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In memory of Ernst Straus

Let K be an algebraic number field and R its ring of integers. A
polynomial / over K is integer-valued iff f(R) c R: it is infinitely
integer-valued, written / e DCC(R), iff/ and all its derivatives are
integer-valued. For each K we construct a sequence of ideals Ak of R,
and a sequence of polynomials Hk(x) over R, such that a polynomial / of
degree n lies in D°°(R) if and only if it is of the form aoHo(x)/0l +
• 4- anHn(x)/n\, with ak in Ak, k = 0,1,... ,n.

1. Introduction. It is well-known that (*), n — 0,1,2,... is a basis

for the integer-valued polynomials over Z: for any polynomial of degree n

over a field of characteristic zero can be written as

(1.1) f(x) = / ( 0 ) f ί ) + Δ / ( O ) f ί ) + •• + Δ7(0)(2)

where Δg(x) = g(x + 1) - g(x). Let DΛ denote the R-module of all

polynomials of degree at most n that lie in D°°(R):

g(x) e Όn iff degg < Λ and g[k)(R) c R, A: = 0,1,2,.. . .

Note that «!Dn c R[χ], by (1.1). In 1919, Polya [2] found a basis for the

integer-valued polynomials over R when R is principal, analogous to (*)

for Z. Then Ostrowski [1] found a condition on K for such a basis to exist

even in cases of non-principal R. In 1951, Straus [3] showed that

where/? always denotes primes.

To state our results we need some standard notation: for each prime

ideal P of R, the quotient field is finite, so we write

(1.2) R / P = GF[N]9 N = NoτmP = pf.

Since p is the rational prime in P, there is a positive integer e such that

(1.3) e = eP = m a x { s\p e Ps}.
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As we shall see, the real difficulties arise when e > p.

THEOREM 1. Let K be an algebraic number field, R its ring of integers,
and Drt(R) the set of polynomials f of degree at most n, such that f{k\R) lies
in R for all k. Let

(1.4) 7n = { δ|δ/G R[JC], V / e DΠ(R)}.

Then \n is an ideal ofR, contains n \, and hence there is an ideal A n ofR such
that

(1.5) AA = *!R.

There exists a sequence βn in R such that

/ e D n iff 3akeAk,0<k<n,

n

nlf(x) = a0 + Σ ak(x - β0) • • • (x - βk^).

Furthermore

(1.6) ln= Π Pψ" ( P )

P, NormP<«

where

If e < p, then (1.7) holds with equality.

REMARKS. At most finitely many P have e > p, since then p divides
the discriminant of K. Both the formula for ψrt(P) and the construction of
the sequence βn are greatly complicated by these few P.

2. The local ring Rp. We denote by RP, UP the ring of P-adic
integers in K and its group of units:

RP = { a/β\a G R ^ G R ^ ί P }

U P = { θ\θ G R p ^ Γ 1 G R P ) .

Let 7r denote an element of P that is not in P 2 : with it we can write each
nonzero element of K in the form πvθ with a uniquely determined integer
v and a unit θ. This exponent is the same for all choices of TΓ: it is the
additive valuation, defined as

(2.1) ordPα = max{ v\a <Ξ P"RP = 7r"RP}.
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In particular, ordP0 = oo. We frequently use the properties:

(2.2) ordpdβ = ordpα 4- ordPβ

(2.3) ordP(α 4- β) > min(ordPα, ordPβ)

with equality if ord P a Φ ord pβ. Since e is the exact power of P dividing

/?, we have for all m in Z:

(2.4) ordpm = evoτάpm

where ord^ m is the exact power of/? dividing m. Since we are concerned

with how highly divisible the values of a polynomial and all its derivatives

can be, we define a P valuation on polynomials: for nonzero /in K[x]

(2.5) ord P /(x) = min{ordP/ ( / c )(α),Vα e Λ,Vk > θ}.

This minimum does exist: there is a δ in R such that δf(x) e R[x], δ Φ 0,

so ord P /(x) > — ordPδ. By Leibnitz' rule,

(fg){m)=

we have an analog of (2.2):

(2.6) ordP/(x)g(x) > ordP/(x) + ordPg(x).

The analog of (2.3) holds unchanged:

(2.7) ordP(/(*) + g(x)) > min(ordP/(x), ordPg(x))

with equality if ordp/ Φ ordPg.

LEMMA 2.1. Iff(x) is in RP[x] and some coefficient is a unit, then

(2.8)

Proof. Let α 0 , . . . ,aN_x be elements of R forming a complete set of

residues modP:

{δ0,.. .9άN_x} = R/P = R P / P R P = R

the bar denoting the image under the mod P mapping. There is nothing to

prove if ord / < 0, so we may assume that ord P / > 0 and hence f{k){a)

lies in PR P for all k > 0, all a in R. Therefore, in R[x]

say, where each st > 0 and Jι(x) has no roots in R. Since deg/is at most

deg /, we have

min s,. <
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Let h(x) be in RP[x] such that h is its mod P image: then

/ ( * ) = (x - αo)
5° •••(*- VN-IY^HX) +

wherey(jt) G RP[JC] and h(a) G [/P for all α in R. Hence

Now both λ(a, ) and the factors ai — ak are units, a n d y ^ α ) / ^ ! lies in
Rpbecausey(5)(x)/5 ! G RP[JC]. Hence

and thus, using the i minimizing si9 we deduce that

ordP/(x) < min ordP^! < ePoτdp([(deg f)/N]\).

The proof is complete, since ordp[jc]! = [x/p] + [x/p2] + .

LEMMA 2.2. Ler βi+kN = α, , /or / = 0,... ,7V - 1, all k > 0, where α ,
/ = 0,... ,N — 1 is a complete set of residues modP in R. Set fn = (x —
β0) - (x - βn_x) andfo(x) = 1. IfeP < p then

ordPfn(x) = ePordp([n/N]\).

Proof. If n = i + kN, k = [n/N], then

fn = (x-a0)*>.. (x-aN_ιY»-*

where Vj = k+liΐj< /, but vy = k if i < j . Using the formula

X

we shall show that, for ξ in R, each summand has ordP > βpord^ k\, and
that equality holds when / = k and ξ = βn. For any summand, consider
the factor for which £ = αy mod P. If £ = α7 then that factor contributes
either infinity or ordp Vj\9 which is at least ordPfc!. There remain the cases
with 1 < ordP(£ — a) < oo and I <v\

ordP[((x - « r ) ( / > U = o r d P (7Γ7)j(« - α ^ " '

= ordp»'! + { ( P - / ) o r d p ( | - o) - o r d P ( ί ' - /)!}.
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Here v is fixed and 0 < / < v\ so we are to minimize \m — eoxdpm\ over
the range 0 ̂  m < v, where λ = ordp(£ — a) and so λ > 1. Using the
hypothesis that e < p — 1, we have

λm — eoτdpml > m — eoτάpm\

>m-(p- l){[m/p] + [m/p2] + )

>m~(p- l)(m/p -f m/p2 + ) > 0.
Hence ordP/^(/)(ξ) > ord P ^ ! > ordPfc! = eFordp[n/N]\. This shows
that ordP/ r t(x) > epoxdp[n/N]\. To show that equality holds, it is not
necessary to apply Lemma 2.1, because

A) = ordP(Π(«, ~ «,)"')*! - ePordpk\.

We have constructed monic polynomials for each degree that maximize
ordp, but only when ep < p. We cannot yet prove Theorem 1 construc-
tively. Applying (2.8) to monic polynomials in R[x], we know there exists
for each degree n & monic polynomial in R[x] of that degree and of largest
possible ordP among such/(.x): xn will do for n < pN.

LEMMA 2.3. For each n, let fn denote a a monic polynomial of degree n in
R[JC] and of maximum ordp among such monic polynomials. If f ^ RP[JC],

d e g / = n, andifoΐάvf> ordP/w, thenf

Proof. Since ordP/n > oidPxfn_ι > ordP/ r t_ l 9 we know that ordP/n

increases with n. We need this for induction. By (2.8), o r d P / = 0 for
degree n < pN unless all coefficients lie in PRP: so induction can start.
Since the fk are monic, we can write f(x) = aofo -f •+• 0Λ/rt with
coefficients at from RP. We assert that if ord P / > ordP/rt, then oτdvan >
0. Assume that on the contrary an is a unit. There exists a δ in R, not in P,
such that δf(x) e R[x], and hence 8an is a unit. Choosing a large enough
integer M so that M > ordp/, there exists θ in R such that θδan^
1 modP M . Hence the polynomial obtained from θδf(x) by replacing the
coefficient of xn by 1 is of degree n, over R, monic, but of the same ordp

as /. This is a contradiction, since such polynomials have ord at most that
of/„. Knowing thar ord an > 0, we can apply the induction hypothesis to
/— anfn: it has smaller degree than n but its ordP exceeds ordP/n and
hence exceeds oxdvfn_x. All the coefficients of/ — anfn must lie in PRP,
so the same holds for/.

COROLLARY. Letfn be as in Lemma 2.3: iff e RP[x], deg/ = n, and if
ordp/ - ordP/ r t = k > 0, thenf e P*R P [JC].
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Proof. Since PR P = ττRp, we know from the hypothesis and Lemma
2.3 that / = πfv with fx in Rp[x]. But then ord/2 = ord/— 1, so an
induction process works.

REMARK. We can express Lemma 2.3 as saying that, among all / in
RP[jc] of degree n and with some coefficient a unit, there is at least one of
largest ordP and it can be taken to lie in R[x] and be monic.

3. Proof of Theorem 1. Let ψw(P) denote max ordP/, taken over
all/of degree n in RP[x] with some coefficient a unit. We've seen that this
is the same as the maximum taken over all monic/of degree n in R[x].
Let fn be such a polynomial, as in Lemma 2.3, so

(3.1) ordP/n(x) = ψΛ(P).

Let Hn(x) denote a monic polynomial in R[JCC] and of degree n, such that

(3.2) / * „ ( * ) - / „ ( * ) (modPWp>)

for all prime ideals P and associated polynomials fn = fnP. By Lemma 2.1,

only the primes p with pN < n can give an actual constraint (3.2) on Hn

for the finite number of primes P dividing p. By the Chinese Remainder

Theorem, Hn therefore exists. Define the ideal Jn as the product

We know by Lemma 2.1 that (1.7) holds, so the product in (3.3) is finite.
Ultimately we must show that Jn is the same as the ln of (1.4). The crucial
step is to show that

n

(3.4) Σ bkHk(x) G Όn(R) iff all bkHk €Ξ Όn

iff all bkJk c R.

For j = 0,1,2,... and all a in R, H{

k

j\a) e Jk: so if bkJk c R then
bkHk G D°°(R). It remains to show that if the sum / in (3.4) lies in Dw,
then each bk3k is in R. We use induction on the degree n off. Choose an
integer m so that m > ordPHn and also such that ττm/e Rp[x]. Now
ord p / > 0, so ordP77w/ > m and hence by Corollary 2.3:

ordpπ
mbn > m — oτdpHn.

Thus ord P b n H n > 0 for all P, so bnHn <Ξ Όn. Hence/ - bnHn <Ξ Όn_x and
so induction works, the case n = 0 being trivial. Now oxdPbk > — ψ^(P)
for all P, as bkHk c D^, hence bkik c R.

We now show that \n = Jn. By (1.4), ln contains n\, and the sequence
ln is a descending chain of ideals of R. We now apply (3.4): ί G l n iff
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8Όn c R[x], that is to say, whenever bkJk e R for all k < n, then
bk8 e R for all k < n. In other words, if bk e J^r1 for k < n, then
Z δ̂ e R for /: < «. This is equivalent to δ lying in /„. Finally, since \n

divides n\, there is an ideal An of R such that AnIπ = «!R.
With Lemmas 2.1, 2.2 and assertion (3.4), this concludes the proof of

Theorem 1, except for expressing Hn as (x — β0) - - (x — βn_1). The
existence of β is derived from that of the Hn of (3.2). We start with
Ho = 1, H^x) = x9 so β0 = 0. Inductively, if we have already modified
Hk for k < w, so #„ = (x - j80) (x - βn_x\ divide Hn+ι by Hn, say

where δ̂ and γ lie in R. Since γ = Hn+ι(β) e In+1, we can replace Hn+1

by Hn{x)(x — )8), as claimed.
We saw in Lemma 2.2 a simple description of the corresponding local

sequence β(P), when e < p. The β(P) for any exceptional P are dealt with
below, and then βo,...,βn can be constructed by

for each P of norm N < n.

4. The exceptional primes. We continue with the same notation.

THEOREM 2. Let βn e Rfor all n > 0. Define

(4.1) g ^ # { ; | o < / < „ , & = : & } .

Letfo(x) = !,/„(*) = (x - βn-ι)fn-ι(x)fom > 1. If for a prime ideal
of R /λere /51 α sequence βn such that

(4.2) oτά¥fn{x) = o i d p / ^ O J

/or α// n, /λe« /or β// atinK
n

(4.3) o r d P Σfl,./;.(x) - Min{ o r d p ^ i x ) ! / = 0,1,...,n
i-O

(4.4) ordP/π(x) - ψB(P).

Proof. By (2.7) we can prove (4.3) by showing that

ordp(α0/0 + + ajn) < MinordPα,/;.

We do this by showing for each r, 0 < r < n, that if

( t f r / Γ + ••• + ajn)>a
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then ordp^,/, > a for i = /%... ,n. This is trivial for r = n, so the proof

will proceed by downward induction on r. Suppose it is proved down to

r > 0, and assume that ordp(ar_ ]/,._! + + anfn) > a. Since x - βr_x

divides fr_λ to multiplicity gr_x but divides all higher fk to a greater

multiplicity, it follows that

ordPα r_^VHft.J > a.
Hence ordPαr_ ιfr_ ι > α, by hypothesis (4.2), so we can subtract this

term and deduce that ordP(arfr + 4- anfn) > a, to which induction

applies. To prove (4.4) we must show that if /is of degree n in R[x], not

all of its coefficients in P, then ord P /< ordP/rt. We can write / as

/ = #o/o +'•••+• anfn, where all ai lie in R but at least one is outside P,

say aio:

o r d P / = Minordpα,/ < ordPα / o/ i o = ord p / o < ordP/π.

LEMMA 4.1. Let e,p be integers such that e > p > 1. Define

(4.5) ? Σ i ? ~ r fork > 1.
r=l J

Then there is a positive integer s such that

(4.6) λ 0 < λι < - < λ5 = λs+ι = = max{ m|m < e/(p — 1)}.

Proof. There is a positive integer A: such that /?* < e < pk+1: hence

1 < e/pJ ΐorj < k, so λ 0 < Ax < < λ^. Since all λ7 < e/(p - 1), it

is enough to show that λ^+1 is the largest integer below e/(p — 1). We

need only show that there is no integer in the range

e{p~ι + • + p-k~ι) <m< e/(p - 1),

which is equivalent to e(pk+ι — 1) < mpk+ι(p — 1) < epk+1. Now/?^+1

> e, so e(pk+ι — 1) > (e — l)pk+1, and hence m would have to satisfy

(e - l)pk+ι < mpk+\p - 1) < epk+\ This would require that e - 1 <

m(p — 1) < e, impossible for integers m, e, /?.

We shall use the notation (x) for max{ m\m < x): of course

(4.7) ( x ) . _ [ _ x ] _ i .

LEMMA 4.2. Ler p be a prime, e an integer, e > p,λ an integer. Define

λkas in (4.5), so s is the least integer with

(4.8) \M-(e/(p-l)).

Then min{λk - eoτdpk\\0 < k < m) occurs at k = [m/p']p' ifλt_1 < λ

< λ,for some t on [2, s], or ifΌ < λ < λx for t = 1. 77?e minimum occurs at

k = 0ifλ> λs.
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Proof. We show first that if λ < λ f and k is restricted to multiples of

p', then the minimum occurs for largest possible k:

λ(b + \)p' - eoxάp({b + 1 ) / ) ! - λbp' + eoτdp{bp')\

= λp> - eoτdp{(bp' + \){bp> + 2) (bp' + p')}

< λp' - eoτdpp'\ < λtp' - e(l+p+ ••• + p'"1) < 0.

It remains to show that, for appropriate λ, the values of λλ: — eordpk\ on

the range bp' < k < (b + \)p' are no less than the value at k = bp'. Set

k = bp' + j , where 0 < j < p':

λ(bp' +j) - eoτdp(bp' + j)\ - λbp' + eordp(bp')\

= λj - eoτdp{(bp' + 1) (bp' +j)}= λj - eoτdpβ

jλj>0 if t = 1 andλ > 0,

~ [λj - e(j/p + 4- j/p'~ι) > 0 if λ integral and λ > λt_λ.

Finally, if λ is integral and λ > λs, then λ > e/(p - 1):

λk-eoτdpk\ >-?Kr-eΣ — = 0
P-I 7pJ

and this is the value at k = 0.

COROLLARY. Let £ and a be distinct elements of R, and let λ =

o r d p ( £ - a). Then

min{ ordp((x - a)

is achieved at j = 0 ifpt divides m and λ < λtfor some t < s. But ifλ> λs,

orifλ> λ, and m < pt+ι for some t < s, then the minimum is realized at

j = m.

Proof. We are to minimize eordpm\ 4- λ(m — j) — eordp(m — j)\

over j , 0 < j < m, so Lemma 4.2 applies with k = m — j .

We come now to the construction of βm and the proof that it satisfies

condition (4.2) of Theorem 2. As before, let π denote an element of P

outside P 2 , and let α 0 , . . . 9aN_x be a complete set of representatives in R

for R/P. Polya [2] constructed a complete set of residues modP* for each

k, as follows. For each n > 0 expand Radically:

( 4 . 9 ) n = a0 + axN 4- a2N
2 + + arN

r, 0 < at< N9 a l l i
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and then use these "digits" to define an for all n > 0 by

(4.10) an = aaQ + maaχ + + IT'O^.

It is easy to show that am = an modP7 iff m = n mod NJ, hence {at\i =
0,... ,7Vk — 1} is a complete set of residues modP^. Taking the liberty of
using ord^m to denote the highest exponent to which N divides m, we
can write and shall frequently use:

(4.11) ordP(αm - an) = o r d ^ w - n).

To define βn for fixed P, we need to expand n in "decimal" notation
relative to the sequence

N, pN1 + λ«, pN1+λ*, p2Nι+λ\ / i V 1 + λ 2

v . . / i V 1 + λ - s psN1+λ°

where p, N are as in (1.2), e is the ramification index of (1.3), and
λ0,... ,λs are as defined in Lemma 4.1. The expansion is the usual one
relative to a sequence of positive integers where each divides the next.
Because of the alternating pattern of ratios of consecutive terms, we call
the "dig i t s" a0, bo,...9as, bs:

(4.12) n = a0 + b0N + Σ {aιP

ιN1+λ^ + bιP

ιN1+λ')
ι = l

(4.13) 0 < a0 < N, and 0 < at < Nλ>~λ>-\ 1 < / < s

(4.14) 0<bt<p, ίoτi<s, and bs = [n/(psN1+λ>)].

These digits will be called a^n) and b^n): they are uniquely determined
by n and P. We use boldface a(«), b(^) for the corresponding vectors. Our
concern is the exceptional primes, but we observe that if e < p then
n = a0 -h b0N. Note that a0 runs over [0, N), a0 -f b0N over [0, pN), and
so on, until finally

ao + b0N -h + b^p'^N1***-* + asp
sNι+λ^^

runs over the range [0, psNι + λs). Now use a(π) to define

(4.15) n* = β0 + * i # + a2N
1+x* + + asN

1+λ<-κ

Note that (4.15) is the expansion of n* relative to the sequence

so conversely each n* on [O, TV1+λy) determines a unique a(«) that
satisfies (4.15). We now define (for each P):

(4-16) βn = αB.
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where a is the sequence defined in (4.10). If m = n mod psNι+λs then m

and n have the same digits except for bs, so ra* = w*, thus βm = βn.

Hence β has period psNι+λ>.

LEMMA 4.3. Lei S demote the set of integers [O, N1+λή. With the

notation of (4.12), define for each positive integer n:

Us* = { m\m e S, ^ ( m ) > ^ ( Λ ) } ,

£/,* = { m\m e S , α , ( m ) = α f . (n) , ί < / <s,s,α,(m) > Λ , ( / I ) } ,

L* = { w |m e S, tfz(ra) = «,(«), t < i < s, at(m) < at(n)},

for 0 < t < s, and E* = {m\m e 5*, a(ra) = a(«)}. Together, these sets

partition S, though some U or L may be empty. Let Uk, Lk, E denote the

corresponding sets in which the condition "m e 5"' is replaced by "0 < m <

n". Together, these sets partition [0, n), though some U, L or E may be

empty. Under the mapping m -» m*9 defined in (4.12), (4.15): if U* is not

empty then each element is the image of exactly bk(n)pk + + bs(n)ps

elements of Uk\ if L* is not empty then each of its elements is the image of

exactly pk + bk(n)pk 4- 4- bs{n)ps elements of Lk\ and each element of

E* is the image of exactly bo(n) 4- bλ(n)p -f + bs(n)ps elements of E.

Proof. Each m in S determines a unique a(m) as in (4.15). Suppose

m e Us*: as(m) > as(n): then h* = m iff 0 < h < n and a(Λ) = a(m),

and h < n iff bs(h) < bs(n), so there are exactly bsp
s choices for b(h) and

so for h. For Ls9 where as(m) < as(n), m < n iff bs(m) < bs(n), so the

number of choices is (1 4- bs(n))ps. Consider the h in Ut with A* = m:

there are bs(n)ps choices with bs(h) < bs(n) and the other b on [0, p)\

bs_1p
s~1 choices with bs(h) = bs(n) and bs_1(h) < bs_x(n)\ and so on,

down to bt{n)pt choices with bj(h) = bj(n)ίoτt <j< s and bt(h) < bt(n).

There is a similar calculation for Lt: the extra p* comes from the cases

where bj(h) = bj(n), t <j < s. The calculations for E are similar to those

for Uo. Note that we have found the formula for gn of (4.1), the number of

times ctn* occurs in β before βn:

(4.17) gn = bo(n) + bx{n)p + - + bs{n)ps.

Hence in fn the factor x — αn* occurs to exponent gn, whereas the

exponent to which x — αm* occurs is bt(n)pt 4- 4- bs(n)ps for m* e

Ut*, is p* 4- bt{ή)p* + - 4- bs(n)ps for m* e L*, for 0 < t < s. We

shall regroup these factors by their exponents. All have bsp
s in the

exponent, so the first group is all m*, all of S. All except U* and L*
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include bs_ι(n)ps~ι in their exponent, so this group is all m* with

as(m) = as(n). Similarly, there is a term bt(n)pt in the exponent just for

those m* with a^m) = at(n) for t < i < s. Finally, there is the extra term

p* in the exponent just for the m* in Lf. Hence

(4.18) /„(*) = π π (x - «m*)hΛ°)pl • ή π (x-«m*y

where

(4.19)

As = { m*|0 < m* < N1+λή,

Bs = { m*\m* G As, as(m) < as(n))

At = { m*|m* e ^45, ^ ; ( m ) = ^ y («) for / < / < s)

Bt= { m*|m* G ^ f , f l r ( w ) < at(n)}.

We count these sets:

(#(At) = 7V1+λs 0 < t < 5 ,

(4.20) ( # ( 5 ? ) = at(n)Nι+λ-\ 0 <t <s,

\

As a check on our counting we note that the degree of the right side of

(4.18) is Σp'#(Bj) + Σ/> / («)^ / #(^ / ) = n.

LEMMA 4.4. For all /, 0 < / < s:

(4.21) o r d P Π (x - am,)h'{")pl

m**ΞAt

= eoτdp(btp')\ + b,A ΣsW - λ, ( = Oflίί = 0).

Moreover, this minimum ordinal is realized, for any k* in An by differenti-

ating away the x — ak* factors and then setting x = ak*.

Proof. If bt(n) = 0, (4.21) holds trivially, so we may assume that

0 < bt(n), and we also note that bt(n) < p if t < s. Consider the deriva-

tives of the product in (4.21), and their ordinals at x = £, where ξ ^ R.

There is a unique k* in As, such that

£ = ak* modP 1 + λ >.

Thus ord p (£ — ak*) > 1 4- λ5, and for m* Φ k*:

(4.22) o r d P ( ^ - am*) = ord p (α^* - αm*) = ordN(k* - m*).
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By the Corollary to Lemma 4.2, with λ = ord P (£ - <xm»), if m* e At:

ΛΛ A ί(ί \hC)pψΆ fbMp'λ i fλ<λ,
Mmordp x-« f f l , > = , , . . Λ t . _

j \y ' Ix-i \eordp(bt(n)p'μ if λ > λ,

the minimum being reached aty = 0, btp' respectively. I fm* <Ξ At: λ > λ,

iff

m* = k* = c
i = 1 i = / + 1

At / = 5 this is clear: yί5 is a complete set of residues m o d P 1 + λ % so

o r d p ( ζ — αm*) > λs iff m* = k*. For ί < 5: m* e yϊ, iff α,(m) = at(n),

t < i < s9 and so ord^λ;* - ra*) > λt iff at{m) = α,(«) for 0 < i < t.

Note that k* = fc* whenever fc* e ^4r By (2.6) we can now infer that the

left side of (4.21) is no less than

eorά^bXn)^)). + bt{n)pt Σ o r dΛr(^Γ ~ m*)
m*eAn m*Φk*

which is also the value obtained when we differentiate away the factors

(x — ak*), set x = ak* and apply ord p . Here we have used the fact

that k* s k*modNι+λt

9 so that the terms with λ < λ, have λ =

ord^(A:* — m*) = oτdN(k* — m*). We show the sum is the same for all

k:
K

(4.22) Σ oτdN{k* - m*) = Σ NJ - K
m**=:Anm*Φkΐ 7 = 1

This will then complete the proof of Lemma 4.4. As in deriving the

classical formula for ord^ «!, we note that an m* contributes 1 for each j

such that m* = k* mod NJ. Since these ordinals are at most λ r, it remains

only to show that for 1 < j < λt:

# { m*|m* e An m* Φ k*, m* s /c*mod NJ) = N1+λt~J — 1.

Since k* and m* have the same digits beyond the ίth, k* — m* equals

/ t

ι+xr

The part of ra* here runs precisely over the range [O, iV 1 + λ '), giving

exactly Nι+λ<~J copies of [O, iVy)mod NJ as required.

LEMMA 4.5. For t = 0,1, . . . ,s, if at{n) Φ 0, then Bt is non-empty, and
λ,

(4.23) ordp f ϊ (x ~ *m*Ϋ = P*

This minimum ordinal can be realized by setting x = αn*.
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Proof. As in Lemma 4.4, we consider ordinals of derivatives of

the product in (4.23), evaluated at x = ξ = ak*mod P1+λ\ Set λ =

oτdP(ξ - α w *): by Lemma 4.2, if m* lies in Bn then

Λ^ A ίίί \P>\U)\ i p t χ ifλ<λ,
Minordpl((x - am*)p ) =

y ^v ; > ^eord^/r!) i f λ > λ r

Nowra* e A iff

+ Σ a^
i - l z = / + l

where 0 < α o ( m ) < N, 0 < a^m) < Nλ'~λ'-\ for 0 < i < t, and 0 <

at(m) < at(n). As before, λ > λ, iff at{m) = ̂ ^(/r) for 0 < / < f, and

now this can happen if and only if at(k) < at(n). We consider the two

possibilities in turn.

(a) If at(k) > at{n): this includes the case when k* = «*.

We must show that p^m*&BordN(k* - m*) has minimum value

equal to the right side of (4.23), achieved at k* = n*. As before, since

λ < λn we can truncate both fc* and m* by going only up to the tth digit.

The truncated m* goes precisely over the range [O, aί(n)Nι+λt-1), and so

#{ m*|m* G^,m* = k*modNJ] = at(n)Nι+λ^-J\

when j is in the range [1,1 4- λ ^ J . But on the range 1 + λ/_1 <j<\t

we can only conclude that this set has at least [at(n)/NJ~Xt~l~l] elements.

However, when k* = «*: m* e Bn m* = n*mod NJ (where 1 + \t_λ < j

<λt) iff at(m) = at(n) mod JV 7 ' " 1 "^- 1 and 0 < at(m) < at(n) and

a^m) = a((n) for i Φ t. The number of such at(m) is [at(n)/NJ'"ι~λt-1]9

so the minimum ordinal is the right side of (4.23), achieved when

k* = n*.

(b) If at(k) < at{n). As in Lemma 4.4, λ > λ, iff m* = k*9 and so in

this case the ordinals of the derivatives of the product in (4.23), evaluated

at x = I = ak* mod P 1 + \ are at least

eαrd,(/>'!)+/>' Σ

This sum was just evaluated in the case when there was no exceptional

term. The lower estimate on the number of solutions of the appropriate

congruence is unchanged, but the exceptional term was counted once for
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each congruence: hence a term — λ, is needed now. This time we can only

assert that the derivarives have ordinal no less than

We complete the proof of (4.23) by noting that

eoτdp(p'\)>p%:

THEOREM 3. Let R be the ring of integers of an algebraic number field

K. Let P be a prime ideal of R, with associated N9 p and e = eP, as in (1.2)

and (1.3), such that e > p. Define s, λ,., aέ(n) and &,-(«), 0 < i < s, as in

Lemma 42 and (4.12). Define βn andfn(x) as in (4.15), (4.16) and Theorem

2. Let ψrt( P) be defined as in section 3, let gn be as in (4.1). Then

(4.24) ordP/n(x) = ordP/ω(/O = ψπ(P)

(4.25) ψπ(P) = eord/gj.)

+ Σ Ab,(n)[ Σ *J - λ() + Σ1 [β ( (» )^ l l

Proof. Denote by χn(P) the right side of (4.25). Then by (2.6), (4.18),

Lemma 4.4 and Lemma 4.5

(4.26) oτdPfn(x)>χn(P) + e t oτdp{bt(n)p')\ - eoxdpgnl.
/ = 0

Now gn is the exponent to which x — αn* occurs as a factor of fn9 so the

evaluation of ordpf^
8n\βn) proceeds as in Lemmas 4.4 and 4.5. The

factors x — an* are differentiated away and contribute eoτdpgn\. By

Lemma 4.4, the factors from^4, with m* Φ n* contribute

bt{n)(N + ••• +Nλ<-\t)

when we set x = απ* and take ordP. The factors from Bt do not require

differentiation, as now k* = π*, so Lemma 4.5 completes the proof that

(4.27) o r d P / ω ( A , ) = χ n ( P ) .

We shall complete the proof of Theorem 3 by showing that the right sides

of (4.26) and (4.27) are equal.
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LEMMA 4.6. Let bt be integers such that 0 < bt < p for 0 < i < s9

0 < bs, where p is a prime. Then

(4.28)
n -0

Proof. Since oτάpn\ = Σ™=ι[n/pr], it suffices to prove that

(4.29)
/ = 0

We derive this inductively from the fact that if 0 < bi < p for 0 < i < t,
and if bi is integral, for 0 < i < ty then

(4.30) I Σw/ = I ΣV|//+[W]

This is clear if r < /, as then btp
t/pr is an integer. In case r > t, we use the

rule [x/n] = [[*]/«] and the inequality

t-l t-l

i-O i-O

as follows:

ί Σ *>iA/f + [btp7pr\ = 0 + [^'/pr] = [fc/pΓ"']
L\/=o / J

i-o / J

This completes the proof of Lemma 4.6 and Theorem 3. We now have
an algorithm for calculating the exponent ψn(P) in the denominator ideal
In of Theorem 1: if pN > n then ψn(P) = 0, and for the finite number of
primes with pN < n, equation (1.7) or (4.25) applies.
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