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NON-COMPACT SETS WITH CONVEX SECTIONS

MAU-HSIANG SHIH AND Kok-KEONG TAN

Two further generalizations of Ky Fan’s generalizations of his
well-known intersection theorem concerning sets with convex sections
are obtained.

1. Imntroduction. Let 7 be an index set; in the case when I is finite,
it is always assumed that I contains at least two indices. Let { X,},., be a
family of topological spaces and X:= [1,_, X,. For eachi € I, set

Xi= j];[XJ (so that X = X, X X'),
- JEeI

and let p;; X — X, and p": X = X' be the projections. For each x € X, we
write p;(x) = x, and p’(x) = x'. For any non-empty subset K of X, we let
p.(K) = K,and p(K) = K'.

Our aim in this paper is to give two generalizations of the following
intersection theorem of Ky Fan [2] concerning sets with convex sections.

THEOREM 1. (Ky Fan.)) Let X, X,,...,X, be n (= 2) non-empty
compact convex sets each in a Hausdorff topological vector space. Let
X:=T1I"_,X,and A, A,,...,A, be n subsets of X such that

(a) Foreachi=1,2,...,nand any x; € X,, the section

A(x,)= {x" € X": (x,,x") € 4,)
is open in X'.
(b) Foreachi = 1,2,...,nand any x' € X', the section
A4,(x'):= {xi € X: ('xi’ xl) = Ai}

is convex and non-empty.
Then the intersection N!_, A, is non-empty.

Theorem 1 is a unified account of game-theoretic results for arbitrary
n-person games and has several applications [2], [3]. In particular,
Tychonoff’s fixed point theorem [11], Sion’s generalization [10] of von
Neumann’s minimax principle [8] and Nash’s equilibrium point theorem
[7] are immediate consequences of Theorem 1.
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2. Infinite system. Ma [6] extended Theorem 1 to an arbitrary
system { X,},., of compact convex sets. In a recent paper, Ky Fan [5]
extends Ma’s result by introducing an auxiliary family { B, },.,. Ky Fan’s
theorem can be further generalized to non-compact convex sets as follows:

THEOREM 2. Let { E;},, be a family of Hausdorff topological vector
spaces. For each i € I, let X, be a non-empty convex set in E, Let
X:=1Tl,c,X,. Suppose { A;},c,and { B,},c, are two families of subsets of X
satisfying the following conditions:

(a) Foreachi € I and any x, € X,, the section

A(x)={x' e X" (x,x")e4,}
is open in X'.
(b) For each i € I and any x' € X', the section
Bi('xi):= {xl € Xl: (xl’ xi) = B:}
contains the convex hull of the section
A;(x'):= {xi € X;: (x,x') e A,}'
(c) There exists a non-empty compact convex subset K of X such that
(c’) for each i € I and any x' € K', the section

A(x")={x, € X;: (x,,x")€4,} + @ and

(cYKNTl,c,4,(y") # @ foreachy € X\ K.
Then the intersection N, B; is non-empty.

Proof. Let i € I. For any x' € K', we can find x; € X, such that
x; € A,(x") by (c), so that x' € 4,(x,); thus K' c U, .y 4,(x;). Since
each A4,(x,) is open in X' by (a), by the compactness of K’ (since each

projection p’ is continuous), there is a finite subet { x,;, x,5,...,x;, } of X,
such that
nl
(1) K'c U 4,(xy)-
k=1

Let ©, be the convex hull of K, U {x,, X,5,...,x,, }. Define @:=TI,., 2,
and A,;:= A, N Q and B,:= B, N Q for each i € I. Since the projection p,
is continuous and affine, K, is compact convex for each i € I; it follows
that Q, is a nonempty compact convex set in E; for each i € I. Further-
more, we have:

(i) For each i € I and any x; € §,, the section

A(x)= {x' € Q' (x,x')e A~1}
is open in ©' by (a).
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(ii) For each i € I and any x' € @/, the section
B(x'):= {x,€Q:(x,x") € B
contains the convex hull of the section
A(x)={x,€Q:(x,x') € 4.}

by (b). '
(iii) For each i € I and any x' € @', the section

A(x)={x,€Q:(x,x") €4} + 2.
by (¢’), (¢”’) and (1).
For each i €1 and any x' € ', we can find x, € Q; such that
x, € A,(x") by (iii), so that x’ € 4,(x,), it follows that Q' = U, .o 4,(x,);
since each /f,(x,.) is open in @' by (i), by compactness of @', there is a
finite subset { Y1, V,25---,);m, } Of &, such that

Q= U /Ii(yik)'
k=1

Let f,1, fi2,- - -»fim D€ a continuous partition of unity subordinated to the
covering { A,(y,1), A(Y;2)---sA4,(¥,,,)} of . Then

fu(x)=0 forx' € Q\4,(y,). k=1,2,...,m,,

Y f.(x')=1 foreachx'e Q'
k=1

Define a continuous map ¢,: @' — Q, by setting

¢, (x) = Z fu(x)yy forx' Q.
k=1
Since f,(x') # 0 implies x' € 4,(y,,), i.e. y,, € 4,(x’), and since B,(x')
contains the convex hull of 4 (x") by (ii), we have

(2) ¢,(x') € B(x') foreachx'€ Q.

Let C, be the convex hull of { y,;, ¥iz,-- -,V }; then C, C Q. Denote by F;
the vector subspace of E, generated by C,; then F; is locally convex since it
is finite dimensional.

Now let C =1I1,.,C,, then C is a non-empty compact convex subset
in the Hausdorff locally convex space [1,., F.. Note that for each i € I,
we have C' c Q. Define y: C — C as follows: For each x € C and each
i €1, write x = (x,;, x') € C, X C', then y(x):= {y,},; is determined
by y,:= ¢,(x') for each i € I. Clearly ¢ is continuous. By Tychonoff’s
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fixed point theorem [11], ¢ has a fixed point z:= {z,},., 1n C, so that for
each i € I, we have z, = ¢,(z') € B,(z"), by (2); it follows that z =
(z,, z") € B, C B, for each i € I. Hence z € N,., B;. This concludes the
proof of our theorem. O

Similar to [2], Theorem 2 has the following analytic formulation:

THEOREM 3. Let { E,},., be a family of Hausdorff topological vector
spaces. For each i € I, let X, be a non-empty convex set in E, Let
X:=1Il,c,X; and {t,},c, be a family of real numbers. Suppose that { f;},c,
and { 8;},< are two families of real-valued functions defined on X, satisfying
the following conditions:

(a) For each i € I and any x, € X,, f,(x,, x") is a lower semi-continu-
ous function of x' € X'.
(b) For eachi € I and any x' € X', the set
{xi € X;: gi(xm xi) = ti}
contains the convex hull of the set
{xl € ‘Xrizfl(xi’ xl) > tl}'
(c) There exists a non-empty compact convex subset K of X such that
(¢’) for each i € I and any x' € K, there exists x, € X, with f,(x,, x")
> t,and

(c”) for any y € X\ K, there exists x € K with f,(x,, y') > t, for all
iel

Then there exists a point € X such that g(y) > t,foralli € I.

3. Finite system. By relaxing the compactness condition for X;’s

and the convexity conndition for the sections of the 4,’s in Theorem 1, Ky
Fan [5] generalizes Theorem 1 as follows:

THEOREM 4. (Ky Fan) Let X, X,,...,X, be n (= 2) convex sets each in
a Hausdorff topological vector space. Let X:=I1"_, X, and A,, A,,...,A,
be n subsets of X such that
(a) Foreachi =1,2,...,nand any x; € X,, the section
A(x)={x"e X" (x,x")€4,}
is open in X',
(b) For eachi = 1,2,...,n and any x' € X', the section
A;(x'):= {xi € X;: (xi’ xi) = Ai}

is non-empty.
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(c) For any x € X, at least q of the sections A,(x"), A,(x?),...,A4,(x")
are convex; where q is a given integer with2 < q < n.
(d) There exists a non-empty compact convex subset K of X such that

Kn1l4,(y))# @ foreachy € X\ K.
i=1

14

Then at least q of the sets A, A,,...,A, have a non-empty intersection.
Theorem 4 can be improved as follows:

THEOREM 5. Let X, X,,..., X, be n (= 2) convex sets each in a
Hausdorff topological vector space. Let X:= [1' | X, and A, A,,..., 4,
B, B,,...,B, be 2n subsets of X such that

(a) A, C B, fori=1,2,...,n.
(b) Foreachi = 1,2,...,nand any x, € X,, the section

A,(x)={x"€ X' (x,x') € 4,}

is open in X'.
(c) For any x € X, at least q of the sections B,(x'), B,(x?),...,B,(x")
are convex; where q is a given integer with2 < q < n.
(d) There exists a non-empty compact convex subset K of X such that
(d") For eachi = 1,2,...,n and for each x € K, the section

A (x")= {x;€ X;: (x,,x") € 4,)

is non-empty and
@YKNTIL,A,(y") # @ foreachy € X\ K.
Then at least q of the sets B,, B,,...,B, have a non-empty intersection.

For n = 2, Theorem 5 was given in [9] together with an application to
von Neumann type minimax inequalities. The proof of Theorem 5 is a
slight modification of that in Ky Fan [5], hence we need the following
further generalization of the KKM mapping principle due to Ky Fan [5]:

THEOREM 6. (Ky Fan) Let Y be a convex set in a Hausdorff topological
vector space and let X be a non-empty subset of Y. For each x € X, let F(x)
be a relatively closed subset of Y such that the convex hull of every finite
subset {x, X,,...,x,} of X is contained in the corresponding union

"_1 F(x,). If there is a non-empty subset X, of X such that the intersection
N, x, F(x) is compact and X,, is contained in a compact convex subset of Y,
thenN oy F(x) # 3.
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Proof of Theorem 5. For each x € X, let
F(x):= {y € X: (x,., y’) & A, for at least one indexi},

then F(x) is relative closed in X by (b). By (d’), for each y € K, for each
i =1,2,...,n, there exists x; € 4,(y"), so that by setting x =
(x4, X55...,%,) € X, we have y & F(x) and it follows that K N
N,.cxF(x) = @. On the other hand, by (d”), for each y € X\ K, there
exists x € K such that (x;, y') € 4, foralli = 1,2,...,n,sothaty & F(x);
it follows that (X\ K) NN, .x F(x) = &. Hence N, .y F(x) = & and
N, < x F(x) is compact, being a closed subset of the compact set K.
According to Theorem 6, there exist x¥, x®,... x(™ € X, and non-
negative real numbers aV, a®,... 0™ with ¥  a'® =1 such that
o a®x® e yUr F(x®). Let z:= Xr_ a®x®:= (2, z') € X, X X'
and let p,(x®) = x®. Then (x*), z'y€ A, foralll1 <i<nand 1 <k
<m,orx* e A(z)foralll <i <nand1 < k < m. By (a), we have

(3) x*¥ e B(z') foralll <i<nandl <k <m.

By (c), at least ¢ of the sections B,(z!), B,(z?),...,B,(z,) are convex.
Since z, = Xy_,a®x® for i =1,2,...,n, (3) implies that z, € B,(z)
holds for at least g indices i. Thus z is a point common to at least ¢ of the
sets B, B,,...,B,. This completes the proof. a

The following is an analytic formulation of Theorem 5:

THEOREM 7. Let X, X,,...,X, be n (= 2) convex sets each in a
Hausdorff topological vector space. Let X := I1_, X, and {¢t;}7_, be a set of
n real numbers. Let { f;}7_, and { g;}"_, be 2n real-valued functions defined
on X satisfying the following conditions:

(@) f, < g;on X foreachi=1,2,...,n.

(b) For each i =1,2,...,n and any x, € X,, f,(x,, x") is a lower
semi-continuous function of x' € X".

(c) For any x € X, at least q of the functions g,(y,, x') are quasi-con-
cave functions of y; € X,.

(d) There exists a non-empty compact convex subset K of X such that

(d’) For eachi = 1,2,...,n and any x' € K', there exists x, € X, such
that f,(x,, x") > t,and

(d”) for eachy € X\ K, there exists x € K such that f(x,, y') > t, for
alli =1,2,...,n.

Then there exists a point y € X such that g(p) > t; for at least q
indices iin {1,2,...,n}.
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