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ON THE MINORANT PROPERTIES IN Cp(H)

M. DέCHAMPS-GONDIM, F. LUST-PIQUARD AND H. QUEFFELEC

We improve in two directions a recent result of B. Simon about the
minorant property in Cp (//); the methods also allow us to extend a result
of H. Shapiro and to obtain an apparently new result on matrices with
positive entries.

Introduction. Let H be a complex Hubert space, which will always
be the space I2 of square summable sequences or the space I2 of all
^-tuples of complex numbers with the hermitian norm, equipped once and
for all with an orthogonal basis ( e / ) / e / (/ finite or countable). Let K(H)
be the set of all compact operators of H; if C e K(H), put \C\ = ]/C*C
and let μλ(C), μ 2(C),... ,μ, (C) be the eigenvalues of |C|, rearranged in
decreasing order; if 1 < p < oo, put

- ( Σ U,(C)ΓΓ = (τr|cf )1/p = {τr(c*cy/2\2\1/p

(where for A e K{H),Tτ A = Σι€Ξί(Aen e) is the trace of A whenever it

exists).
Let Cp{H) be the set of all C e K(H) such that \\C\\p < oo, (C^H)

= K(H) and HCĤ  = j^i(C) is the usual operator norm of C). It is well
known that Cp(H), with the norm || \\p, is a Banach space ([11]).

For C e iT(^), we put

cly = (C(e y), ^> = Ίr(C-{eι 0 ey)) = C(i, j).

In the last inequality, c is considered as a Fourier coefficient with
respect to the orthonormal (in the Hubert-Schmidt sense) system
(eι <8> ej)(ίj)€ΞίxJ and this allows us to keep the analogy with the com-
mutative case ([3], [4]) in the definitions below (recall that et Θ ey is the
operator of rank one defined by:

(eJ®eJ)(x)=(x,eι)eJ).

DEFINITION 1. If A, B e K{H), we say that A is a minorant of J5 if
\atj\ < bυ for (/, j) G / X /, that is if | i | < 5. We say that Cp(H) has the
minorant property, and we abbreviate this to (m)-property, if

A,B<=C(H) and \A\< B ^\\A\\P <\\B\\P.
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We introduce a slightly different definition, the role of which appears

in the third part of this paper (Theorem 3).

DEFINITION 2. We say that Cp(H) has the positive minorant property,

and we abbreviate this to (m+)-property, if

A,B^Cp(H) and 0 < A < B =* \\A\\P < \\B\\P.

We will begin by giving a survey a results already known about the

(m)-property. The first questions is: for which/? does Cp(H) have (m)? It

is well known, and simple to prove, that if p = 2A:, k an integer, Cp(H)

has (m): if A, B e Cp(H) and \A\ < B, then

\A*A\ < ϊί*B, |U*Λ)*| < {B*B)k

and

\\A\\"P = Tr(A*A)k < Ύr(B*B)k =\\B\\P

P.

It is also obvious that C^{H) has (m).

In ([8]), V. Peller proved that 1 < p < oo, p Φ 2k, k an integer,

Cp(l2) does not have (ra). The answer for Cp(H) is then analogous to the

answer for the commutative case of Lp-spaces that has already been

considered and solved by G. H. Hardy-J. Littlewood ([7]) and R. P. Boas

([2]). It follows from V. Peller's result that there must exist some n for

which Cp(l%) does not have (ra), if/? Φ 2k, k an integer; but the proof,

which relies on the theory of Hankel operators ([9]) and on ([11]) does not

provide an estimate for n. In ([12]), B. Simon gives a simple proof (which

relies only on [2]) that (m) fails for Cp(l2) if p Φ 2k, and his proof gives

an explicit n for which (m) fails for Cp(l2). More prescisely, B. Simon

introduces the following definition.

DEFINITION 3. // 1 <p < oo, p Φ 2k, N(p) denotes the smallest

integer n such that Cp(l2) does not have (m).

B. Simon proved in ([12])

(i)N(p)<2[p/2] + 5

(iϊ) N(p) >3iίp>2

(where [x] is the greatest integer υ such that υ < x) and he remarked that

it would be interesting to know the precise value oΐ N(p).

This paper will be divided into three parts. In the first part, we

improve (i) to show that

(I) N(p)<[p/2}+2.
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(Equivalently, if p < 2(n - 1), Cp(l%) does not have (m)). We give a

simple and explicit counter example (Theorem 1, a) whereas in ([2]) and

([12]) the methods are variational. Our counter example, in its variational

version (Theorem 1, β) extends to the non commutative case a result of H.

Shapiro ([10]). It is also possible to formulate β in terms of the minorant

property for some Banach space of operators Cφ(H), where φ is an Orlicz

function: we refer to ([4]) for this.

In the second part, we improve (ii) to show that

(II) N(p)>4 ifp>4

(equivalently, Cp(ll) has (m) if p > 4; because of (I), it has not (m) if

1 < p < 4, p Φ 2). It follows from (I) and (II) that

+ 2 i f l <p < 6,pΦ 2,4.

We conjecture that this is the correct value of N(p) for all p, p Φ 2k.

Equivalently, we conjecture that Cp(l%) has (m) iΐp > 2(n — 1).

In the third part, using the Gateaux-differentiability of the C^-norm,

we prove that the (m+) property is equivalent to the following:

if B e Cp(H) and B > 0, t h e n ^ * ^ 7 2 ' ^ * > 0 (Theorem 3).

In particular, from this result and from (II) we derive the following fact: if

B is a (3 X 3) matrix with positive entries, for a > 2 the matrix (B*B)a

has positive entries. An analogous result, with a more direct approach,

was obtained by B. Virot (Theorem 5).

In view of these results, it would be interesting to know if the (m+)

property is actually weaker than (m). We know no case in which (ra+)

holds and not (m). What we know about (m+) is collected in Theorem 4.

Part I. We shall prove the following theorem.

THEOREM 1.

(a) Let 1 < p < oo, p Φ 2k. Then N(p) < [p/2] + 2 (equivalently, if

p < 2{n - 1), Cp(ll) does not have (m)).

(β) More generally, let φ be a strictly increasing C°° convex function on

i?+, vanishing at zero and ψ(t) = φ(v^). Suppose that some derivative of ψ

is negative at some point o/]θ, oo [, and let n be the smallest integer such that

this happens', then, there exists A and B inK(l^) such that \A\ < B, but

Ύr[ψ(\A\)} > Tr[φ(|2φ].

Before giving the proof, we shall make some comments: another way

to formulate (β) is the following: if for all A, B & K(l2) such that
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\A\ < 5, we have: Tr[φ(|^4|)] < Tr[φ(|5|)] (provided both members are

finite) then all the derivatives of ψ must be positive on ]0, oo[ and so, by

the classical result of Bernstein ([13]), φ must be of the form:

φ(t) = Σ ant2"> w i t h an > 0 for all n > 0.
n>0

So, (β) is the extension in the operator case of the result of Shapiro ([10]).

Proof of Theorem 1 (a). Let n = [p/2] + 2, t/be the unitary permuta-

tion operator of /2 defined by.

U{eλ) = e2,...,U(en_1) = eM, U(en) = eλ.

Let S be the symmetry operator defined by S(ex) = -el9 S(et) = et if

2 < i < n. (Any operator S such that S{et) = ε ^ , ε̂  = ± 1, εf. εn = -1

would also work.)

Put A = / + SU and B = / + U. It is clear that \A\ < B (in fact

\A\ = B) and we claim that

(1) Ίτ{A*A)q>Ίτ{B*B)9.

It is easy to compute explicitly the proper values of A and B, ad therefore

those of A*A and B*B. (Observe that A and B are normal matrices). In

fact, if one puts a = ein/n, ω = α2, vk = Σn

jmmlω
Jkep wk = Σ j = 1 ( ω * α ) ^ for

1 < /: < n, one has

t/(ϋ^) = ω*^, and 5£/(wΛ) = ωkawk,

so that the eigenvalues of A*A and 5*5 are respectively |1 + e

( 2 A : + 1 ) / 7 r / " | 2

and |1 + e

2kl7T/n\2, the corresponding eigenvectors being, respectively, wk

and υk\ < k < n. But we shall use a different presentation.

In order to prove (1), observe that

(2) A*A = 2(7 + V) and 5*5 = 2(7 + W)

, u τ / S£/ + (St/)* τ τ z U+U*
with F = ^ ^—, Ŵ  = .

It is easy to check the following relations:

, (0 ifkmθ{n)9
(3) Trt/*= ' and

if* = O(/t),

Ό ifkmθ(n),

(-l)p« ύk = pn.

Moreover, by the binomial formula, we have:

V'= Σ "ki(SU)k and W'= Σ aklU
k

\k\<l \k\<l
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where akι are strictly positive coefficients. Put, for / > 1,

and note that:

(5)

(|C / + 1/C,| = 1 - (q + \)/l + O(l/l2), so that \C,\ = O(/-*-χ) when /
tends to infinity),

(6) C 1 > 0 , . . . , C n _ 1 > 0 , C B < 0 , and signCM+Γ = ( - l ) r + 1 i f r > 0 .

Using (5) and the fact that MaxdFH^, \\W\\n) < 1, we can write:

(7) (/+ V)q-(I+W)q= ΣC,[V- W'\.
1=1

Taking the traces of both members, and taking account of (3) and (4), we
get:

(8) Tr(I + V)q - Ίr(l + W)q = Σ C< Σ akl[Tτ(SU)k - Tr Uk]
/>1 \k\<[

Λ = /(2)

= Σ Σ (-2/1K/C,.
l>\k\

The indices / which appear on the right-side of (8) are all of the form:

/ = \k\ + IV = \2r + l\n + 2/' = (2rr + l)n + 2Γ

= Λ + 2/r/ with I" > 0.

By (6), Cι < 0, so the right-hand side of (8) is a sum of positive terms
and

Tr(/+ V)q > Tr (/+ W)\

In view of (2), this implies (1), and (a) is proved.
(/?) We shall need the following relations, which are obvious conse-

quences of (3) and (4)

(Tr V1 = Tr Wι = 0 if 1 < / < n - 1, / odd,
(9) / Tr V1 = Tr Wι = aoι if 1 < / < n - 1, /even,

VTΓ Vn - Tr W" = -4^2"w < 0.

Let n be as in the hypotheses of (β), ξ be a positive number such that
< 0, ί/, 5, / as before, α > 0 and b > 0 such that a2 + b2 = ξ with
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b i 0 and a T £, and put:

A = al + bSU, B = al + ££/,

(so that yl and 5 belong to a neighborhood of £/). It is clear that \A\ < B,
(in fact, \A\ = B) and we claim that

(10) Tr[ψ(ΛM)] > Tr[ψ(ΰ*5)] for fe small enough.

In order to prove (10), observe that

(11) A*A = ξl + 2abV and 5*5 = ξl H- 2αZ?ίΓ.

F and W, being normal operators, can be diagonalized so that the
following symbolic Taylor formulas are valid:

/=o

5) = "Σ%r
/=0

Subtracting and taking traces, we get in view of (9):

(12) 1

Since ψ('°(£) < 0, (12) proves (10) for b small enough.

Part 2. We shall prove the following theorem:

THEOREM 2. Let p > 4, A and B two (3 X 3) matrices such that
\A\<B.Then\\A\\p<\\B\\p.

Equivalently, N(p)>4ifp>4,p¥=2k.

We shall need the two following lemmas, the first of which plays a
fundamental role in the theory of C^-spaces.

LEMMA 1 ([6], [11]). Let aλ> > aN > 0 and bλ > > bN > 0.
φ be an increasing convex function on [0, oo [. Suppose that

k k
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LEMMA 2. Let 0 < aλ < < an be positive exponents, and let P(x)
= α 0 + αjX"1 4- «wxa" α "polynomial" with real coefficients ai9 wo/ all
zero. Put

V= #{i/atai+l<0}9 Z = #{x > O/P(x) = 0}.

77iέ?/i Z < F.

Lemma 2 is a generalization of the well-known theorem of Descartes
for polynomials; a sketch of the proof can be found in ([1]), but the
slavish imitation of Descartes's proof is quicker.

Proof of Theorem 2. Let A and B be two (3 X 3) matrices such that
\A\ < B. Let us denote by λx > λ2 > λ3 (resp. μλ > μ2 > μ3) the eigenval-
ues of A*A (resp. B*B) rearranged in decreasing order. Let q = p/2 > 2
we claim that

1 1

To prove (13), we may as well assume that

(14) Σλ, - Σμ,
1 1

In fact, the extreme points of the parallelotope of R9 defined by jjc^l < btj
are the points (x / y ) such that |jc/y | = biJ9 1 < i9j < 3; so that one has a
convex combination atJ = Σkλka\j\ with \a(

tP\ = btJ for all /, j9 k. If A(k)

is the element of K(φ defined by lA(k)(ej),e\ = a(

tj\ we then have
A = ΣλkA

(k). For the operators A(k\ (14) holds because, for every k,

(If λ\k) > λ(k) >: λ(

3

A) are eigenvalues of A(k)*A(k\) If we are able to deduce
the result when (14) holds, we have: ||^4ίΛ:>||^ < \\B\\p for all k, and then

So, in the following, we shall assume that (14) holds.
Suppose that (13) is false and consider the continuous function

g(r) = ΣK ~ Σμ% so that g(q) > 0.

Let v be an integer such that v > q; since CA(l\) and C2v(l\) have (m), we
have:

(15) g ( 2 ) < 0 and g{v) < 0.
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By the intermediate value theorem, there exists qΎ G [2, q[ and q2 ^]q, v\

such that

(16) g(qλ) = g(q2) = 0 (qι<q2).

Notice that

(7) λ, < μλ.

In fact, λx = \\A\\i, μλ = | | t f |£, and CJ/ 3

2) trivially has (m). We shall

prove that (14) and (16) contradict Lemma 2 for some property chosen

polynomial P. Let us distinguish two cases:

Corel. λ 3 > 0.

If λλ + λ 2 < μλ + μ2, (14), (17) and the application of Lemma 1 to

φ(t) = tq gives us (13). So, we may assume λx + λ 2 > μλ + μ2. Because

of (17) we then have λ 2 > μ2 and because of (14)

λ 3 = μ3 +(μ x + μ2 - λλ - λ 2 ) < μ3.

Multiplying all λ/s, μ/s by the same constant, we may assume that

λ 3 > 1; so that if

/, = Log λf- and mi = Log μ/

we have the following situation

0 /3 m3 m2 l2 l\ mι

We can write

g(r) = P{x) = Σx7' - Σχm' withx = er.

In view of the preceding picture, let us rewrite:

P(x) = x1' - xm* - x™2 + JC/2 + xι* - xm i

with the notations of Lemma 2, we have V = 3 and Z > 4, in fact, due to

(14) and (16), P vanishes at 1, e, eq\ eqi. This proves (13) by contradic-

tion.

Cαre2.λ 3 = 0.

By (18) μ3 > 0 and as before we may assume μ3 > 1, we then

consider Q(x) = -x™3 - x™2 + xh + xίι - xm\ and have V < 2, Z > 3,

which again proves (13) by contradiction.

Part 3. First, recall the following lemma on the Gateaux-differentia-

bility of the norm in normed spaces E with strictly convex dual E\
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LEMMA 3 ([5]). Let E be a complex normed space, and b e E, b Φ 0;
assume that the norm is smooth at b, that is to say: there exists a unique
b e £", ||έ>|| = 1, (b, b) = ||ί>||. Then, the norm in E is Gateaux-differentia-
ble at b; more precisely,

V c e £ , U m lift +'dl - W ,J?Kf,,c)],
teR t

Observe that the lemma is applicable when the norm of E' is strictly
convex, a fortiori when it is uniformly convex; if E = Cp{H), 1 < p < oo,
Ef = Cp(H) is uniformly convex by the Clarkson-McCarthy inequalities
([11]), so that Lemma 3 may be applied to Cp{H) (1 < p < oo). If
B e Cp(H), and Hi?]̂  = 1, we easily compute:

(20) B = (5*5) / 7 / 2 ~ 1 5*.

(This has a meaning even when 1 < p < 2, and B is not injective by
putting B(x) = 0 if £(*) = 0.) It is clear that (B,B) = Tr5J? = i p H ,
and to check that | |5 | | . = 1, use a polar decomposition of 5 and the
invariance of the C^-norm under multiplication by a unitary operator; by
extension, in the following B will always be given by (20), even when
\\B\\p Φ 1.

THEOREM 3. Let 1 < p < oo

(1) the following are equivalent:
(a)Cp(H)has(m+) ^

(b) B €= Cp(H) andB>Q=>B>0. {In particular (B*B)P/ > 0).
(2) In particular, if B is fl(3x3) matrix such that B > 0, then

(B*B)a>0 for a > 2.

(a) => (b). Let B e Cp(H), with 2? > 0; we may assume that
||B\\p = 1; let C e ^(ΛΓ), with C > 0; first, it is clear that B has real
entries (B*B can be diagonalized by the real orthogonal group); besides, if
/ > 0, we get from (a):

so that by Lemma 3

> t

Testing this with the operators of rank one C = ei <S> ej9 we get (b).
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(b) => (a). Let B,C ^ Cp{H) with B > 0, C > 0, let us prove that

< \\B + Clip. Observe that, if 0 < /„ < 1

\ [ T 7 ^ ] > Oby (b),

so that the function / -> \\B + tC\\p is increasing.

(2) follows trivially from (1) and from Theorem 2.

In view of Theorem 3, the property (m+) is of interest: it is quite

simple to verify that the properties (m) and (m+) are equivalent in Cp(l2)

(Theorem 4(c) below), but in the finite-dimensional case and if p > 2, we

do not know if (m+) is weaker than (m). We shall prove the following

results about (m+):

THEOREM 4.

(a) / / I < p < 2, Cp(ll) does not have (m+).

(b) // n is even, n > 4, Cp(l%) does not have (m+) if 1 < p < n — 2,

p Φ 2k.

If n is odd, n > 5, Cp(l^) does not have (m+) if 1 < p < n — 3,

p Φ 2k.

(d) If p > 2 and Cp(l2

n) has (m+), then A, B e K(l2

n) and \A3 < B

implies the following

l\\A\\P < (I" - 1)1/P\\B\\P if A is real,

\ \\A\\P < 2(2^ - l ) 1 / p | | 5 | | , if A is complex.

Proof, (a) Let

A-\\ l\ and B-[\ i ] for</>0-
We shall prove that \\A\\p > \\B\\p for d small enough (depending on /?);

the eigenvalues of B are:

λ x = | ( r f + 1 + U2 -2d+5) and

Since 5 is symmetric, we have μλ(B) = IλJ = λx and μ2(B) = | |λ2 | | = -λ 2

for J small enough, so that:

and we claim that/'(O) < 0 if p < 2. In fact:
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so that /'(0) < 0 iff (]/δ + l)p~2 < (]/5 - l)p~2, which is equivalent to
p<2.

(b) the proof is similar to a proof of ([10]).
We shall first examine the case n even; put m = n/2, q = p/2. We

then have q < m — 1 and we may clearly assume q > m — 2. By (b) of
Theorem 3, it suffices to find an (n X n) matrix B such that B > 0, and
such that (B*B)q has some negative entry: this will be the case if
Tτ[(B*B)qC] < 0 for some C with positive entries; we shall take:

B = /l — r21 + rU, where C/is as in Theorem 1 and 0 < r < 1,
C = Um,
B*B = I + pJF where p = 2r/l - r 2 -> 0 when r -> 0, and where W

is as in (2). Observe that if C, = {l/l\)q(q - 1) (tf - / + 1) for / > 1,
we have Cw < 0 and

w - l

(21) ( 5 * 5 ) * = / + Σ CιP

ιW! + CmpmWm 4- θ ( p m + 1)

When one computes W7C for 0 < / < m — 1, only the following powers
of ί/ appear:

m, m ± 1, m ± 2,...,m ±(m — 1).

In view of (3), we then have:

(22) Tr W'C = 0 i f θ < / < m - l .

On the other hand, we have

(23) ΊxWmC = 2" m + 1 Tr/ = n2~m+ι > 0.

(21), (22), (23) give:

(24) Ύτ[(B*B)gC] = «2" w + 1 p^ m + θ(pm+1)

and the right-hand side of (24) is negative for r small enough. The case n
odd is treated in a similar way: just put m = (n - l)/2, 5 as before, and
C = Um+ι.

(c) A close examination of ([12]) shows that in fact Cp)(l2) has (m+)
iΐfp = 2k oτp = oo so that Cp(l2) has (m+) iff Cp(l2) has (m). One can
also argue directly as follows: if Cp{l2) has (m+), then trivially: \A\ < B
implies | |^4|| /,<4||5| | /,. But it follows from the tensor product argument
of ([12]) that if, for a certain constant M

\A\ < B implies \\A\\P < M\\B\\p.

then Cp(l2) has (m); so we conclude that (m+) is equivalent torn) for
CM2)-
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(d) It is enough to deal with the case A real; put A + = (fl^ ),
A~= (α~), we have A = A + - A~ and 0 < A + + A~< B. By the Clarkson-
MacCarthy inequality ([1]) for/? > 2

\\A + - A-C+\\A + + A'fp < 2^ι\\\A + \fp +\\A'fP .

So that using (m+) twice we get:

IM + - Λ~t < (2" - 1)\\A + + A-& < (2" - 1)\\B\\P

P.

Let us now explain Virot's result, which is as follows:

THEOREM 5 (B. Virot). Let E be a positive-definite (3 X 3) matrix with

positive entries, f a real positive function on [0, oo[ such that f(t) is convex

and f(fi) concave; then f(E) has posiitve entries; in particular, Ea has

positive entries if a > 1.

Proof. By a standard perturbation argument, we may assume that the

eigenvalues of E are distinct, let them b e λ 1 < λ 2 < λ 3 one easily com-

putes real numbers aθ9 av a2 such that:

(25) f(E) = aol + axE + a2E
2.

If Δ = (λ 2 — λ1)(λ3 — λ1)(λ3 — λ2), one finds in particular:

-/(λ x ))(λ 2

2 - \\),

So that ax > 0 iff

\2
Λ3 -

Λ2 - Ax Λ3

This will be true if /(\/7) is concave. In the same way a2 > 0 iff

λ3 - λλ λ 2 - λ :

This will be true if/is convex; so that under the hypotheses of Theorem 5,
(25) shows that (/(.E))^ > 0 if / Φ j ; we know nothing about the sign of
a09 but it is a priori clear, that (f(E))π > 0 since f(E) is a positive-defi-
nite operator; this can be applied to the function f(t) = ta for 1 < a < 2;
but, then, Ea has positive entries for all a > 1 because Ea = EμEβ with μ
a positive integer and β a real number such that 1 < β < 2.
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