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NICE DENSE SUBSETS FOR ERGODIC FLOWS
AND BERNOULLI FLOWS

KYEWON KOH PARK

Flows built under step functions are shown to be dense in all ergodic
flows in the J-metric. In particular Bernoulli flows built under step
functions with multi-step Markov partitions on their bases make a
J-dense subset for all Bernoulli flows.

0. Introduction, Given a stationary process, we approximate this
by an w-step Markov process that is the most random of the class which
has the same joint distribution of w-names. We call this the canonical
tf-step Markov approximation. The term "approximation" is in the sense
that the process is close in entropy and distribution, which is called the
vague topology. D. S. Ornstein [4] proved that the set of Bernoulli
processes is the closure in the J-metric of the set of mixing Markov
processes by showing that canonical approximations are mixing and they
do converge in the J-metric. One of the main results in this paper is to
find a nice dense subset which characterizes in the same way the Bernoulli
flows.

As for ergodic flows in this line, there are two main theorems. One of
them is Ambrose's representation theorem [1], which states that any
measurable ergodic flow can be represented as a flow built under a
function. The most significant part of his theorem is that the σ-algebra of
measurable sets in the representation is the complete product algebra of
the measurable sets in the base and the Lebesgue sets in the time axis. The
other theorem is by D. S. Ornstein [3] which states that all Bernoulli flows
of the same entropy are isomorphic to one another and in particular
isomorphic to a flow built under a step function whose values are
irrationally related with an independent partition on the base [see Shields,

n
Later D. Rudolph [6] proved that we can make the function in

Ambrose's representation theorem to have two irrationally related values,
say a step function. He also showed that if the entropy of a flow is small
enough, then we can construct a "natural" partition under the function to
generate the σ-algebra of the flow by making the "natural" base partition
generate the base σ-algebra.
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In the first section we show that every flow has a factor which is built
under a step function and is close to itself in the J-metric. Given a flow
under a step function, we approximate the base process by multi-step
Markov processes in the sense of distribution and entropy. A flow built
under the same step function with an w-step Markov approximation on
the base is called a canonical approximation of the given flow. It is shown
that a flow built under a step function with a multi-step Markov partition
on the base is a direct product of two factors, a Bernoulli factor and a
rotation factor [5]. We show that if a Bernoulli flow is built under a step
function, then the canonical w-step Markov approximations are Bernoulli.
Hence they do converge in the J-metric [4].

We always assume that every flow (St, P, Ω) is ergodic and is built
under a function/. Let P = {Pl9...9Pn} be a partition of a flow built
under the function which is bounded below and above (see Ambrose [1]).
Since any partition of infinitely many sets can be approximated in the
J-metric by partitions of finitely many sets and we are interested in
J-dense subsets, we may assume that a partition has finitely many sets. A
partition P is called straight if for every point x in the base, (JC, /O) e p.
for some t0 implies (x, /) e Pt for all 0 < t < f(x). If the partition P of a
flow is straight, we denote the base with the "corresponding" partition by
(Γ, P9 X). When a flow (Sn P, Ω) is built under a step function, the
partition P always denotes the straight partition. And if the corresponding
base process (Γ, P, X) is multi-step Markov, then we say that the flow
(Sn P, Ω) is built under a step function with a multi-step Markov parti-
tion on the base. For any pair {P,Q} of partitions, \P — Q\ denotes
\(Σm{Pi — Qi) + ΣmiQj — Pz)). Let m be the measure on X correspond-
ing to m on Ω.

By a continuous (flow) P-name of a point x in (St9 P, Ω), we mean the
line R partitioned in such a way that / in R is in the zth atom of this
partition if St(x) is in the zth atom of P. By a continuous P-name of a
point x of length /, we mean an interval (o, /) partitioned the same way as
above.

I would like to thank Professor D. S. Ornstein under whose guidance
this work was done and Professor D. Rudolph for his helpful suggestions.

1. A dense subset of ergodic flows. The main result is Theorem 1.
However Corollary 1 is stated in more general terms. To prove the
theorem, we need the following lemmas.

LEMMA 1. For every flow (SnP,Ω) and e > 0, there is a factor
(St9 P', Ω) such that

(i)|P-PΊ<ε
(ii) P' is a straight partition.
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Proof. This is straight measure theory. Let P = {Pl9... 9Pn}. Since the
σ-algebra in Ω is the complete product σ-algebra, there exists a collection
of measurable rectangles {ϋ^ }, whose time axes are intervals such that

(ii) {jRl7} disjoint,
(iii) UijRij c Ω.

Order the rectangles {Λl7} according to the length of time axes and
rename them as {!?,}. Then there exists k such that m({Jf=1Rj) > 1 —
ε/100. We only consider i?/y's in this collection {<R; }fβl. Hence we may
assume that the lengths of time axes of the collection {Λl7} are bounded
away from 0. Let R\j = R.. U {w\w e Ω - U B > Γ l ί w , 5_,o_δ(w) e Λ l7 for
any small 8 > 0} for all i andy where

u,v

Then {i?'y} is a collection of measurable sets whose union covers the
whole space Ω. Let P/ = U ^ R\r It is clear that the partition P '
is a straight partition satisfying \P -P'\ < e.

LEMMA 2. Let (Sn P, Ω) fe^ α flow with a straight partition. For given

ε > 0, there exists a factor (St, P
r , Ω) 6wϊ7ί under a step function satisfying

|P-PΊ< ε.

Proof. We will follow the method used by D. Rudolph [6]. Hence, we
will be sketchy in some of the details and refer the reader to this paper, in
particular the first four pages in checking the measurability of sets. We
will just highlight different aspects of the construction. We may assume
m(X) = 1. We will accomplish this by a "successive approximation"
method on a proper sub σ-algebra to ensure the measurability of sets. This
sub σ-algebra consists of all measurable sets M in Ω with the property that
for any measurable function /: X -> R, the set { X | ( X , / ( I ) ) E M } is a

, P)

endomorμhism

.. p l)

FIGURE I
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measurable subset of X. Clearly every set in the partition P is in this sub
σ-algebra (for details, see [6]).

Let ε,. be such that Σεz < ε. To avoid complicated notation, we assume
that the partition P consists of two sets (P o , P 1 ). Figure I illustrates the
lemma in this case.

We first construct P ( 1 ) = {Po

(1), Px

(1)} such that
(i) P ( 1 ) is a straight partition

(ii) | P ( 1 ) -P\<ελ

(iii) P ( 1 ) is built under an almost step function.
And we will describe how to construct P ( i + 1 ) from P ( / ) such that

(i) P ( / + 1 ) is a straight partition
( i i ) | P ( / + 1 ) - P ( / ) | < β / + 1

(iii) P ( / + 1 ) is built under a function which is closer to the step
function than the one at the previous stage.

Let { /?, q} be irrationally related (p < q) numbers. Let

a = inf{/(jc)|jc e X),

g(ε) = min{ t\s > t => there exist m and n in Z + such that

0 < s —(np + mq) < ε}.

Note that g(ε) is finite for all ε > 0.

{Construction ofP(l)). Take nλ such that

nx a 10

(this is needed for the construction of P ( 2 ) ). Take an «1-long Rochlin
tower of the base X. Exhaust all the error set by allowing the tower to be
longer than nv but < 2nλ and wider. Denote the base set of this tower by
Fv Partition Fλ into {Fλ j} such that

(i) Each atom has the same base P-name along the tower,
(ii) For any points x, y in Fιj9 they satisfy

2 M

for all k = 0,... ,nλ - l9nl9... ,Λ(1)(x) - 1 where M satisfies q/M < ελ/2
and Λ(1)(x) denotes the height of the base tower of x.

h(1)(x) is an integer between nλ and 2nv Clearly i^/s are measura-
ble. Build the flow tower on each of the i^/s. We note from the
construction of the FXJ

9s that any two points on the same Fλj have almost
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identical flow names up to the end of the tower. Each flow tower has
length at least nx α.

Repartition the flow tower built over Fλj with two lengths
{p/M, q/M} along the time axis except the very top in such a way that
the new partition over a base FXj is different from the given partition P by
not more than εx/2. This is possible because of (ii). We call the blocks of
length p/M or q/M good blocks. Let Po

(1) be the union of #/M-long
blocks together with the very top if it lies right above q/MΛong blocks.
Let Px

(1) be the union of p/MΛong blocks together with the very top if it
lies right above a p/M-long block. This gives a partition P ( 1 ) of the flow
tower over FXJ satisfying \P -JP ( 1 ) | < p/2M h(1\x) m{FXJ) < p/2M
2n1 m(Fι j). The shaded area in the following Figure II is where the two
partitions differ. If we repeat this on each flow tower built over {FXj}9

then on Ω we get

\P ~ i . m{FlJ) =

P_2nι. mFχ r _£
2M

I
- blocks - blocks - blocks

FIGURE II

The flow with the partition P ( 1 ) will look like the following.

), X (D)

FIGURE III

Denote the base by (Γ ( 1\ P{1\ X{1)) and the function by/(1).

(Construction P(ι+1) from P ( i ) ) . By choosing ε/s small enough, we may
assume that Σf==1ei/(a — ε) < ε. Consider the flow tower built over JFJ.
We denote by h{ι) the height of the base tower at the ith stage. We define
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a new partition P ( / + 1 ) in such a way that the new names on the top or
bottom ends of the tower of length at most εi+1(p/M) h(i) are defined
very differently but the new names on the center section of length at least
(1 - 3εi+1)(p/M) h(i) are shifted by at most ε,+1. Take nί+1 such that

β <

< + 1

(p/M)

m(X(i))

»i + l

1 q <
M

' 10

" 10

(3)

Build an «/+1-long Rochlin tower of (Γ ( ί ), X{i)). To avoid complications
of notation, we will write T for Γ ( / ) in this sectio'n. Allow the tower to be
longer but < 2ni+1 and wider to exhaust all the error set. Let the base be
Fl + 1. Divide Fi+1 into { Fi+lJ} such that

(i) They have the same base P ( z ) name along the tower.
(ii) For any points JC, y e Fi+lj, they satisfy

Σ fιl)(τ"(χ)) - Σf(i)(τd(y))
d=0 d=0

ε
< i + l

That is to say, on each Ft+1 9 they have nearly identical flow P(/)-names
up the tower. Again it is clear that the flow towers built over Fi+1J's are
measurable. We redefine the flow name on this tower as follows: Consider
the first / such that/(/)(Γ7(jc)) Φ p/M or q/M for some x <Ξ Fi+lj. Let Γ
be the first number after / such that/ (/)(Γ//+1(jc)) = p/M or q/M for all
x <E Fι + l j . We will call the set

(x9t)\χt

a bad set.
We may assume each bad set occurs at the same time on î -+lfy

(otherwise, we divide Fi+lj into a finer partition so that this is the case).
From the construction, this bad set always lies either below or above an
nrlong string of good blocks,

k=0 v ' ' k=0
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is a sequence of good blocks or
(C2)foraΆxeFi+1J

Γ ί-l

is a sequence of good blocks.
We consider the first case where a sequence of good blocks lies below

the bad set. Let k0 be an integer such that

A:=0

/-I

Then we have

We know that there exist integers np and H^ with

0< Σ fio{τχ{x))_ίnp^ + n±\<lllί±i f θ ΐ έ Ά x e F

k = ko+l V 1 Λ 1 Λ } D

On USt(x) where

J J

we define

o0 + 1) = U U St(x) where ί0 = £ f(i){Tk{x))
XGFI + 1 J ίo<t<tι A: = 0

and tλ = /0 + Λ/, •£

Λ ( / + 1 ) = U U ^ ( x ) ^

Shift the next string of good blocks down on top of this newly defined
good block. The names are shifted by at most (2 ε / + 1)/3. We call the
blocks that have to be shifted by at most 2 ε ί + 1/3 very good blocks. The
center section whose length is bigger than /i/(Jp/M)(l — 3ε/+1) is a string
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of very good blocks. The new P ( / + 1 ) names of the end sections of length at
most ni(p/M)εi+ι (by (2)) may differ a lot from P ( o names. This gives a
good continuous name to a point x e Fi+1J for t e [O,Σ^Zofυ)(Tk(x))]
where /0 is the first next number > Γ satisfying f{i)(Tίo(x)) Φ p/M or
q/M for some x e Fi+lJ. In the case of (C2), we choose g(ε/+1/3) +
p/M + q/MΛong blocks above the bad set. We define P ( ί + 1 ) as we did
before on this section which may differ a lot from P ( / ) and we shift good
blocks down by at most 2εz + 1/3 to get P ( / + 1 ) . Keep redefining the names
whenever a bad set occurs on each Fi+1j. This gives a new partition P ( ' + 1 )

on each FI+1J satisfying | P ( 0 - P<1+1>| < e . + 1 . Hence | P ( 0 - P«+1>| < ε . + 1

on Ω.

Except a set of measure less than ε / + 1 every point is contained in one
of the good blocks with respect to the partition P ( / + 1 ) by (3).

Let P ' = l i m ^ ^ P * 0 . Clearly \P -P'\ < ε. Using the Borel-Cantelli
lemma, we see that except for a set of measure zero, the continuous
P'-name of a point in Ω is a sequence of length p/M or q/M. For this, see
D. Rudolph [6].

To complete the proof of the lemma we have to show that the
measure in the space with the new partition P ' is properly defined. For
this we use the theorem of Amrose, whose proof will be omitted (see
Ambrose [1]).

THEOREM. Let (SnΏ) be an ergodic flow built under a function /, with
measure m. Ifthe functions F(w) = F(x, t) = f(x) andG(w) = G(x, t) = t
are measurable, then there exists a measure m on X for which f is a
measurable function and T is a measure preserving transformation such that
m is the complete direct product measure of m on X with Lebesgue measure
on the time axis.

We have to show F(w) and G(w) are measurable. At the /th stage, let
A, = {w\F{i\w) = F{i\x, t) = fV\x) = p/M} and Bt = {w\F{i\w) =

:F(κO = £ } « U ΓM, and (w: F(w) = jλ = \J f| B,.
k i>k k i>k

Since all of A .'s and 5/s are measurable (see [6]), { w: F(w) = p/M} and
{w: F(w) = q/M} are measurable. Hence the function F is measurable.
Similarly { w\G(w) < t0} is a countable union of countable intersection of
measurable sets for every /0. Hence G is also a measurable function.
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THEOREM 1. Every flow (Sn P, Ω) has a factor (Sn P\ Ω) which is built
under a step function satisfying \P ~ P ' | < efor any ε > 0.

COROLLARY 1. Flows built under step functions make a dense subset of
all ergodic flows in the d-metric.

2. A dense subset of Bernoulli flows.

LEMMA 3. Every flow built under a step function can be approximated in
entropy and distribution by flows under step functions with multi-step Markov
partitions on the bases.

Proof. Let (Γ, P, X) be the base of a given flow (Sv P, Ω) under a
function/. Let {(T(n\ P ( w ) , X)} be a sequence of canonical n-step Markov
approximations to (Γ, P, X). Consider the sequence of flows
{(S/w), P(n\ Ω)}. Each (S}"\ P(n\ Ω) is built under the same step func-
tion/with a base (T(n\ P ( w ) , X). Clearly these flows converge to (Sn P, Ω)
in entropy and distribution.

PROPOSITION 1. Canonical n-step Markov approximations of a flow
(Sn P, Ω) under a step function are Bernoulli flows if(Sn P, Ω) is Bernoulli.

Proof. Let (St

{n\P(n\Q) be a λ -step Markov approximation. We
know that this is a direct product of a Bernoulli factor with a rotation [5].
But this rotation factor has to be spanned by finite continuous names
which are identical to that of (St, P, Ω). Since (St9 P, Ω) doesn't have a
rotation factor, this Markov approximation cannot have a rotation factor.
Hence (St

(n\ P(n\ Ω) is Bernoulli for all n.

LEMMA 4. Let (Sn P, Ω) be a flow under a step function f and the
corresponding base partition P be a generating partition on the base. Then P
generates under Sδ ifSδ is ergodic and 0 < 8 < \ min{ values off}.

Proof. We will prove that P separates points under Sδ. Since 8
< ^ min{values of / } , it's clear that (x, tx) and (y, t2) have different
names under Sδ. For every tx > t2 (we may assume tλ — t2 < δ), let
E = {O, t)\T~\x) and x belong to different sets in P, 0 < ί <
K' i - h)}.

Since the flow is ergodic and m(E) > 0, by the ergodic theorem
(x, tλ) hits the set E under Sδ infinitely often. Everytime it hits the set E,
(x, t2) belongs to a different set in P. Therefore (x, tx) and (JC, t2) have
different P-names under Sδ.
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PROPOSITION 2. // (Sn P, Ω) is a Bernoulli flow built under a step

function, then the canonical n-step Markov approximations converge in

d-metric.

Proof. This is clear from Proposition 1 and Lemma 4.

Theorem 1 and Proposition 2 will prove the following Proposition.

PROPOSITION 3. Every Bernoulli flow can be approximated arbitrarily

well in the d-metric by Bernoulli flows, each built under a step function whose

values are irrationally related with a multi-step Markov partition on the base.

Since a J-limit of Bernoulli flows in Bernoulli (see Ornstein [4]), we

have the following theorem from Proposition 3.

THEOREM 2. Bernoulli flows are the closure in the d-metric of the mixing

flows, each built under a step function {whose values are irrationally related)

with a multi-step Markov partition on the base.
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