x) has no roots in R. Since deg f is at most
deg f, we have

min s, < [(deg f)/N].
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Let 2(x) be in Rp[x] such that 4 is its mod P image: then

fx) = (x =)™ (x = ay_1) " "h(x) + 7j(x)
where j(x) € Rp[x] and h(a) € U, for all a in R. Hence

f(s')(ai) = Sz!h(ai) n'(ai - ak)Sk + ”si!j(s')(ai)/si!'

k+i

Now both A(«a,) and the factors a, — a, are units, and j*(«,)/s,! lies in
R, because j(x)/s! € Rp[x]. Hence

ordpf©(a;) = ordps;!
and thus, using the i minimizing s;, we deduce that

ordpf(x) < min ordps,! < epord,([(deg f)/N]!).

The proof is complete, since ord ,[x]! = [x/p] + [x/p*]1+ ---

LEMMA 2.2. Let B, .y = @, for i = 0,...,N — 1, all k > 0, where a,,
i=0,...,N — 1 is a complete set of residues modP in R. Set f, = (x —
Bo) -+ (x — B,_y) and fo(x) = 1. Ifep < p then

ordpf,(x) = epord ([n/N]!).

Proof. If n =i + kN, k = [n/N], then

VN-1

fo=(x—ag)® - (x—ay_,)
where v, = k + 1if j < i, but », = k if i <j. Using the formula

o= x (0 )

Lo+ - +ly_y =1

X {((x —ap)) - ((x - aN_l)vN_l)uN_l)}x:g

we shall show that, for £ in R, each summand has ord, > epord p k!, and
that equality holds when / = k and ¢ = B,. For any summand, consider
the factor for which £ = a y modP. If { =« g then that factor contributes
either infinity or ordp »;!, which is at least ord p k!. There remain the cases
with1 < ordp(§ — a) < w0 and / < »:

(U v! y—1
ordp|((x — @)")"] ,_, = ordp 7y, (6~ @)

=ordp»! +{(» — Iordp(¢ — ) — ordp(» — I)!}.
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Here v is fixed and 0 < / < »: so we are to minimize Am — eord , m! over
the range 0 < m < », where A = ordp(§ — a) and so A > 1. Using the
hypothesis that e < p — 1, we have

Am — eordpm! >m— eordpm!
2m—(p—D(lmsp]l +{m/p?] + --)

>m—(p—-1)(m/p+m/p>+ ---)=0.
Hence ordpf(¢) = ordpr! > ordpk! = epord,[n/N]. This shows
that ordpf,(x) > epord [n/N]!. To show that equality holds, it is not
necessary to apply Lemma 2.1, because
ordpf®(B,) = ord,,(l‘[(a,. - aj)"f)k! = epord, k!.
J#*i

We have constructed monic polynomials for each degree that maximize
ordp, but only when e, < p. We cannot yet prove Theorem 1 construc-
tively. Applying (2.8) to monic polynomials in R[x], we know there exists
for each degree n a monic polynomial in R[x] of that degree and of largest
possible ord p among such f(x): x" will do for n < pN.

LEMMA 2.3. For each n, let f, denote a a monic polynomial of degree n in
R[x] and of maximum ordp among such monic polynomials. If f € Rp[x],
deg f = n,andifordpf > ordpf,, then f € PR[x].

Proof. Since ordpf, = ordpxf, _; > ordpf,_,, we know that ordpf,
increases with n. We need this for induction. By (2.8), ordpf = 0 for
degree n < pN unless all coefficients lie in PR: so induction can start,
Since the f, are monic, we can write f(x) = ayf, + --- + a,f, with
coefficients a, from R,. We assert that if ord, f > ord,f,, then ordpa, >
0. Assume that on the contrary a,, is a unit. There exists a § in R, notin P,
such that 8f(x) € R[x], and hence da, is a unit. Choosing a large enough
integer M so that M > ord,f, there exists § in R such that 68a, =
1 mod PM. Hence the polynomial obtained from #8f(x) by replacing the
coefficient of x" by 1 is of degree n, over R, monic, but of the same ord,
as f. This is a contradiction, since such polynomials have ord at most that
of f,. Knowing thar ord a, > 0, we can apply the induction hypothesis to
f—a,f,: it has smaller degree than n but its ord, exceeds ord,f, and
hence exceeds ordpf,_,. All the coefficients of f — a, f, must lie in PRp,
so the same holds for f.

COROLLARY. Let f, be as in Lemma 2.3: if f € Rp[x], deg f = n, and if
ordpf — ordpf, = k > 0, then f € P*¥Rp[x].
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Proof. Since PRp = 7R p, we know from the hypothesis and Lemma
2.3 that f = «f}, with f; in Rp[x]. But then ord f; = ord f — 1, so an
induction process works.

REMARK. We can express Lemma 2.3 as saying that, among all f in
R[x] of degree n and with some coefficient a unit, there is at least one of
largest ord  and it can be taken to lie in R[x] and be monic.

3. Proof of Theorem 1. Let ¢,(P) denote max ord,f, taken over
all f of degree n in Rp[x] with some coefficient a unit. We’ve seen that this
is the same as the maximum taken over all monic f of degree n in R[x].
Let £, be such a polynomial, as in Lemma 2.3, so

(3.1) ordpf,(x) = ¥,(P).
Let H,(x) denote a monic polynomial in R[xc] and of degree n, such that
(3.2) H,(x)=f(x)  (modP%®)

for all prime ideals P and associated polynomials f, = f, ». By Lemma 2.1,
only the primes p with pN < n can give an actual constraint (3.2) on H,
for the finite number of primes P dividing p. By the Chinese Remainder
Theorem, H, therefore exists. Define the ideal J, as the product

(3.3) J,=T1p»®,

We know by Lemma 2.1 that (1.7) holds, so the product in (3.3) is finite.
Ultimately we must show that J, is the same as the I, of (1.4). The crucial
step is to show that

(3.9) Y b,H(x)€D,R) iffallb,H, €D,
k=0

iff all b,J, C R.

For j=0,1,2,... and all a in R, HY(a) € J,: so if b,J, C R then
b,H, € D*(R). It remains to show that if the sum f in (3.4) lies in D,,,
then each b,J, is in R. We use induction on the degree n of f. Choose an
integer m so that m > ord, H, and also such that #"f € Ry[x]. Now
ordpf = 0, so ordp7™f > m and hence by Corollary 2.3:
ordp7™b, > m — ordp H,,.

Thus ordp b,H, > 0 for all P, so b,H, € D,. Hence f — b,H, € D,_, and
so induction works, the case n = 0 being trivial. Now ordp b, > —¢,(P)
forall P,as b,H, € D,, hence b, J, C R.

We now show that I, = J,. By (1.4), I, contains n!, and the sequence
I, is a descending chain of ideals of R. We now apply (3.4): é € 1, iff
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8D, C R[x], that is to say, whenever b, J, € R for all kK < n, then
b8 € R for all k <n. In other words, if b, € J; ! for k < n, then
b,8 € R for k < n. This is equivalent to 8 lying in J,. Finally, since I
divides n!, there is an ideal A, of R such that A, I, = n!R.

With Lemmas 2.1, 2.2 and assertion (3.4), this concludes the proof of
Theorem 1, except for expressing H, as (x — B,) ---(x — B8,_;). The
existence of B is derived from that of the H, of (3.2). We start with
H, =1, H(x) = x, so B, = 0. Inductively, if we have already modified
H, fork <n,soH,=(x—By) ---(x— B,_,),divide H, , by H,, say

H, . (x) = (x - B)H,(x) +v
where 8 and y liein R. Since y = H,,,(B) € I, ,, we can replace H, ,,
by H,(x)(x — B), as claimed.

We saw in Lemma 2.2 a simple description of the corresponding local
sequence S(P), when e < p. The B(P) for any exceptional P are dealt with
below, and then B,,...,B, can be constructed by

B, = B,(P) modP¥®

for each P of norm N < n.

n

4. The exceptional primes. We continue with the same notation.

THEOREM 2. Let B, € R for all n > 0. Define

(4.1) g.=#{i|0<i<n, B =8}
Let fo(x) = 1, f,(x) = (x — B,_1)f,-1(x) for n > 1. If for a prime ideal P
of R there is a sequence B, such that
(4.2) ordpf,(x) = ordpf*’(B,)
for all n, then for all a,in K
(43)  ordp X a,f(x)= Min{ ordpa,f(x)|i = 0,1,...,n}
i=0
and
(4.4) ordp f,(x) = ¢,(P).

Proof. By (2.7) we can prove (4.3) by showing that
ordp(a,fy + --- + a,f,) < Minordpa,f,.
We do this by showing for each 7, 0 < r < n, that if
ordp(a,f,+ ---+a,f)=a
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then ordpa,f;, > a for i = r,...,n. This is trivial for r = n, so the proof
will proceed by downward induction on r. Suppose it is proved down to
r > 0, and assume that ordp(a,_,f,_; + -+ a,f,) = a.Sincex — B,_,
divides f,_, to multiplicity g,_, but divides all higher f, to a greater
multiplicity, it follows that
ordpa, . f¥7(B,_1) > a.
Hence ordpa,_,f,_; > a, by hypothesis (4.2), so we can subtract this
term and deduce that ordp(a,f, + -+ + a,f,) = a, to which induction
applies. To prove (4.4) we must show that if f is of degree n in R[x], not
all of its coefficients in P, then ordpf < ordpf,. We can write f as
f=ayfy + -+ + a,f, where all g, lie in R but at least one is outside P,
say a; :
ordpf = Minordpa,f, < ordl,aiof,.0 = ordpf;, < ordpf,.

LEMMA 4.1. Let e, p be integers such that e > p > 1. Define
k
(4.5) Ag=0,A, = [e}:p"] fork > 1.
r=1

Then there is a positive integer s such that
(46) Ag<A < -+ <A, =X, =--- =max{mlm<e/(p—1)}.

Proof. There is a positive integer k such that p* < e < p**!: hence
l<e/p/forj<k,s0Ag<A;<--- <A, Sinceall A <e/(p—1),it
is enough to show that A, _, is the largest integer below e/(p — 1). We
need only show that there is no integer in the range

e(p '+ o Hp ) <m<e/(p-1),
which is equivalent to e(p**! — 1) < mp**}(p — 1) < ep**1. Now p*+?
> e, so e( p¥*' — 1) > (e — 1) p**?, and hence m would have to satisfy
(e — D)p**t < mp**(p — 1) < ep**L. This would require that e — 1 <
m(p — 1) < e, impossible for integers m, e, p.
We shall use the notation {x) for max{m|m < x}: of course

(4.7) (x)=—-[-x] - 1.

LEMMA 4.2. Let p be a prime, e an integer, e > p, N an integer. Define
A, as in (4.5), so s is the least integer with

(4.8) A, =(e/(p—1)).

Then min{ Ak — eord ,k!|0 < k < m} occursat k = [m/p'1p"if \,_; <A
< A, for some ton[2,s],orif 0 < X < A, for t = 1. The minimum occurs at
k=0ifA>A\,.
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Proof. We show first that if A < A, and k is restricted to multiples of
p’, then the minimum occurs for largest possible &:

A(b+1)p' = eord,((b + 1)p*)! — Abp' + eord ,(bp")!
=Ap' — eordp{(bp’ +1)(bp' +2) -+~ (bp' + p')}
<Ap'—eord,p't <A p' - e(l+p+ ---+p1)<o.

It remains to show that, for appropriate A, the values of Ak — eord , k! on
the range bp' < k < (b + 1) p' are no less than the value at k = bp'. Set
k = bp' + j, where 0 <j < p"
A(bp' +j) — eord,(bp' + j)! — Abp' + eord ,(bp")!
=\j—eord, {(bp'+1)---(bp'+ )} =Aj — eord, ;!

Aj=>0 ift=1andA >0,

Aj—e(j/p+ -+~ +,j/p') >0 ifintegraland A > A,_,.
Finally, if A is integral and A > A, thenA > ¢/(p — 1):

S

Ak — eord k! >
p—

and this is the value at k = 0.

COROLLARY. Let ¢ and a be distinct elements of R, and let \ =
ordp(§¢ — @). Then

min{ ordp((x — a)™)\2 |O <j< m}

is achieved at j = 0 if p' divides m and A < X, for some t < s. But if A > A,
or if A\ > X\, and m < p'*! for some t < s, then the minimum is realized at
Jj = m.

Proof. We are to minimize eord, m! + A(m — j) — eord ,(m — j)!
overj,0 <j < m, so Lemma 4.2 apphes withk = m — j.

We come now to the construction of 8, and the proof that it satisfies
condition (4.2) of Theorem 2. As before, let # denote an element of P
outside P2, and let a,...,a,_, be a complete set of representatives in R
for R/P. Polya [2] constructed a complete set of residues mod P* for each
k, as follows. For each n > 0 expand N-adically:

(49) n=a,+aN+a,N*+ ---+a,N’, 0<a,<N,alli



516 KENNETH ROGERS AND E. G. STRAUS

and then use these “digits” to define a,, for all n > 0 by

(4.10) a,=a, tma, + - +7a,.

It is easy to show that a,, = a, mod P/ iff m = nmod N/, hence { a,|i =
0,...,N¥ — 1} is a complete set of residues mod P*. Taking the liberty of

using ord ,, m to denote the highest exponent to which N divides m, we
can write and shall frequently use:

(4.11) ordp(a, — a,) = ord y(m — n).

To define B, for fixed P, we need to expand »n in “decimal” notation
relative to the sequence

N, le-&—}\O’ pN1+>\l, p2N1+>\1, p2N1+/\2"”,psN1+)\S_1’ psN1+)\s

where p, N are as in (1.2), e is the ramification index of (1.3), and
Ag,...,A, are as defined in Lemma 4.1. The expansion is the usual one
relative to a sequence of positive integers where each divides the next.
Because of the alternating pattern of ratios of consecutive terms, we call
the “digits” a, by,....a,, b:

52 Ts*

(4.12) n=a,+b,N+ Y (apN'* 1+pbpN*h)
1=1

(413) O0<ay,<N, and 0<a, <N A, 1<i<s

(414) 0<b,<p, fori<s, and b = [n/(pN'*N)].

These digits will be called a,(n) and b (n): they are uniquely determined
by n and P. We use boldface a(n), b(n) for the corresponding vectors. Our
concern is the exceptional primes, but we observe that if e < p then
n = a, + byN. Note that a, runs over [0, N), a, + b,N over [0, pN), and
so on, until finally

ay,+ byN + --- + bs_lps—lNlﬂ_‘fl + a, p* Nt A
runs over the range [0, p’N'**). Now use a(n) to define
(4.15) n*=a,+ aN + a,N'"* M+ oo 4 g N'*he,
Note that (4.15) is the expansion of n* relative to the sequence

N, N1+}\1,. ..,N1+)\"“

so conversely each n* on [O, N'**) determines a unique a(n) that
satisfies (4.15). We now define (for each P):

(4.16) B, = a,.
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where a is the sequence defined in (4.10). If m = n mod p*N'**: then m
and » have the same digits except for b, so m* = n*, thus B, = B,.
Hence B has period p*N!' 2,

LEMMA 4.3. Let S denote the set of integers [0, N'*7:). With the
notation of (4.12), define for each positive integer n:

Ux = {mmeS,a(m)>a/n)},
Lr={mmeS,a(m)<ayn)},
U* = {mlme S,a,(m)=a,(n),t <i<s,a(m)>a,/n)},

L¥={mmeS,a(m)=a,(n),t<i<s, a(m)<a,(n)},

for 0 <t <s, and E* = {m|m € S, a(m) = a(n)}. Together, these sets
partition S, though some U or L may be empty. Let U,, L,, E denote the
corresponding sets in which the condition “m € S is replaced by “0 < m <
n”. Together, these sets partition [O, n), though some U, L or E may be
empty. Under the mapping m — m*, defined in (4.12), (4.15): if UX is not
empty then each element is the image of exactly b,(n)p* + --- + b(n)p*
elements of Uy; if L} is not empty then each of its elements is the image of
exactly p* + b, (n)p* + - + b,(n) p° elements of L,; and each element of
E* is the image of exactly by(n) + by(n)p + --- + b(n)p° elements of E.

Proof. Each m in S determines a unique a(m) as in (4.15). Suppose
m € U*: a(m) > a/n): then h* = m iff 0 < h <n and a(h) = a(m),
and h < niff b(h) < b,(n), so there are exactly b, p* choices for b(4) and
so for h. For L, where a (m) < a,(n), m < n iff b(m) < b/(n), so the
number of choices is (1 + b,(n)) p*. Consider the 4 in U, with h* = m:
there are b(n)p® choices with b,(h) < b,(n) and the other b on [0, p);
b,_,p*~! choices with b(h) = b(n) and b,_,(h) < b,_,(n); and so on,
down to b,(n) p* choices with b;(h) = b,(n) fort < j < sand b,(h) < b/(n).
There is a similar calculation for L,: the extra p’ comes from the cases
where b,(h) = b;(n), t <j < 5. The calculations for E are similar to those
for U,. Note that we have found the formula for g, of (4.1), the number of
times a,,. occurs in B before B, :
(4.17) 8, =bo(n) + by(n)p + -+ + b(n)p’.
Hence in f, the factor x — «,. occurs to exponent g,, whereas the
exponent to which x — a,,. occurs is b,(n)p’ + --- + b(n)p’ for m* €
U*, is p"+ b(n)p'+ --- + b(n)p® for m* € L}, for 0 <t <s. We
shall regroup these factors by their exponents. All have b p® in the
exponent, so the first group is all m*, all of S. All except U* and L¥
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include b, ,(n)p*~' in their exponent, so this group is all m* with
a,(m) = a/(n). Similarly, there is a term b,(n)p’ in the exponent just for
those m* with a,(m) = a,(n) for t < i < s. Finally, there is the extra term
p'in the exponent just for the m* in L*. Hence

@18) f,() =TT TT (x—ap)™  T1 T (x - a,)”

i=0 m*ed, j=0 m*€B,
where
A, = {m*[0 < m* < N'*M Y,
(4.19) B, = { m*|lm* € A,,a,(m) < as(n)}
A, = {m*m* € A, a,(m) = a,(n)fort <i<s)}

B, = { m*lm* € 4,,a,(m) < a,(n)}.

t
We count these sets:

#(A,) = N'"N, 0<t<s,
(4.20) #(B,)=a,(n)N'"" 1 0<t<s,
#(Bo) = ao(”)-

As a check on our counting we note that the degree of the right side of
(4.18)is ¥ p/#(B)) + Lb,(n)p'#(A4,) = n.

LEMMA 4.4. Forallt,0 <t < s:

(421) ordp ] (x—a,.)""

m*e€A,
A,
Y gN/ — )\,) (=0art=0).

j=1

= eordp(b,p’)! + b,p'

Moreover, this minimum ordinal is realized, for any k* in A,, by differenti-
ating away the x — a,. factors and then setting x = o..

Proof. If b,(n) =0, (4.21) holds trivially, so we may assume that
0 < b,(n), and we also note that b,(n) < p if t < s. Consider the deriva-
tives of the product in (4.21), and their ordinals at x = £, where £ € R.
There is a unique k* in A, such that

¢=a, modP'*M.

Thus ordp(§ — a4.) > 1 + A, and for m* # k*:

(4.22) ordp(é - a,.) =ordp(a;. — a,.) = ord y(k* — m*).
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By the Corollary to Lemma 4.2, with A = ordp(§ — a,,.), if m* € A,

() b,(n)p'A if A <A,
M‘ d — . bn(n)p —_

Jnor "{((" )" ") }x=s eord,(b,(n)p*)! ifA> ],
the minimum being reached at j = 0, b, p’ respectively. If m* € A;: X > A,
iff

t s
m* =k*=aqay(k)+ Y a,(k)N* ™14+ Y a(n)N'tre1,
i=1 i=t+1
At t = s this is clear: 4, is a complete set of residues mod P'**:, so
ordp(¢ — a,,.) > A, iff m* = k*. For t < 5: m* € 4, iff a,(m) = a,(n),
t <i<s, and so ord y(k* — m*) > A, iff a,(m) = a,(n) for 0 <i <.
Note that k* = k* whenever k* € 4,. By (2.6) we can now infer that the
left side of (4.21) is no less than
eordp(b,(n)p’)! + b,(n)p’ Y ordN(k,* — m*)
m*€d,, m*+k}

which is also the value obtained when we differentiate away the factors
(x — a;s), set x = a,» and apply ordp. Here we have used the fact
that k* = k*mod N'**, so that the terms with A <X, have A =
ord ,(k* — m*) = ord 5 (k} — m*). We show the sum is the same for all
k:

Al
(4.22) Y ordy(k* —m*)= Y N/ —A,.
m*eAd,, m*+k} Jj=1
This will then complete the proof of Lemma 4.4. As in deriving the
classical formula for ord , n!, we note that an m* contributes 1 for each j
such that m* = k*mod N”. Since these ordinals are at most A,, it remains
only to show that for1 <j <A,
#{ m*|m* € A,, m* # k¥, m* = k*mod Nf} = N+th=/ -1,

Since k¥ and m* have the same digits beyond the ¢th, k* — m* equals

anll) + L a(ON' 2| = anfom) + om0

i=1 i=1
The part of m* here runs precisely over the range [O, N1+, eiving
exactly N1**~ copies of [0, N/)mod N/ as required.

LemMA 4.5. Fort = 0,1,...,s, ifa,(n) # O, then B, is non-empty, and

Al
(4.23) ordp [T (x- am*)p’ =Y [a,(n)NlH"—l"j]
m*e€B, j=1
(=0att=0).
This minimum ordinal can be realized by setting x = a,..



520 KENNETH ROGERS AND E. G. STRAUS

Proof. As in Lemma 4.4, we consider ordinals of derivatives of
the product in (4.23), evaluated at x = £ = a,.mod P1™™. Set A =
ord (¢ — «,,+): by Lemma 4.2, if m* lies in B,, then

PA ifA <A,

) ()
Min ordp{((x —a,)") } N {eord,,(p’!) ifA > A,

Now m* € B, iff

t s
m* = a,(m) + Z ai(m)zvlﬂ"_1 + Z a;,(n)N'*

i=1 i=t+1

where 0 < ay(m) <N, 0<a,(m) <N ™1 for 0<i<t and 0 <
a,(m) < a,(n). As before, A > A, iff a,(m) = a,(k) for 0 <i <¢, and
now this can happen if and only if a,(k) < a,(n). We consider the two
possibilities in turn.

(a) If a,(k) = a,(n): this includes the case when k* = n*.

We must show that p'Y,.«cp ordy(k* — m*) has minimum value
equal to the right side of (4.23), achieved at k* = n*. As before, since
A < A,, we can truncate both k* and m* by going only up to the th digit.
The truncated m* goes precisely over the range [0, a,(n) N'**~1), and so

#{ m*lm* = B” m* = k* mod Nj} = at(n)N1+7\,_1—j’

when j is in the range [1,1 + A,_,]. But on the range 1 + A,_; <j <A,
we can only conclude that this set has at least [a,(n)/N’~*-1"1] elements.
However, when k* = n*: m* € B, m* = n*mod N/ (where1 + A,_; <
<A, iff a,(m)=a,(n) mod N/~'7*-1 and 0 < a,(m) < a,(n) and
a,(m) = a/(n) for i # t. The number of such a,(m) is [a,(n)/N/~1" 1],
so the minimum ordinal is the right side of (4.23), achieved when
k* = n*.

(b) If a,(k) < a,(n). As in Lemma 4.4, A > A, iff m* = k*, and so in
this case the ordinals of the derivatives of the product in (4.23), evaluated
at x = £ = a;. mod P are at least

eord,(p'!) + p* by ord  (kF — m*).

m*€B,, m*+kf

This sum was just evaluated in the case when there was no exceptional
term. The lower estimate on the number of solutions of the appropriate
congruence is unchanged, but the exceptional term was counted once for
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each congruence: hence a term — A, is needed now. This time we can only
assert that the derivarives have ordinal no less than

>‘r—~1 AI—AI—I—]‘
eordp(p’!)-i-p’{a,(n) YN+ Y [a(n)/N] =2}
j=0

i=1
We complete the proof of (4.23) by noting that
eordp(p’!) >p'A:

t

t
P\ = p’[ )> ep'i] <ep') p~'=eord,(p").
i=1

i=1

THEOREM 3. Let R be the ring of integers of an algebraic number field
K. Let P be a prime ideal of R, with associated N, p and e = ep, as in (1.2)
and (1.3), such that e > p. Define s, A, a,(n) and b(n), 0 <i <s, as in
Lemma 4.2 and (4.12). Define B, and f,(x) as in (4.15), (4.16) and Theorem
2. Let Y, ( P) be defined as in section 3, let g, be as in (4.1). Then

(4'24) Orden(x) = Orden(g")(Bn) = lpn(P)

(4.25) ¥,(P)=eord,(g,!)

Ay

+ ip’{b,(n)( ;Nf - }\,) + Y [a,(n)Nf] .

J=A_1+1-2A,

Proof. Denote by x,(P) the right side of (4.25). Then by (2.6), (4.18),
Lemma 4.4 and Lemma 4.5

s
(4.26) ord,f,(x) = x,(P) +e Y ord,(b(n)p')! — eord, g,!.
t=0
Now g, is the exponent to which x — a,. occurs as a factor of f,, so the
evaluation of ordpf%’(B,) proceeds as in Lemmas 4.4 and 4.5. The
factors x — a,. are differentiated away and contribute eord, g,!. By
Lemma 4.4, the factors from 4, with m* # n* contribute

b(n)(N + .-+ N—],)

when we set x = «,. and take ordp. The factors from B, do not require
differentiation, as now k* = n* so Lemma 4.5 completes the proof that

(4.27) ordp £, (B,) = xx(P).
We shall complete the proof of Theorem 3 by showing that the right sides
of (4.26) and (4.27) are equal.
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LEMMA 4.6. Let b; be integers such that 0 < b, <p for 0 <i <s,

0 < b,, where p is a prime. Then

(4.28) ordp(é:ob,. pf)! = Y ord,(b,p')".

i=0

Proof. Since ord , n! = L [n/p"], it suffices to prove that
(4.29) [( r bip")/p’] = ¥ [bup'/p7].
i=0 i=0

We derive this inductively from the fact that if 0 < b, <pfor0 <i <y,
and if b, is integral, for 0 < i < ¢, then

(4.30) [( éob,-p")/p’} = [( ;‘;.‘.:b,-p")/p’} +[b.p'/p].

This is clear if » < ¢, as then b, p’/p” is an integer. In case r > ¢, we use the
rule [x/n] = [[x]/n] and the inequality

t—1 t—1
0< Y bp<(p-1)Yp=p—1
i=0 i=0

as follows:

[(tgbipi)/p’} +[b,p/pT] =0 +[bp/p’| = [b/P"]

= _ H( > bipi)/Pt}/pr—t] ) [( igbipi)/l’r]'

This completes the proof of Lemma 4.6 and Theorem 3. We now have
an algorithm for calculating the exponent ¢, (P) in the denominator ideal
I, of Theorem 1: if pN > n then ¢, (P) = 0, and for the finite number of
primes with pN < n, equation (1.7) or (4.25) applies.
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