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G-BORDISM WITH SINGULARITIES AND
G-HOMOLOGY

HAROLD M. HASTINGS AND STEFAN WANER

The bordism and cobordism theories of singular G-manifolds of
specified kinds are used to represent various ordinary G-homology and
cohomology theories, and their relationship to each other, as well as their
relationship to non-singular G-bordism, is studied.

1. Introduction. Sullivan once pointed out that ordinary homology
may be viewed geometrically as a bordism theory with singularities. This
has been formally established by Baas in [1] and by Buoncristiano,
Rourke and Sanderson in [3]. Dually, the associated cobordism theories
represent ordinary cohomology.

Let G be a finite group. One then has several notions of what is meant
by ordinary G-cohomology. The first to be proposed was the functor
X _» H*(X XGEG) for a G-space X, where EG denotes the universal
contractible free G-space. Subsequently, Bredon [2] and Illman [6] de-
scribed a theory of the following type. Let ^ denote the category whose
objects are the G-spaces G/H for subgroups H and whose morphisms
G/H -> G/K are the G-equivariant maps. A contravariant coefficient
system is then a contravariant functor T from ^ t o the category of abelian
groups. The associated ordinary G-cohomology theory is a generalized
G-cohomology theory (see [2]) with dimension axiom of the form

10 if n Φ 0.

More recently, it has been shown, [18], [8], [9], that this theory extends
to an 7?O(G)-graded theory when the coefficient system T extends to a
Mackey functor (in that it admits a transfer). In this theory, the coefficient
system A: G/H •-> A(H), the Burnside ring of H, then assumes the role
played by Z-coefficients nonequivariantly. As yet, no geometric descrip-
tion of cycles in the non-integrally graded part of the dual theory, H%{X)
exists; if V is a non-trivial G-module, how does one view the classes in

It is not clear how to extend Sullivan's ideas to represent these
G-cohomology theories as singular cobordism theories. Moreover, two
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distinct theories would appear to be required. In [17] the second-named
author relates the two types of ordinary cohomology theory by showing
that H*(XXGEG; Z) is a localization of the (RO(G)-graded) theo-
ry Hg(X; A), obtained by inverting an equivariant Chern class in
HG~

V(point; A), where V denotes the regular representation and v =
dim V. This suggests that the associated singular cobordism theories
ought to be similarly related, and suggests further the possibility of a
relationship between the corresponding non-singular cobordism theories.
Further, the cobordism theories Ω£ should admit a product, even in the
presence of singularities, in order that the required localizations may be
carried out. Unfortunately, Baas' model of singular bordism seems to
admit no exterior product in general, and his question in [1] to that effect
has not, as far as we know, been asnwered. There are further technical
difficulties regarding an adaptation of his work to the equivariant case
arising from the failure in general of a G-transversality theorem. This
failure seems also to preclude the use of cone-type singularities in the style
of [3].

The purpose of this paper is to
(i) exhibit the required singular bordism and cobordism theories,

thereby giving the geometric interpretations referred to above, and to
(ii) show the relationship between the two kinds of theory as a

localization obtained from the multiplicative structure by inverting a
geometrically described Chern class.

The bordism theories we adapt are the i?O(G)-graded theories of
Pulikowski [11] and Kosniowski [7] (see also [14]), as well as the classical
G-bordism theories of Conner/Floyd [4] and torn Dieck [5]. The results
we prove take the following form. (Precise results are stated in §6.)

THEOREM A. The Bredon-Illman cohomology theory, together with its

RO(G)-graded extension, is represented as singular RO(G)-graded cobor-

dism. Here, the singularities are taken to have codimension 2. (See §4 for a

description of such singularities.)

THEOREM B. The cohomology theory H*(X XGEG; Z), viewed as a

cohomology theory on X, is represented by "stable" torn Dieck cobordism

with singularities of codimension 2.

THEOREM C. The singular theories in A and B above are related via

inversion of a canonical Chern class in the RO(G) theory, and such a

relationship exists for singularities of arbitrary codimension.
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The paper is arranged as follows. In §§2 through 5, the singular
theories are introduced and basic results, including closure under products
and excision, are proved. In §6, the main results are precisely stated, and
their proof occupies the rest of the paper.

We would like to thank R. Stong for helpful conversations.

2. G-manifolds with dimension in RO(G). Let G be a finite group.
We recall the following definition of Pulikowski in [11]. Let γ e RO(G)
be represented by the virtual G-module V — W and let M be a smooth
G-manifold. Then M is said to have dimension y if M X D(W) is locally
of the form G XHD(V) for some subgroup H e G. Here, D(Y) denotes
the unit disc in the orthogonal G-module Y. It follows that M has the local
form G XHD(Y), where Y represents γ, considered as an element of
RO(H).

The G-bordism of such manifolds is considered in [11], [7] and in [14];
one has equivariant bordism theories Ω* indexed on RO(G) and possess-
ing suspension maps

for based G-spaces X, where ΣVX = X Λ Sv, Sv denoting the one-point
compactification of the G-module V. These suspension maps fail, in
general, to be isomorphisms, and in [14], Waner defines "stable" G-
bordism theories

in the spirit of torn Dieck [5], where V runs through all G-invariant
submodules of i?00, R here denoting the regular representation. Due to the
lack of G-transversality, classes in Ω* are not in general represented by
bordism classes of G-manifolds, but instead by (bordism) classes of
G-maps

where S(V) = dD(V) for some G-module V. (See [14].)

As is customary, one may restrict the category of G-manifolds under
consideration to be unitary, framed or G-oriented. These theories are
described in [14]. When referring specifically to one of these theories, we
shall use a subscript A = U, Fr or SO, while the unadorned symbol Ω will
refer to any one of these theories.

If one drops the requirement that G-manifolds be modelled locally on
a fixed virtual representation, one obtains the classical G-bordism theories
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of Conner/Floyd and torn Dieck [4], [5]. We shall denote these theories by
B% and define

for based G-spaces X, where v = dim V. Thus B * is precisely torn Dieck's
stable G-bordism theory described in [5]. Note that B% and B% are
Z-graded, and we have suspension isomorphisms of the form

Again, classes in B % are not in general represented by bordism classes of
G-manifolds, and it is this phenomenon which forces one to use mapping
cylinder type singularities for a suitable singular theory.

3. G-manifolds with mapping cylinder singularities. Here, we define

general classes of G-manifolds with mapping cylinder singularities, and
describe the examples of interest. All G-manifolds we consider are com-
pact and smooth, and possibly with boundary, unless otherwise stated.

DEFINITION 3.1. A G-space M is called a G-manifold with mapping
cylinder singularities if it admits a decomposition M = N U κ Mf, where

(i) N is a G-manifold with (possibly empty) boundary dN;
(ii) K is a codimension-0 G-submanifold, possibly empty or with

boundary, of ΘJV, and the closure in dN of N — K is a similar codimen-
sion-0 G-submanifold;

(iii) Mf denotes the mapping cylinder of a (continuous) G-map of

pairs/: (K, dK) -» (L, Z/). Lf may be empty if dK is empty. (See Figure

1.)

DEFINITION 3.2. The boundary dM of a G-manifold with singularities
is given by M = cl(dN — K) U κMf\9 where cl(3iV — K) is the closure in

FIGURE 1
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M of dN - K, and where f\ denotes the restriction of / to a G-map
dK -> ZΛ

This definition makes the boundary dM of a G-manifold with singu-
larities again a G-manifold with singularities.

DEFINITION 3.3. We refer to L as the singular set of M, and to Mf as
the singular neighbourhood of M. On occasion, when the context is clear,
we shall refer to each component of L as a singularity, in which case we
refer to the singularities of M.

DEFINITION 3.4. We inductively define a G-manifold with mapping
cylinder singularities of depth n as follows. A G-manifold without singu-
larities will be said to have depth 0, while a G-manifold with singularities
of depth (at most) n + 1 is a G-manifold with singularities whose singular-
ities are themselves G-manifolds with singularities of depth (at most) «.

Note that the depth of such a G-singularity is not a well-defined
feature of its structure; for example, a smooth G-manifold may be given
the structure of a G-manifold with singularities of depth 1 by selecting an
arbitrary G-submanifold as its singular set. In this case, the depth of its
singularity is no less than 1. We shall refer to a G-manifold with (mapping
cylinder) singularities of some depth n a s a G-manifold with singularities
of finite depth.

All singular G-manifolds we consider will be restricted in the above
sense, and we shall further restrict the class of maps used to form the
singularities via the following weak pullback requirement.

DEFINITION 3.5. Consider a class of G-maps/: K -> L from G-mani-
folds K to G-manifolds with singularities L which satisfy the following
condition. Let C be a closed invariant subset of L, and let U be an open
invariant neighborhood of C in L. Let C and U' be the puUbacks of C
and U respectively under the map /. We shall require the existence of a
closed invariant manifold neighbourhood K' of C" in U\ and a closed
invariant manifold (with singularities) neighbourhood L' of C in U such
that the restriction of/maps K' to ZΛ All maps are required to be G-maps
of G-manifolds with boundaries and to preserve boundaries. We shall
refer to such a class of maps as closed under thickened weak puUbacks.

In the case of no group action, if / were a submersion of manifolds
without singularities, one could simply choose L1 to be any closed
manifold neighbourhood of C in U and K1 to be/~1(L/).
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More generally, one needs to choose a closed invariant manifold (with
singularities) neighbourhood L1 of C in U9 and then choose a closed
invariant manifold neighbourhood Kι of C1 in/" 1 (int(L1)).

EXAMPLES 3.6. Examples of classes of G-maps closed under thickened
weak pullbacks.

(i) The class of all smooth G-fibrations whose fibers are constrained
to lie in some fixed "category of fibers". (See [19].) This class is closed
because f~1(Lι) is a closed invariant manifold neighbourhood K1 of C1 in
t/1, and the restriction f\Kι is a smooth G-fibration with appropriate
fibers.

(ii) The class of all G-maps to G-manifolds of at most a given
(nonequivariant) codimension /. Here, "manifolds" may be replaced by
" manifolds with singularities (restricted as above, or unrestricted) of finite
depth". For closure, let L1 be a closed invariant manifold (with singulari-
ties) neighbourhood of C in £/, then let AT1 be a closed invariant manifold
neighbourhood of C1 in/~1(int L1) and check that the restricted map has
codimension at most i.

(iii) One may restrict the local codimension of the singularities as
follows. First define a G-manifold with dimensions < γ e RO(G) and
(mapping cylinder) singularities of depth 1 to be a G-manifold M with
singularities such that M has local dimension γ — nι (nt > 0), away from
the singularities, where the singular set (L, 3L) is a disjoint union of
G-manifolds of dimensions γ — m for various m > 0. We also require
that each singularity map component /: (K^dK^ -> (L, , 9Lf ) maps a
(γ — n^-manifold to a (γ — m^-manifold with ni < m,. Proceeding in-
ductively, one now defines a G-manifold with dimensions < γ and singu-
larities of depth p as in 3.4, insisting at each stage that the singularity map
components do not increase dimension on any component. A γ-dimen-
sional G-manfiold with singularities of codimension / > 0 is then a
G-manifold M with singularities such that:

(a) Away from the singular set, M has equivariant dimension γ;
(b) The singular set is a G-manifold with dimensions < γ — / and

singularities of some finite depth/?.
For closure, mimic (ii), above.
We shall call such classes nice.

DEFINITION 3.7. Let M be a G-manifold with singularities. A subset
W of M is a sub-G-manifold with singularities if it has the structure of a
G-manifold with singularities in such a way that, if M = TV U κ Mf9 then



G-BORDISM WITH SINGULARITIES AND G-HOMOLOGY 131

W = N' U κ>Mf9 where N' and K' are, respectively G-submanifolds of
N and K, and where/' is the restriction of/to K\ regarded as a G-map
f':K'->L'. Here, Lf is a sub-G-manifold with singularities of L and with
depth one less.

Since Definition 3.7 makes sense only for G-manifolds with singulari-
ties of finite depth, we henceforth restrict attention to these.

4. G-bordism with singularities. Here, we describe the bordism
theories associated with singularities of finite depth in a nice class. Proofs
of excision and existence of external products are deferred until §5.

Let S be a nice class of G-maps, and let M(S) denote the category of
G-manifolds with finite depth mapping cylinder singularities in S. The
dimension of a G-manifold (with singularities) in M(S) is then either in Z
or in RO(G), it being in either event the dimension of the manifold away
from the singular set.

DEFINITION 4.1. Let (X, A) be a pair of G-spaces, and let γ e Z or
RO(G) (depending on context). Define Ω(S)%(X9 A) to be the set of all
cobordism classes of G-maps (Af, 3M) -> (X, A) from objects in M(S) to
(X, A), with dim M = γ. Here, two such G-maps are cobordant if one has
the following:

(i) a (γ + l)-dimensional G-manifold N e M(S) and a decomposi-
tion dN = 3 ^ U d2N of objects in λf(S), with dλN Π 327V equal to their
common boundary;

(ii) a G-map h: (N, d2N) -> (X, A) withh^N: (dλN9 ddλN) -* (X9 A)
the disjoint union of the two G-maps in question.

The standard gluing arguments from ordinary G-cobordism (cf. Stong
[12]) now adapt to show the following.

PROPOSITION 4.2. Each set2(S)^ is an abelian group. D

PROPOSITION 4.3. The construction of Ω(S)ξ(X, A) yields a functor
from the homotopy category of pairs of G-spaces to the category of graded
abelian groups. D

We now show that Ω(S)£ forms a generalized G-homology theory.
Let Ώ(S)$(X, φ) be denoted by Q(S)$(X).

PROPOSITION 4.4 (exactness). Let (X, A) be a pair of G-spaces. Then
there is an exact sequence

• -> Ω(S)γ

c(Λ) - &(S)y{X) - Ώ(S)°(X, A) U
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The proof is similar to the usual proof for ordinary G-bordism and
details are omitted. D

A similar result holds for G-triples (X, A, B).

PROPOSITION 4.5 {excision). Let {X, A) be a pair of G-spaces and let B
be a closed invariant subspace of int(^4). Then the inclusion of pairs
(X — J5, A — B) -> (X, A) induces an isomorphism on Ω(*S)£.

The proof is deferred to §5.

PROPOSITION 4.6. There is an external product

* , A) β Ω(S),G(7, G) -> Ω(S)?+ μ((X, A) x(Y, B)).

A proof is given in §5.

5. Proofs of excision and external products. First, we prove exci-
sion (Proposition 4.5) by induction on depth of singularity. Let (S, n)
denote G-bordism with singularities of depth at most n in a nice class S.
Then

Ω(S,0) = Ω,

and

= cdΰmQ(S9n)9

and, as usual, excision holds for 0(5,0)*. (See [12] for the nonequivariant
case.) We shall need some care in formulating excision for Ω(S, n) in
order to prove inductively that it holds for

PROPOSITION 5.1. Let (X, A) be a pair of G-spaces, and let B c int(A)
be closed and invariant. Let (M, dM) be a G-manif old {with boundary) with
singularities in a nice class S of depth at most n. Let f: (M, dM) -> (X, A)
be a G-map. Then there is a codimension-0 sub-G-manifold {with boundary)
(M',dM') such that f\{M\dM') takes values in (X - B, A - B) and
f\M — M' takes values in int A.

Proof. By induction on n. If n = 0, there are no singularities, and the
usual proof may be applied (cf. Stong [12]).

Now assume that excision holds for n = n0. Write M = N U κMφ,
φ: K -> L, as in (3.1), so that (L, 3L) is a G-manif old with singularities in
S of depth at most n0. By the inductive hypothesis, we may excise open



(j-BORDISM WITH SINGULARITIES AND G-HOMOLOGY 133

FIGURE 2

sets Lx or L2 from L, with Lx c L2, in each case satisfying the proposi-
tion. Because S is closed under thickened weak pullbacks, there is a pair
of codimension-O, closed G-manifolds, V c L and K' <z K such that

( a ) L - L 2 c L ' c L - Ll9

(c) for some / < \Jmaps(K\ dK') X [/, 1] to (X - B, A - B), and
(d) for this /,/maps K - Kf X [/, 1] to int A.

(See Figure 2.)
Now excise from M the complement oΐ K' X [t,l]U L' in K X [t,l]

U L. Further excision of a suitable open set from the remaining manifold
with singularities yields the conclusion for n = n0 + 1, as required. D

Since 12(5) = colimM ΩίS1, w), one may use the above result to show
that there is a well-defined excision map in bordism with singularities in a
nice class S:

Q{S)(X,A) s Q{S){X-B9A - B).

Note that this completes the proof, begun in §4, that Ω(Sf)J is a

generalized homology theory. We turn now to products.

PROPOSITION 5.2. The product of two G-mαnifolds with singularities in S
is again a G-manifolds with singularities in S.
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1/2 -L-

FlGURE 3

The proof requires the following two lemmas.

LEMMA 5.3. The product of two mapping cylinders admits the structure
of a mapping cylinder {although not canonically).

Proof. Let / : A -+ X and g: B -* Y be G-maps. We shall view

Mf X Mg as a mapping cylinder according to the idea of Figure 3.

For this construction, map A X B X [ - \, \\ to X X Y X [ -1,1] via

A = (/, g, multiplication by 2). The mapping cylinder Mh of h may now

be identified with Mf X Mg by identifying A X B X [- \, \\ with the

upper left emphasized region shown in Figure 3, and by identifying

X X Y X [ — 1,1] with the lower right emphasized region there. This now

easily extends to a G-homeomorphism. •

LEMMA 5.4. Let M U κMf be a G-manifold with singularities. Then

M U K{K X I) has the structure of a smooth G-manifold, while

MU K(KX I) U κMf

has the structure of a G-manifold with singularities G-homeomorphic to
M U κMf. {Here, the unions are taken over the " 0 " and " 1 " ends ofKXl
respectively.)

The proof is omitted, being easy. D
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M*Kf

KXL' L*L ! LxL !

M*Mf«

\

MfxMf

LXLf

K*Mf K*Mf

FIGURE 4

0/ Proposition 5.2. Let M U κMf and AT U ̂ M / r be G-mani-
folds with singularities. Let L denote the singular set of M and V the
singular set of M'. By Lemma 5.4 it suffices to show that the product

(MUκKXlUκMf) x(M'Uκ,K' X J ' U

is itself a G-manifold with singularities. Here, / ' is a second copy of
Figure 3. This product is represented in Figure 4, where symbols such as
" M " indicate fibers over indicated points in the diagram, and where
smoothings are not explicitly shown.

The lower left square (shaded) has the structure of a G-manifold
whose boundary contains a codimension-0 sub-G-manifold of the form

M X K' X 0 U K X K' X[O,1] V K X M' X I

(with corners smoothed). Using the proof of the Lemma 5.3, define a
mapping cylinder structure from this sub-G-manifold to the union of the
top and right sides of the square, a copy of

U I U L X M ' X 3 .

This gives (M U κ K X I U κMf) X (AT U K,K' X I' U κ>Mf) the
structure of a G-manifold with singularities, as required. D
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COROLLARY 5.5. If Mλ and M2 have mapping cylinder singularities in a

nice class S, then so does Mλ X M 2 , and the depth of Mx X M2 is at most

, depth(M2)} + 1.

By following straightforward arguments, one can show that products
preserve the relation of G-cobordism. Thus Ω(S)$ admits an external
product, and the corresponding cohomology theory 0(5);- is a ring. More
will be said about this theory below.

6. Stable singular G-bordism theories and statement of results. Here,
we construct stable, torn Dieck type, theories from the theories Ώ(S), and
consider their dual cobordism theories. We then give a precise statement
of our results.

Referring to Example 3.6(iii), denote by Mi the (nice) class of G-maps
associated with G-manifolds with dimension in RO(G) and with mapping
cylinder singularities of codimension at least /. We shall have occasion to
specialize to G-oriented (SO), and to G-unitary (U) bordism with singular-
ities. In such cases, the singular G-manifolds under consideration possess
the relevant structure away from the singular sets. Thus, for example,
N U κMf is G-oriented if N is G-oriented. (See [14] for a treatment of
G-oriented bordism). In our notation, a subscript will be used to indicate
special structure—for example Ω s o will denote G-oriented bordism, singu-
lar or otherwise.

From this point on, we shall deal entirely with reduced bordism and
cobordism theories, and will retain the symbol Ω. Thus, Ω(S)$(X) is the
bordism of the pair (X, *) for a based G-space X. One therefore has an
i?O(G)-graded G-homology theory Ω(Mf)J, defined on based G-spaces X,
and possessing suspension isomorphisms of the form

One passes from one representation to another as follows. If Y is a
(finite dimensional) G-module and if M belongs to the class Mi9 then so
does M X (D(Y), S(Y)). This gives a homomorphism

σγ:Q(Mi)°(X)-+Q(Mi)°+γ(ΣγX).

As in §2, one now takes

defined with respect to the σ y for Y invariant submodules of i?00. By fiat,
one now has suspension isomorphisms
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for arbitrary G-modules Y. This gives Ω(ΛQ£ the structure of a gener-
alized G-homology theory graded on RO(G) in the sense of Wirthmuller
[22].

Since the theory Ω(M,)£ satisfies the requisite suspension isomor-
phisms, it is representable by a G-spectrum in the sense of [16], and one
therefore has an associated cobordism theory, Ω(MZ)£, which also has a
ring structure, since ^(M^ retains the external product structure from

Next, we consider singular versions of the theories B% discussed in §2.
For these, we refer to Example 3.6(ii), and denote by Λ̂  the class of
G-maps S associated with G-manifolds with mapping cylinder singularities
in codimension at least i. Although one has no analogue of SO for such
bordism theories, one does have an analogue of U9 and the notation
conventions above will apply here. Proceeding as above, one obtains
theories £(#))• and 2*(ty)*> indexed on Z, with

where y = dim Y. The theory jB(Λ .̂)* is then a generalized Z-graded
equivariant homology theory with suspension isomorphisms of the form

Again, one has a dual multiplicative cobordism theory 5(iV )J.
Note that one has an inclusion of classes (of nice G-maps)

which induces a natural transformation

F: Ω(M,)γ

G - B(N,)&,

and similarly for the stable theories.
Let T be a covariant coefficient system in the sense of Lewis, May

and McClure [8], and let Ή%{-\ T) denote i?O(G)-graded (reduced)
homology with coefficients in T. (This is the theory dual to that described
in the introduction.) One may verify that the functor Ωo: G/H *->
ΩQ(G/H+) is such a coefficient system in view of the suspension isomor-
phisms described in §2.

THEOREM 6.1. There exists a natural isomorphism
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The theorem is proved in §7. Since Ω may refer to any of the theories
Ω ,̂ A = U, Fr, SO,..., one has, choosing A = U, SO or Fr (see [14]), an
isomorphism

where B denotes the covariant Burnside system, since Ωo is the Burnside
system for these theories. (See [8] for the theory of such systems.)

Turning to dual cohomology theories, one has the following

COROLLARY 6.2. There is a natural isomorphism

ψ:Ω(M2)£(-)^G*(-;Ω°),

where Ω° is the contraυariant system G/H -> Ω

Proof. The cohomology theory dual to Ή%{-\ Ωo) is / / £ ( - ; Γ),
where T is the contravariant system defined by G/H •-> Ω^(G/i/+) and
on a morphism G/H -> G/K by application of ΩQ to its G-Spanier-
Whitehead dual [21]. (The G-spaces G/H+ are self-dual in this sense). The
system T may then be checked to coincide with Ω°, as required. D

THEOREM 6.3. There is a natural isomorphism

Ϋ: B(N2)*(X) = P ( I Λ GEG+; B°),

where B° is the abelian group B°(*), the lack of subscript G signifying the
nonequiυariant theory.

Theorem 6.3 is proved in §7.

Turning to the case of codimension-/ singularities for general i, we
prove the following results.

THEOREM 6.4. Let a: EG —> point denote the projection. Then the
induced map in cohomology,

(1 Λ <*)*: BiN^iX) - ί ( ^ ( X Λ EG+)

is an isomorphism for each i > 0.

REMARKS. 6.5. No analogous result is known to be true for nonsingu-
lar G-bordism, even when G is a /?-group and one uses finite coefficients.
Lόffler [10] has, however, shown that (1 Λ α)* is an isomorphism in the
nonsingular theory when one completes at a certain ideal of B£{ *).
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The relationship between Ω(Af,)£ and B(Nt)^ is given by the follow-

ing theorem.

THEOREM 6.6. For each i > 0, there exists a generalized Chern class

λ, <Ξ ^(M,.)^ where γ. e RO(G) has the form Vt - £>,-, i;,- = dim?), swc/*

the natural transformation Q(Mt)^ -> B(Nt)^ induces an isomorphism

, [JC" 1 ] denotes inversion of the class x.

Theorems 6.4 and 6.6 are proved in §10.

Finally, we consider what happens as i -> oo.

PROPOSITION 6.7. Lei ιz: M i + 1 -> M i αn<ί τ ;: M -> M^e the natural

inclusions, where M denotes the empty class of G-maps (so that the associ-

ated singular G-manifolds are singularity-free). Then the T, induce an isomor-

phism

and similarly for the associated G-bordism theories.

The proposition is proved in §12. An analogous result for Bξ would

imply, via Theorem 6.4, that tom Dieck bordism of EG and that of a point

are more closely related than Loffler's results indicate, and the matter is

still unresolved.

7. Proof of Theorem 6.1. Our strategy will be to use the following

uniqueness result on ordinary i?O(G)-graded G-homology.

PROPOSITION 7.1. Up to natural isomorphism, there exists a unique

RO(G)-graded equivariant homology theory h% defined on G-CW complexes

and admitting suspension isomorphisms by arbitrary (finite dimensional

orthogonal) G-modules such that

BredonΊllman homology with coefficients in a given covariant system T with

suitable structure.

A proof will appear in [9]. In view of the proposition, it will suffice to

show that Q ( M 2 ) £ ( - ) = H?(-', 8 0 ) f o r " e z
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Let <& be the category of G-orbits described in the introduction. In
view of the uniqueness theorem for H% [6], it will suffice to show that, as a
covariant system,

O(^2)oG(-):^-*^>
the category of abelian groups, agrees with the system Ωo, while

Q(Mi)n(G/H+) = 0iίnΦ0.

We first prove a lemma.

LEMMA 7.2. Let (P, 3P) belong to Mi and have dimension V + n for
some V, with n > i - 2. Then any G-map /: (P, 3P) -> (D(V\ S(V)) is
null-bordant.

Proof. Let (5, dS) denote the singular set in (P, 3P), so that S has
dimensions V -f r for r < n — i.

We assert first that the strata of S may be assumed to have dimen-
sions V + s with s > 0. Indeed, write

(S, dS) = (So, dS0) D (S^, 35,) 3 . . . 3 (S,, 3^) ,

where (Si+l9dSi+1) is the singular set in (Si9dSt). Let 7 be the largest
integer such that (SJ9 dSj) has a local dimension V + s with s < 0. Then,
by choice of j , S- is a disjoint union of the form T U R, where T has
dimensions V + s with s < 0 and no singularities, and iί has dimensions
V + / with / > 0. Thus dim TH < άim(D(V)H) for each H c G, whence/
is G-homotopic to a G-map/' which maps the cylinder neighbourhood U
oiT'mP into S(V). Let β = P - I/. Then

is G-bordant to/as follows. Let N = P X [0, | ] U P x l / 2 g X [\91] and let
A: (N, dN) -> (I>(K), S(F)) be defined via the G-homotopy/ - / ' on the
left half, and by g X 1 on the right half. That this bordism is one in Mi

now follows from the definitions. Further, we have removed the deepest
stratum Sj with dim Sj = V + s and s < 0. Continuing inductively gives
the assertion.

Now let F: Mf-> (D(K), S(V)) denote the natural extension of /
over its mapping cylinder. Then Mf is a G-manifold of dimension V -4- n
4- 1 with singularities of codimension at least /, stratified as Mf\(S0, dS0)
3 . . . i> Mf\(Sp,dSp)^> (D(V\S(V)). F is now the desired null-G-
bordism of/. •
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The essential role played by the mapping cylinder construction in the

above proof was the motivation for the use of mapping cylinder type

singularities.

PROPOSITION 7.3. (a) The inclusions r: M -> M2, (see Proposition 6.7),

induce isomorphisms T: Ω (̂ X) -> Ω ( M 2 ) Q ( X) for every based G-space X.

(b)Ώ(M2)
G

n(G/H+) = 0ifnΦ0.

Proof. To show (a), we construct an inverse R of Γ. If x is a class in

Ω(M2)o( X), then x is represented by a G-map

/ : ( P , 3 P ) - > ( * , * ) χ ( l ) ( F ) , S ( F ) )

for some G-module F, where (P, 3P) is F-dimensional and of type M2. If

(5, 35) denotes its singular set, then dim(S, dS) = F — r locally, where

r > 2, whence, by the proof of the lemma, one may replace (P, 9P) by a

singularity-free F-manifold, thereby defining a class R(x) in UG(X). To

show that this class is well-defined up to the bordism class of x, one may

perform the same construction on any bordism between x and x\ since

i = 2. By construction, RT = 1, and by the proof of Lemma 7.2, TR = 1.

For (b), let /: (P, 3P) -* (G/H+, + ) X (D(V), S(V)) represent a

class x €Ξ Ώ(M2)
G(G/H+) with n Φ 0. If w > 0, then P is ( F + «)-

dimensional and one may apply the lemma, which works equally well with

D(V) replaced by D(V) X G/H+. If n < 0, then Fhas the form W + m

with m > 0 and P of dimension W. By the arguments above, x is

represented by a singularity-free bordism class which must be zero since

Ω^ = 0 for n < 0. D

Theorem 6.1 now follows.

8. Change of representation and the bottom Chern class. In [17],
Waner constructs Chern classes ct e H£~2i( * T) for arbitrary f.d. unitary

G-modules V and coefficient systems Γ, where 0 < / < dim c V. Denote

by λ the class in dimension V — υ (where υ = dimR V). It is proved in [17]

that, if V contains a free G-orbit, then [\~λ]H*(*\ T) = H*(BG;

T(G/e)), where T(G/e) is regarded as a G-module via its coefficient

system structure. (See for example, [20].) In view of Theorem 6.1, it seems

natural to seek a geometric representative for the class λ, regarded as an

element of ΉG_V(S°\ Ωo), in Q(M2)
G_V(S°) = Ώ(M2)

G(SV). This, to-

gether with analogous classes of arbitrary codimension, will emerge from

the following.
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PROPOSITION 8.1. Let Y be a smooth G-manifold with fixed sets of
codimension > i. Then Y has the structure of a G-manifold with singularities
from class Mi and of dimension in Z c RO(G).

Proof. Assume that Y is connected, and consider first the case that Y
contains a free G-orbit. Denote by F the union of its proper fixed subsets.
Since Y is free away from i% and since F has an equivariant mapping
cylinder neighbourhood in 7, it suffices to show that F is a G-manifold
with dimensions (in RO(G)) of at most dim Y — / and finite depth
singularities.

F may be given such a structure as follows. Let (70, dY0) denote the
union of subsets of maximal isotropy type. Then Yo is a G-manifold with
boundary 970 = 97 Π 70, and forms the singularity for the G-space
(7 l 9 97X) consisting of points with maximal isotropy among the remaining
subgroups. Continuing inductively, one obtains the required structure.

If 7 does not contain a free G-orbit, then Y is a G/A^-manifold with K
some normal subgroup of G, and the argument thusfar implies that Y is a
G/K-maxάfold of equivariant dimension in Z with singularities. Since Y is
now of the form G/K X D(n) away from the singularities, while the
singular set continues to have the form G/J X D(m) locally, it follows
that 7 has the required structure. D

One may, in view of the proposition, regard the pair (D(V), S(V)) as
a singular G-manifold of equivariant dimension in Z c RO(G) and with
singular set equal to the union of proper fixed subsets. The codimension i
is then given by υ — maxVHΦV{άimVH}. In particular, if V is unitary,
then (D(V), S(V)) e M2. Denote (D(V), S(V)) with this structure by
(£>(V),S(V)). The identity (D(V), S(V)) -> (D(V)9 S(V)) then repre-
sents a class

PROPOSITION 8.2. Under the isomorphisms of Theorem 6.1 and its
corollary, μ coincides with the Chern class λ G H%~V(S°; Ω°).

Before proving the proposition, we establish the following consistency
result concerning passage to subgroups.

LEMMA 8.3. For each H c G there is a natural isomorphism

ε: Q{M?)G

y(G+Λ HX) ^ Q(M»)%
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for i > 0, where X is any based G-space, γ ^ RO(G), and the superscript J
in Mf indicates ambient group J.

Proof. A class in Ω(M/

G)(7(G+Λ HX) is represented by a G-map
/:(M, 3Af) -> G X^[(jr, •) X (Z>(W), S(W))] for some G-module W,
where M e M/7 has dimension γ + PF. It follows that M must have the
form G X „ ( # , 3iV), where N = / Λ U } + A H(X X 2>( W))) and is i/-in-
variant, giving an object in Mf1 of dimension γ|i/ + W\H. The required
isomorphism ε is given by assigning to the class [/] the class [f\(N, dN)],
while its inverse is given by assigning to an /f-map g: (Af, 3M) -> (X, *)
X (/)(ίΓ), S(W)) the G-map

g X 1: G X^(M ? 3M) -> G X H [ ( I , •) x(D(ϊF) , S(ίF))]. •

REMARK 8.4. (i) It follows that the identical result holds for cohomol-
ogy provided X is a finite G-CW complex, by the self-Spanier-Whitehead
duality of G/H. Further, Lemma 9.1 below will guarantee that X may be
an infinite G-CW complex with finite skeleta.

(ii) Everything just said applies equally well to i?(Λf)£, with the
(possible) exception of the last statement in (i). In practice, consistency
results for X infinite are verified by the vanishing of lim1 terms.

(iii) Note that the theories Ώ(Ml)* and B(N*)+ coincide.

Proof of Proposition 8.2. By the work in [17], λ is entirely specified by
the fact that, if/: / / £ - " ( - ; Q°) -> H°(-; Ω°(S0)) represents the forget-
ful map (with respect to an orientation of V\ then/(λ) = 1, the unit in
cohomology. One now has a commutative diagram

if if

where / is the forgetful homomorphism in each case. (In general, / takes
the form/: hG

n(X) -» hG

n(G/H+Λ X) = h*(X).) Since/(μ) and the unit
both live in Ω(Mj)0(5 f0), the result will follow from the following lemma,
applied to the case Y = D(V).

LEMMA 8.4. Let Y be a G-manifold with proper fixed subsets of
codimension at least /, and let r: (7, dY) -> (D(W), S(W)) represent a
class in Q(M?)G. Let y be the class of r: (7, 97) -> {D(W\ S{W)) in
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?,, where Y = Y, regarded as an integral dimensional G-manifold
with singularities as in Proposition 8.1, and where r coincides with r. Then

Proof. To prove the lemma, it suffices to give (Y,dY) X I the struc-
ture of an object in Mt such that (7, dY) X {0} has its usual manifold
structure, while (Y, dY) X {1} has the structure of (7, dY). This is shown
by replacing F in the proof of 8.1 by F X [|, 1], and by applying the rest
of the proof verbatim (and nonequivariantly). D

Note that, while (Y, dY) X I has the structure of an equivariant
manifold with singularities and the desired restrictions at the ends of the
cylinder, it is not an object of fixed local equivariant dimension away
from its singular set. We shall need the following generalization of Lemma
8.1.

PROPOSITION 8.6. Let Y be a G-manifold with singularities. Then Y has
the structure of an object in Mt of integral equivariant dimension.

Proof. We assume Y connected and do induction on the depth of the
singularity, thecase of zero depth being settled by Lemma 8.1. Thus
assume the result true for depth m singularities, and that Y has depth
m + 1 singularities. By induction, its singular set S has the structure of a
singular G-manifold with equivariant dimension in Z. Further, we induc-
tively assume (as we may in the proof of Lemma 8.1) that S includes the
union of its proper fixed subsets, and that the G-orbit of each proper fixed
subset is a singularity stratum.

Let S' = S U proper fixed subsets of Y. Then S" is a G-manifold with
singularities and dimensions in Z. Indeed, adding proper fixed subsets of
Y to S as in the proof of 8.1 amounts to attaching G-manifolds of
dimension in Z to the strata in S via mapping cylinder constructions.
Since all the local structure is now in Z c i?0(G), the result follows. D

9. Inverting the bottom Chern class. Fix V as the complement of
the trivial summand in the complex regular representation, and for each
i > 0 choose integers mt > 1 such that mtV has proper fixed sets of
codimension at least i. One may then regard (Z^m^F), S^ra^F)) as a
G-manifold of equivariant dimension mtv and singularities of codimen-
sion i. Just as in §8, this gives rise to "Chern" classes

for each i > 0.
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Consider now the associated cohomology theory QίΛQg. One may
formally invert the class λ,- in Ω(M,)£ by defining

taken with respect to multiplication by λ, , where γ, = m^V — υ). (As
usual, v is the real dimension of V.)

LEMMA 9.1. Let γ e RO(G), and let X be a G-CW complex. Then, for
N sufficiently large, inclusion XN -» X of skeleta induces an isomorphism

Proof. It suffices to show that Q{MtγG{G/H+/\ SN) = 0 for N large
enough. Write γ = W — U. Then

this bordism group having contributions of the form

for K a H and y < dim W. Since these vanish for N large enough (by
Lemma 7.2), we are done. D

Of course, Lemma 9.1 eliminates the need for considering lim1 terms
when considering infinite G-complexes in singular G-cobordism.

LEMMA 9.2. Let X be a free connected G-space with finite skeleta. Then
the localization

is an isomorphism for every G-module W.

Proof. By the five lemma and cofibration exact sequence arguments, it
suffices to prove the lemma in the special case X = G+Λ Sn

9 where it is
immediate, since λ,, regarded as a class in nonequivariant singular bordism,
coincides with the unit. D

If X = EG+, then the natural projection a: EG+-* S° induces a
(localized) homomorphism

by the lemma.
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THEOREM 9.3. The map

is an isomorphism for every / > 0 and n ^ Z.

Proof. Fix m = wf and γ = yi9 and let W = mV. (Thus γ = W — w.)
Let / c G be such that WJ is a proper fixed subspace of W having
maximum dimension r, and let N be any integer with N(w — r) > w + n
+ /. It will then suffice to show that

a*: Ω(M,.)r"γ(S°) - Q(Mt)"G

+rflr(EG+)

is an isomorphism for all such N.
Let PN be the free G-manifold obtained from S(NW) by deleting a

neighbourhood of the union of proper fixed subsets. Then
EG =

via the inclusions induced by NW -> (N + 1)W. If 7: P^ -> ^ί^VίΓ) is the
inclusion, we assert that

is an isomorphism. Indeed, it suffices to show that

Q(Mi)
n

G

+NΎ+t(S(NW)/PN) = 0 ifί = Oorl .

Write PN = S(NW) — Q%, where QN is a regular neighbourhood of the
union of proper fixed subsets of S(NW), closed and invariant under the
action of G. Then S(NW)/PN = QN/dQN. Since QN/dQN is equiv-
ariantly Spanier-Whitehead dual to the Thorn space, T(QN), of QN by
[21], and since the latter may be taken to be Σ(QN)+, one has a duality
isomorphism

(NW — 1) being the dimension of QN. Here,

NW - l - n - N y - t = N w - t - n - l .

Since QN is G- equivalent to the union of proper fixed subsets in
S(NW), it is also (7-equivalent to a G-CW complex with G-cells of type
G/H X Ds with s < dim NW" - 1. For such G-cells,

Ω(M;)f (G/H+Λ Ss) ^ Ω(M,)f (S°) ^ Q(Mt)?_,(S°),

where k = NW — 1 — n — t, and k — s > i provided that Nw — 1 — n —
1 > NWH - 1 + i. But, by definition of r, one has

Nw - NWH > N(w - r) > w + n + ι, by definition of N,

> WH + 1 + n + /.
Thus, k — s > i, whence Ω(MJ )f_J( Sf°) = 0, proving the assertion.



G-BORDISM WITH SINGULARITIES AND G-HOMOLOGY 147

One now has a commutative diagram

U

It therefore remains to show that η and σ are isomorphisms.
For σ, one observes that EG+ may be obtained from PN by attaching

G-cells of the form G X Ds with 5 large, since the connectivity of PN -* 00
as JV -> 00. (P^ is at least as connected as 2^/3(2^ and

Ht(QN9 dQN) = HN"-χ-\QN) = 0 for / < N(w - r) - 1.)

For such cells,

since |γ| = 0, where ε = 0 or 1. These groups vanish for large enough s,
and we may assume N having been chosen sufficiently large to guarantee
this.

That TJ is an isomorphism follows from the G-cofibration exact
sequence

• - Ω(M,yG

+NΎ(S™) -> Ώ(M,yG

+Ny(S°) - ΩiM^

ill

the isomorphism on the left following from the definition of γ. Since
n — Nw and n — Nw — 1 are < / by choice of N9 η is an isomorphism. D

10. Relationship with Z-graded singular bordism. Let mi9 V and λz

be as in §9 (for each i > 0), and let μ/ be the class/*(λ,), where

denotes the forgetful homomorphism described in §6. Thus μ, is repre-
sented by the identity map

(D(my)9s(my))9

where the pair on the left expresses the disc as a singular G-manifold with
integral equivariant dimension as above.

LEMMA 10.1. The class μι coincides with the unit in cohomology.
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Proof. It suffices to give D{my) X / the structure of an object in TV.
such that the zero-end of the cylinder has its usual G-manifold structure,
while its one-end is given the singular structure of j9(m,K). This may be
done by replacing F in the proof of 8.1 by F X [\, 1], and by repeating the
argument there. D

Proof of Theorem 6.6. Define homomorphisms

ψ:

and

as follows, ψ is taken to be the localized version of / * above; ^(N^ being
already local by the lemma. To define φ, let x <Ξ 5(Λ^)^(Sf0) be repre-
sented by /: (Λf, dM) -> (D(sV), S(sV)) for some s > 0, where dim M
= n + sυ. By Proposition 8.1, we may regard M as an object in M of
integral dimension, since one may assume (Λf, dM) having been sus-
pended so that its proper fixed subsets have arbitrarily high codimension.
Thus/defines an element>>(/) in Ω(M7.)£+ 5 l ;(^F) = ^M^^^S0),
and hence in [X'^iM^iS0). We therefore define φ(x) to bej>(/). To
check that φ is well-defined, one first observes that φ(x) is independent of
the choice of representative of x in the geometric theory B(Ni)%+sv(SsV),
as one may include the proper fixed sets of any bordism in the singular
set. It therefore remains to check that/: (Af, dM) -> (D(sV), S(sV)), and

/ X l : (M, 3M)x(Z)(m /F), S(m,K)) ^ (D((S + m^V), S((s + m^V))

are mapped to bordant classes in [λz"
1]Ω(M/)^(S'0). Here, Xty(f) and

y(f X 1) are both represented by / X 1, but with different singularity sets;
Xty(f) has singularity

^ = [(S U F(M)) X D{miV)] U [M X ^ ( ^ ( m ^ ) ) ] ,

while y(f X 1) has singularity

S 2 = [ S X Dimy)} U F(M X D(miV)),

where F( —) denotes the union of proper fixed subsets. (Note that S2 c Sv)
An explicit G-bordism between these representatives is given by endowing
N = M X D(my) X /with singular set T = Sx X [0, | ] U S2 X [̂ , 1], and
noting that N and Γ have integral equivariant dimension as singular
G-manifolds. An argument similar to that in the proof of Lemma 10.1
now shows that ψφ = 1. To show that φψ = 1, we use a less direct
argument.
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Consider the following commutative diagram, induced by the G-map
ψ: EG+-* * .

β* I

where ψ is ψ in cohomological form. Since ψ is now a (split) epimoφhism,
and since β* is an isomorphism by Theorem 9.3, it follows that, if one can
show/* to be an isomorphism, it will then follow that both ψ and α* are
isomorphisms, (and also that φ and ψ are inverses of each other).

By Lemma 9.1, one may replace EG by one of its skeleta EGN.
Further, since the G-cells in EG are free, the argument of that lemma, with
H replaced by the trivial subgroup, shows the same to be true for

J. On the other hand,

(G+Λ S') - B(N^(G+A S')

is an isomorphism for any m e Z, since both its domain and target
coincide with the nonequivariant groups Q{Mi)

m~r = B{Ni)
m~r. The re-

sult now follows by the five-lemma and cofiber sequence arguments. D
Note that, during the course of the above proof, we have shown the

following counterpart to 9.3.

THEOREM 10.3. The G-map a: EG —> * induces an isomorphism

Note that this is an equivalent formulation of 6.4, and thus completes
the proof of that theorem. Finally, we deduce Theorem 6.3. Indeed, one
has isomorphisms

B(N2)*(X) s Q(M2)*(EG+Λ X) (diagram in proof of 6.6)

= Ή*{EG+/\ X; Q°) (6.2)

= Ή*(EG+ΛX;B0)

for any G-CW complex X. Also note that

Ή*(EG+X X; B°) = H*(EG+X X; B°{

this being a well-known fact from Bredon cohomology.
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11. Proof of Proposition 6.7. Consider the homomorphism

By suspending if necessary, we may assume that |γ | > yH for each H c G.

An element of l im z 0(M l )^(J i) is represented by a sequence of bordism

classes of G-maps

fi:(Pi,dPi)^(X,*)x(D(Vi),S(Vi))

such that /£ and fi+ι are G-bordant after suspension by some G-module,

with (Pi9 dPj) e Mi and of dimension γ + Vt. Thus the singularity St in

(Pi9 dPJ has dimensions < (γ + Vt — i). If i is chosen > |γ | + 2, then

dim St < γ + Vιf — |γ | - 2, whence

dim SH <yH - \y\ + Vt

H - 2 < Vt

H - 2

for H c G, so that /IS', is null bordant. Let Ui denote the mapping

cylinder neighbourhood of Si9 and let (Q^dQ^ = (Pi9 9PZ) - LΓ.. Then

ft and ŷ -lg, are G-bordant via the restriction of fέ to (P7 X [0,^]) U

(Qi x [2? 1])? showing that T is epic.

On the other hand, given a G-map

f:(M9dM)-*(X,*)x(D(V)9S(V))

representing an element of kerr. One then has a null-bordism of τ[f] in

^X) for each 1. Denote this null-bordism by Ft: ( ^ a J S Q - *

, *) X (Z>(F;), 5(F;)). Fix / > |γ | + 2 as before. The singularity set

of (Xi9 dXJ then has fixed set dimensions < γ H - | γ | + ^ - l <

— 1, so that, again, Fi\Si is null-bordant, and one may exchange the

singularity S{ for a boundary as before. D
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