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JONSSON w,-GENERATED ALGEBRAIC FIELD
EXTENSIONS

ROBERT GILMER AND WILLIAM HEINZER

A field K algebraic over its subfield F is said to be a J-extension
(for Jonsson wy-generated extension) of F if K/F is not finitely
generated, but E/F is finitely generated for each proper intermediate
field E. We seek to determine the structure of a given J-extension and
to determine the class of fields that admit a J-extension. Consideration
of Galois J-extensions plays a special role in each of these problems. In
§2, we show that a Galois extension K/F is a J-extension if and only if
Ga(K/F) = ﬁgZ/p"Z for some prime p. In §3, we show that F

admits a J-extension if the algebraic closure of F is infinite over
F—that is, F is neither algebraically closed nor real closed.

1. Introduction. Assume that « is an infinite cardinal. In universal
algebra, an algebra A is said to be a Jonsson a-algebra if |A| = a while
|B| < a for each proper subalgebra B of 4 [CK, p. 469]. This terminology
has been extended in [GH] to generating sets, as follows. The algebra A is
said to be a Jonsson a-generated algebra if A has a generating set of
cardinality a, no generating set of smaller cardinality, and each proper
subalgebra B of A has a generating set of cardinality less than a. In
considering these concepts, special attention has been given to the cases
where a = w,, the first infinite cardinal, and where a = w,, the first
uncountable cardinal. For a = w,, we consider here a problem of this type
for field extensions. Specifically, suppose that F is a subfield of the field
K. Shortening the phrase “K is a Jonsson w-generated F-algebra”, we say
that K is a J-extension of F if [K:F]= oo while [E:F] < oo for each
proper intermediate field E. The condition that [E:F] < oo for each
proper intermediate field implies that K/F is countably generated, so in
fact, [K: F] = w, if K is a J-extension of F. We begin by noting three
examples of J-extension; these are labelled below as (E1), (E2), and (E3).

(E1) An absolutely algebraic field F of characteristic p # 0 is uniquely
determined, up to isomorphism, by specifying its Steinitz number, a
formal product N = I1p¥ over all primes p;, where k; € Z, U {0} for
each i [J, p. 147]. If F is not algebraically closed, then k, # oo for some ¢.
If K is the absolutely algebraic extension field of F with Steinitz number
[1pl, where h, = oo and h; = k, for i # t, then K is a J-extension of F;
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the proper intermediate fields, in this case, are the fields corresponding to
the Steinitz numbers I1p}, where v, € Z, v, > k,, and v, = k, for i # .

(B2) If F is an imperfect field of characteristic p # 0 and if s €
F\ F?, then K = F({s¥?"}%_,) is a J-extension of F. The proper inter-
mediate fields are the fields F(s'/?"), where n € Z,, (see Lemma 2.8).

(E3) Assume that the field F is not algebraically closed and let K be
an algebraic closure of E. Choose s € K\ E and let F be an intermediate
field maximal with respect to failure to contain s. If [K: F] = oo, then K
is a J-extension of F; the set of proper intermediate fields forms a chain
F=F,<F, <F,< ---, where [F,: F]= q", with g prime, for each
neZ"[Q]

In each of the examples above, the set of fields between F and K is
linearly ordered, and given adjacent intermediate fields E, < E,, [E,: E,]
is a prime integer independent of E, and E,. While examples of this type
are the easiest to produce, we subsequently show (Examples 2.11, 2.18)
that there are other examples of J-extensions with neither of the proper-
ties cited. On the other hand, Theorem 2.5 shows that if K/F is Galois,
then the two conditions are satisfied. There are two primary emphases of
this paper, as follows: (1) to determine possible structures of a J-exten-
sion (§2), and (2) to determine the class of fields that admit a J-extension
or a Galois J-extension (§3). The structure of a Galois J-extension is
completely determined in Theorem 2.5, but subsequent examples in §2
show that a variety of structures are possible in the non-Galois case.

Suppose F is a field that is neither algebraically closed nor real
closed. In §3, we initially investigate the question of whether F admits a
Galois J-extension if F admits a nontrivial cyclic extension. We observe
that the answer is negative in general for a cyclic extension of degree two,
but in many other cases we obtain an affirmative answer. We subse-
quently show (Theorem 3.9) that F admits a J-extension if F is neither
algebraically closed nor real closed. If F is the quotient field of a
non-trivial valuation domain with principal maximal ideal, we present in
Theorem 3.11 a concrete construction of a J-extension of F.

In §4, we show that each subfield of A, the abelian closure of Q,
admits a Galois J-extension. The final section of the paper contains
comments on two open questions that merit, in our opinion, further
consideration.

2. Structure of J-extensions. Suppose K is a J-extension of F. In
this section we focus on the lattice % of intermediate fields. In particular,
we consider two questions concerning & that have been mentioned in the
introduction: (1) Is ¥ linearly ordered under inclusion? (2) What possibil-
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ities exist for the set {[E,:E|]} as E;, < E, ranges over all adjacent
elements of .#? Theorem 2.5 shows that if K/F is Galois, then (1) has an
affirmative answer, and in (2), [E,: E,] is a prime integer independent of
E, and E,. We begin the section with a general result concerning
J-extensions; the proof of Proposition 2.1 is routine, and hence is omitted.

PROPOSITION 2.1. Assume that F is a subfield of the field K.

(1) If K is a J-extension of F, then K is the union of a strictly ascending
sequence of intermediate fields. In fact, if { K,}% | is any strictly ascending
sequence of intermediate fields, then K = U* K.

(2) Suppose K is expressed as the union of a strictly ascending sequence
{ K.}, of intermediate fields, where [K,: F] < oo for each i. The following
conditions are equivalent.

(a) K is a J-extension of F.

(b) Each proper intermediate field is contained in some K.

(¢) If x, € K\ K, foreachi, then K = F({x,}7,).

COROLLARY 2.2. Assume that K is an extension field of the field F and
that K is expressed as the union of a strictly ascending sequence { K,}% | of
intermediate fields, where [K;: F]| < oo for each i. If for each i the set of
subfields of K, containing F is linearly ordered under inclusion, then K is a
J-extension of F.

COROLLARY 2.3. Assume that F is a field of characteristicp + 0. Let M
be an extension field of F and let K, L be intermediate fields with K/F
purely inseparable and L/ F a separable J-extension. Then KL is a J-exten-
sion of K.

Proof. According to Proposition 2.1, there exists an ascending se-
quence F =L, <L, < --- L=U2,L, of finite extensions of F with
the property that if x, € L\ L, for each i, then L = F({x,}¥). We show
that the sequence { KL}%, of fields between K and KL has the same
properties; this suffices to show that KL is a J-extension of K. Since K
and L, are linearly disjoint over F, we have [KL,:K]=[L,:F] < oo.
Hence K= KL, <KL, < --- KL =UyKL, Take y,€ KL\ KL, for
each i. There exists a finite extension E, of F in K so that y, € E,L, and
if E, has exponent e, over F, then y?" € FL = L. Since KL is separable
over K C KL, it is also true that y?" & KL, and hence y/" & L,. By
hypothesis we have F({y?"}) =L, so K({y,}*)2 K({y/"}) 2 L, and
hence K({ y;}) = KL.
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Can the roles of “separable” and “purely inseparable” be inter-
changed in Corollary 2.3? We have been unable to answer this question. If
K/F is separable and L/F is a standard purely inseparable J-extension,
as defined in the paragraph preceding the statement of Proposition 2.19,
then it is easily seen that KL/K is a standard purely inseparable J-exten-
sion.

Suppose K is a Galois extension of the field F. Our determination of
equivalent conditions for K to be a J-extension of F uses properties of
the group lim Z/p"Z, where p € Z * is prime. We denote this group by
w,. Much is known about the structure of W,; we list below some of the
properties of W, that we use.!

(W1) W, is isomorphic to the additive group of the ring Q, of p-adic
integers [F, p. 62]; also W, = End Z( p*), the endomorphism group of the
p-quasicyclic group Z( p*®) [F, p. 181].

(W2) W, is g-divisible for each prime g # p [Wn, p. 174]; hence
(nW,|n€ Z*) = {p*W,} 7.

(W3) W,/p*W, =~ Z/p*Z for each k [F, p. 19]. Hence { p'W,}\_, is
the set of subgroups of W, containing p“W,.

(W4) W, is torsion-free [Wn, p. 174], so W, = p"WP for each k € Z™.

(W5) If H is a subgroup of W, of finite index, then H = W,; this
follows from (W2), (W3), and (W4).

(Wé) Considering W, as the additive group of Q,, each endomor-
phism of W, is multiplication by a fixed element of Q, [F, p. 181]. Each
automorphism of W, is multiplication by a unit of Q.

The proof of Theorem 2.5 uses one new result concerning the group
%; this result is established in Theorem 2.4. We are indebted to Murad
Ozaydm for the proof of Theorem 2.4.

THEOREM 2.4. Assume that G is a torsion-free group containing W, as a
subgroup of finite index. Then G = W,.

Proof. Because G is not assumed to be abelian, we write the group
operation in G as multiplication. However, we consider W, as the additive
group of Q,, and hence we write the group operation within W, as
addition. It turns out that no confusion results from this dichotomy of
notation.

'Fuchs [F] and Weinstein [Wn] denote this group by J,. In class field theory, the notation
Z, is frequently used, and a Galois extension of K with Galois group Z, is called a
Z,-extension of K [1], [Wa).



JONSSON FIELD EXTENSIONS 85

Since [G: W,] = s is finite, W, contains a normal subgroup H of G
with [G: H] finite. (W5) shows that H = W, so we assume without loss
of generality that W, is normal in G. Thus, if g € G, then conjugation by
g induces an automorphism @, of W,; (W6) shows that ¢, is multipli-
cation by a unit u of the ring Q,—that is, ¢,(x) = ux for each x € W,.
Since [G:W,]=s < oo, then g’ € W,, so ug’ = g, (g’) = gg's™" = g°.
Since G is torsion-free, g° # 0 and we conclude that u = 1. Therefore
¢, = 1 and g commutes with each element of W,. We conclude that W, is
contained in the center of G; this implies that the transfer 7: G > W, isa
group homomorphism that is the sth power map: 7(g) = g° for each
g € G [Ro, p. 155]. Because G is torsion-free, 7 is injective and W, 2
7(G) 2 sW,. From (W2), (W3) and (W4), it then follows that G = 7(G) =
W,. This completes the proof.

THEOREM 2.5. Assume that K is an algebraic extension of the field F
and that K/ F is Galois.

(1) If K is a J-extension of F, then Gal(K/F) = W, for some prime p.

(2) Conversely, assume that Gal(K/F) = W,. Then for each n € Z,
there exist a unique intermediate field K, with [K,:F]=p"; {K,}%_, is
the set of proper intermediate fields. K, /F is cyclicand K, C K, ., for each
n. In particular, K is a J-extension of F.

Proof. (1): Set G = Gal(K/F). Choose x € K\ F and let E be an
intermediate field maximal with respect to failure to contain x. Let L be
any proper finite extension of E in K and let M be the normal closure in
K of L/E. Because E(x) is the unique minimal proper extension of E in
M, the Galois group H of M/E has a unique maximal subgroup.
Consequently, H is cyclic of prime-power order p” for some prime p.
Because each subgroup of G is normal in G, each field between E and M
is normal over E. In particular, L is normal over £ and L = M. If L,
and L, are distinct finite proper extensions of £ in K of degrees p{ and
p3, respectively, over E, then p, = p, since [L,L,:E] is also a prime
power. We denote by p this prime integer associated with E. Since K is
the union of a chain of extension fields E, of E such that E, is cyclic over
E of degree p" for each n € Z™, it follows that the Galois group of K
over E is isomorphic to liin Z/p"Z = W, [Bol, Prop. 8, p. V. 61], [L, p.
351]. Because [E: F] < oo, the index of W, in G is at most [E: F] [H,
Lemma 2.8, p. 247]. Moreover, G is torsion-free since no proper inter-
mediate field has finite codimension in K [H, Lemma 2.10, p. 249].
Therefore Theorem 2.4 shows that G = W,.
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(2): We assume that Gal(K/F) = W,. Then K is not a finite exten-
sion of F. Let P be any finite extension of F in K and let H = Gal(K/P).
Since G is Abelian, H is normal in G, so P is normal over F. The group
G/H = Gal(P/F) is finite so H D p*G for some k and G/H is a
homomorphic image of G/p*G = Z/p*Z. Therefore G/H is cyclic, and
we have proved that P/F is cyclic of degree p™ for some m € Z,.
Because K/F is not finite-dimensional, the set of degrees of finite
extensions of F in K is unbounded, and hence for arbitrarily large
integers n € Z™, there exists an intermediate field K, of degree p” over
F. Moreover, since K, /F is cyclic, there exists an intermediate field K, of
degree p' over F for 0 < i < n. Thus, there exists an intermediate field K,
of degree p" over F for each n € Z*. If E is an intermediate field of
degree p" over F, then EK, is cyclic over F of degree p” for some r > n;
since Gal( EK,/F) admits a unique subgroup of index p”, it follows that
E = K,. To complete the proof, we show that K = U?_,K, and that K is
the only intermediate field distinct from each K,. Thus, if y € K, then
[F(y):F]=p" for some r, so F(y) =K, and y € UYK,. This proves
that K = UJK,. If E # K, for n € Z”, then choose y, € E\ K,. We
have E D F(y,) 2 K,. Therefore if E & { K,}7, then E 2 UFK, = K so
E = K and this completes the proof of (2).

COROLLARY 2.6. Assume that K and L are subfields of a field M, that F
is a subfield of K N L, and that K is a Galois J-extension of F. If L 7 K,
then LK is a Galois J-extension of L.

Proof. The proof of Theorem 2.5 shows that K is expressible as the
union of a strictly ascending sequence { K}, of intermediate fields such
that K,/F is cyclic of degree p' for each i, where p is a fixed prime
depending only upon K and F. We have LN K=LnN UUK) =
UZ.(L N K,) < K. Hence L N K = K, for some j. Consider the ascend-
ing sequence L C LK, ,; C LK, , C --- of subfields of LK. We have
LK =UZ,LK;,,. Moreover, LK, /L is Galois since K, ,/F is Galois
and

Gal( LK

J+i

/L) = Gal(Kj+i/(Kj+i N L)) = Gal(K/+i/KJ)

is cyclic of order p' for each i. Therefore, the subfields of LK.,
containing L are linearly ordered, and LK, L and { LK, }72, satisfy the
hypothesis of Corollary 2.2. Consequently, LK is a Galois J-extension of

L.



JONSSON FIELD EXTENSIONS 87

We remark that Corollary 2.6 does not extend to the case where K/P
is a separable J-extension; an example showing this is noted after the
presentation of Example 2.15.

Suppose the field F admits a Galois J-extension. Corollary 2.6
implies that if L is an extension field of F such that the algebraic closure
E of F in L is finite-dimensional over F, then L also admits a Galois
J-extension. We investigate more thoroughly in §3 the problem of de-
termining the class of fields that admit Galois J-extensions, but for the
present we merely review a concrete construction of J-extensions of the
field Q and certain related fields (see [L, §2] or [Wa, §§7.2, 7.3)).

ExAMPLE 2.7. Let p € Z* be prime and for each r € Z7, let {, be a
primitive complex p”th root of unity. If p is odd, the field Q(§,) is cyclic
over Q of degree p”"(p — 1) [J, p. 113]; hence Q(¢,) is cyclic over Q(¢;)
of degree p"~!, so Corollary 2.2 implies that K = U%_,0Q(¢,) is a J-exten-
sion of Q(¢;). However, since [Q({;):: E] is not divisible by p for each
proper subfield E of Q(¢;), it follows that K is not a J-extension of E for
any such E. In particular, K is not a J-extension of Q. On the other
hand, the field Q({,) contains a unique subfield L, of degree p”~! over Q,
L,/Q is cyclic, and L, 2 L,_; for r > 2. Therefore L =U® L, is a
J-extension of Q contained in K.

If p=2 and r > 3, then Gal(Q({,/Q) is the direct product of a
cyclic group of order 2”72 and a group of order 2. The real subfield of
Q(¢,) is the field F, = Q(§, + &) = Q(cos(27/27)); it is cyclic over Q of
degree 272, and F, 2 F,_; for r > 4. Consequently, F =U>F, is a
J-extension of Q. As in the case where p is odd, the field U2 ,Q(¢,) is a
Galois J-extension of Q(§,) = Q(i).

Some aspects of Example 2.7 seem worthy of comment. First, Theo-
rem 2.5 shows that any Galois J-extension of Q is abelian, and hence is
contained in the abelian closure of Q. We observe that if F is a subfield of
the real field R and if K is a Galois J-extension of F, then K is also
contained in R, for if not, then complex conjugation induces an automor-
phism p of K with fixed subfield E of codimension 2 in K, a contradic-
tion to the assumption that K/F is a J-extension. In particular, any
Galois J-extension of Q is real. This means, for example, that no nonreal
cyclic extension of Q of prime degree (for example, Q(V-2)) can be
extended to a Galois J-extension of Q. It follows from the proof of
Theorem 3.11, however, that certain fields of this type (for example,
Q(V-2)) can be extended to a J-extension of Q.
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What can be said about the structure of a J-extension K/F in the
case where K/F is not Galois? This question can be partially reduced to
the case where K /F is either separable or purely inseparable as follows. If
K/F is not separable, then the separable part K, of K/F is a finite
extension of F and K/K_ is a purely inseparable J-extension. The
reduction is partial because for fields F C E C K with E/F finite separa-
ble and K/E a purely inseparable J-extension, it need not follow that
K/F is a J-extension. For example, let F = F,(X*), where charF, = 2,
let E = Fy(X), and let K = Fy({ X¥/*'}*_)); Fy({ X*/*"}*_,) is a proper
intermediate field that is not finite-dimensional over F. One question that
naturally arises is whether a J-extension must, in fact, be either separable
or purely inseparable. If K/F is a normal J-extension, this question has
an affirmative answer, for in that case K is the composite of K and K|,
the separable and purely inseparable parts of K/F, respectively [Ba, p.
88]. Hence K. /F or K,/F is not finite-dimensional, which implies that
K = K, or K = K,. In general, however, Example 2.11 shows that this
question has a negative answer. The presentation of Example 2.11 uses
two auxiliary results. The first of these, Lemma 2.8, must be known, but
we haven’t located an appropriate reference. The statement of Lemma
2.10 uses the following terminology from [Re]. An extension field K of F
is an exceptional extension of F if K/F is algebraic, not separable, and F
is the purely inseparable part of K/F.

LEMMA 2.8. Assume that char F = p # 0 and consider a simple purely
inseparable extension F(8) of F, where 8 has exponent e > 1 over F.

(1) For1 <i<e, F(7 )= {x € F()|x” € F}.

() If a € F(87 Y\ F(87"""), then F(a) = F(67"").

(3) { F(87")}¢_ is the set of intermediate fields.

Proof. In (1), we use induction on e. The case where e = 1 is obvious.
At the inductive step, suppose 6 has exponent e + 1 over F and the result
is known for exponent e. Let E = {x € F(8)|x?* € F}. The inclusions
F(6?) C E and E < F(0) are clear. Since [ F(8): F(67)] = p, we conclude
that E = F(87), where 67 has exponent e over F. The equality F(87"" ")
= {x € F(0)|x” € F} is obvious for i=e+ 1. If 1 <i<e and if
x? € F, then x?" € F and x € F(67). Thus, the induction hypothesis
implies that x € F((87)7") = F(87"'™").

(2) If « € F(87 ")\ F(67"""), then (1) shows that a has exponent i
over F. Therefore [ F(a): F] = p' = [F(87""): F], and consequently, F(a)
= F(677").

(3) follows immediately from (2).
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COROLLARY 2.9. Assume that charF = p # 0 and F(t)/F is a simple
inseparable extension of exponent e > 1. Then F(t)/F is exceptional if and
only if F(t?"") /F is exceptional.

Proof. Clearly F(¢7"") /F is exceptional if F(¢)/F is exceptional. For
the converse, we show that if x € F(¢) is such that x? € F, then x € F.
This statement follows from Lemma 2.8: F(¢)/F(t”") is of exponent e, so
Lemma 2.8 implies that x € F(¢#""'), and hence x € F since F(t*" ") /F
is exceptional.

LEMMA 2.10. Assume that F is a field of characteristic p # 0 and let K
be an algebraic extension of F containing elements a, b, s with the following
properties: a?, b? € F, [F(a,b):F]= p? and F(s)/F is a nontrivial
Galois extension. Let t = a + bs and let L = F(t). Then F(t)/F is an
exceptional extension, F(s) is the separable part of F(t)/F, and if a €
F(t)\ F(s), then F(s) = F(a?).

Proof. We have t? = a? + b?s? so F(t?) = F(s?) = F(s). The inclu-
sion F(s) C F(t) is proper, for if not, then F(s,b) 2 F(s,b,a + bs) =
F(s,b,a), so that F(s,b)= F(s,b,a). This is a contradiction since
[F(s,b):F), = p while [F(s, b, a): F), = p* Therefore F(s) < F(t), F(s)
is the separable part of F(z)/F, and [F(¢):F], = p. We next show that ¢
is the unique conjugate in F(¢) of ¢ over F. To do so, let K be a normal
closure of F(t)/F. If t is not the only conjugate of ¢ in F(¢), then there
exists an F-automorphism o of K such that o(¢) € F(t), o(¢) # ¢. Since
t =a+ bs with a,b purely inseparable over F, then o(¢) = a + bu,
where u = o(s). We have F(¢) = F(o(2)), and by the argument given
above, F(s) = F(u) is the separable part of F(t)/F. Moreover, t # o(t)
implies that s # u. Thus, b(u — s) =a + bu — t € F(t) so b € F(t) and
a =t — bs € F(t), contrary to the fact that [F(z):F], <[F(s,a,b):F],.
We conclude that F(s) is the unique proper subfield of F(¢) containing F
over which F(z) is normal. In particular, F(z)/F is exceptional, for if not,
then F(¢) is the composite of F(s) and the purely inseparable part of F(¢)
over F, and hence is normal over F, a contradiction. Finally, we show that
F(s) = F(a?) foreach a € F(t)\ F(s). The inclusion F(a?) C F(s) holds
since F(t)/F(s) is purely inseparable of exponent 1. Note, however, that
F(t) is the composite of F(s) and the purely inseparable part of
F(t)/F(a?), implying that F(¢)/F(a?) is normal. We conclude that
F(a?) = F(s), and this completes the proof of Lemma 2.10.
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ExaMPLE 2.11. Let the notation and hypothesis be as in the statement
of Lemma 2.10. If E = U%_, F(¢'/?"), then E is an exceptional J-exten-
sion of F. Moreover, if a € E \ F(s), then F(s) C F(a), so each subfield
of E containing F compares with F(s) under inclusion.

Proof. To prove that E is a J-extension of F, we choose x, €
E\ F(¢?") for each n and we show that E = F({x,}%,). Thus, for a
fixed n, choose m so that x, € F(:/?")\ F("/*"""); note that m > n.
Considering F(¢'/?") as an extension of F(t?) = F(s), Lemma 2.8 shows
that x?” € F(t)\ F(s). Therefore F(x?") = F(t) by Lemma 2.10 so that
F(x,) = F(t)(x,) = F(t¥?") 2 F(t/?"). We conclude that E is a J-ex-
tension of F. Moreover, the preceding proof, together with Lemma 2.10,
shows that F(a) 2 F(s) for each a € E\ F(s). Clearly E/F is not
separable; to show that E/F is exceptional, it suffices to show that
F(t'/?") /F is exceptional for each n. This last assertion follows at once
from Lemma 2.10 and Corollary 2.9.

One example of fields F and K as in the statement of Lemma 2.10
can be obtained by taking F = L(a”,b?) and K = L(s, a, b), where L is
a field of characteristic p # 0, a and b are indeterminates over L, and
L(s)/L is Galois. The presentation of Example 2.11 shows that the lattice
of fields between F and E = U*_, F(+'/7") consists of an isomorphic copy
of the lattice of fields between L and L(s), topped by a well-ordered
countably infinite chain. Since the lattice of fields between L and L(s) is
as arbitrary as the lattice of subgroups of a finite group under 2, it
follows that at least at the “bottom”, little can be said about the lattice of
subfields of an inseparable J-extension.

We turn to the problem of examining the structure of a separable
J-extension K/F. While it seems reasonable to think that K/F might
share properties in common with Galois J-extensions, as recorded in
Theorem 2.5, this turns out to not be the case. One reason that the usual
procedure for passing from Galois to separable extensions fails in this case
is that no proper extension L of K is a J-extension of F; in particular,
the normal closure L of K/F is not a J-extension of F if L + K. We
present two constructions of separable J-extensions K/F. In the first
(Example 2.15), the set {K;}¥ of intermediate fields forms a chain
F=K,<K; < ---, but the degrees [K,,:K,] need not be prime and
the set {[K,,,:K,]}?2, may be infinite. Each example of a J-extension
K /F considered thus far in the paper has been such that there exists a
proper intermediate field E such that the fields between E and K form a
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chain. In Example 2.18, we give an example of a separable J-extension
that fails to satisfy this condition. In both Example 2.15 and 2.18, we use
results of Fried and MacRae from [FM]. For sake of reference, we record
the results used from [FM] as Theorem 2.12; it is a composite of
Proposition 3.4 and Theorem 3.6 of [FM].

THEOREM 2.12 ( Fried-MacRae). Let K be a field and let f(X) €
K[X]I\K be such that charK does not divide the degree of f(X). Each
field between K(X) and K( f( X)) is of the form K(g(X)), where g( X) €
K[X] is such that f(X) € K[g(X)]. If M, and M, are intermediate
fields of degrees d, and d,, respectively, over K( f( X)), then [M; N M,:
K(f(X))] = ged{d,, d,} and [M\M,:K(f(X))] = lem{d,,d,}. In par-
ticular, M, C M, if and only if d, |d,.

We use two lemmas in presenting Example 2.15.

LeMMA 2.13. Assume that r > 1 is an integer not divisible by the
characteristic of the field F. If g = X" + X"~ !, then there exsits no inter-
mediate field properly between F(g) and F( X).

Proof. By Theorem 2.12, it suffices to show that if f € F[X] is such
that g = h(f) for some h € F[X], then either degf= 1 or degf = r.
Without loss of generality we assume that f(0) = 0. Then considering
f, g, and h as elements of F[[ X]], we haveordg =r —1 = ord 4 - ord f,
where ord denotes the order function. Moreover, deg g = r = degh - deg f.
These equations are impossible for ord 4 < deg # and ord f < deg f. Hence
either ord h = degh or ord f = deg f; in the first case, degh = 1 and
deg f = r, while the second implies deg f = 1. This completes the proof.

LeEMMA 2.14. Assume that F is a field and f( X) € F[X] is such that
char F does not divide deg f. Assume that there exists a sequence { F;}!_, of
subfields of F(X) such that F(f) = F,< F, < --- < F, = F(X) and the
following conditions are satisfied for 0 < i < n — 1.

(1) There are no fields properly between F, and F, ,,

(2) Each prime divisor of | F;: F] divides [F,,,: F].

Then { F,}!_, is the set of subfields of F, containing F;,.

Proof. We use induction on n, the case n = 1 being obvious. Assume
the result for n — 1. Let the prime factorization of [ F, _, : Fyj] be p§t - -+ pg
and let [F,: F)] = (p™ --- pi)b, where no p, divides b and e; < h; for
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each j. Let K be a subfield of F, containing F,. If K C F,_,, then
K € {F}"Z4 by the induction hypothesis. Otherwise, let [K:F)] =
p“ --- pic, where ¢ is divisible by no p,. Since F,_; < KF,_;, (1)
implies that KF, , = F,, and Theorem 2.12 shows that [F,:F)]=
(ph o phyb = lem{ p* - - pic, p§t --- pg). Since e, < h; for each i,
this implies that ¢ = b and u, = h, for each i, and hence F, = K.

ExampLE 2.15. Let F be a field and let {k,},_; be a sequence of
integers, k, > 1, such that (i) char F does not divide k, for each i, and (ii)
each prime divisor of kk, --- k, divides k,,, for each n. We prove
existence of a separable J-extension K of F(X) with the following
properties: (a) the set of proper intermediate fields forms a chain F(X) =
F,<F, <F,< ---,and (b) [F:F,_;] = k, for each i. Thus. let y, be a
rootof YA + YA ~1— X in an extension field of F( X) and let F, = F(y,).
The element y, is transcendental over F and X = yft + y/2~1. Therefore
Lemma 2.13 implies that there exist no proper intermediate field between
F, and F, and [F,: Fy] = k,. Let y, be atoot of Y*2 + Y*2~! — y in an
extension field of F,. As above, if F, = F(y,), then [F,:F|]= k, and
there exists no proper intermediate field between F, and F,. Now X is a
polynomial in y, of degree k,k,, so Lemma 2.14 shows that { F,, F}, F, }
is the set of subfields of F, containing F,. We inductively continue this
process, obtaining a strictly ascending sequence { F,}?2, such that { F,}7_,
is the set of subfields of F, containing F;, for each » and [F,: F, ,]=k,
for each n. Corollary 2.2 shows that K is a J-extension of F(X),
and K/F(X) is separable since charF does not divide [F,: F(X)] =
kik, --- k, for each n.

Corollary 2.6 states that if K/F is a Galois J-extension, if F C L,
and if K ¢ L, then LK/L is also a J-extension. Lemma 2.14 can be used,
as in Example 2.15, to show that this result does not extend to the case
where K/F is a separable J-extension. To see this, let C be the field of
complex numbers, let F = C(X), and let K = F(y,, y, - -- ), where y/ +
yS—X=0, yJ+yS—y, =0,---. Lemma 2.14 implies that K/F is a
separable J-extension. Let L = C(( X)), the quotient field of the formal
power series ring C[[X]]. For n € Z*, it is known that C((X'/")) =
L(X"™) is the unique algebraic extension of L of degree n [Co, Cor.
5.339, p. 418], and U*_,L(X"/") is the algebraic closure of L. We note
that X = y/ + yf = y51 + y,) and 1 + y, has a sixth root b in C[[y,]] =
Clly¢ + y{liy] = CIXT»] € L(»,); here the equality C[[y{ + y/T[»,]
= C[[»,]] follows, for example, from [Bo2, p. 309]. It follows that X =
(by,)%, and hence L(y,) = L(X"°). Similarly, L(y,,.-.,y,) has degree
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6" over L, so L(y,,...,y,)=L(X"®) for each n € Z*. Because L
contains the 6"th roots of unity, it follows that LK = L(y, y,, ) =
U®_,L(X'%") is a Galois extension of L. Since L(X'/®) is an inter-
mediate field of degree 6 over L, Theorem 2.5 implies that LK /L is not a
J-extension; more directly, U%_,L(X"/?") is a proper intermediate field
that is not finitely generated over L.

By passing from K/F to K(T)/F(T), where T is a transcendence
basis for L = C(( X)) over F = C(X), one sees in the above example that
a J-extension need not lift under a separable algebraic field extension,
even in the case where the intermediate fields of the J-extension are
linearly ordered and the degree of any adjacent pair of intermediate fields
is a fixed prime (in this case 7). Here we are making use of the fact that if
K/F is a separable algebraic field extension and 7 is a family of
indeterminates over K, then the lattice of fields between F and K is
isomorphic to the lattice of fields between F(T) and K(T'). To see this
fact, one may reduce to the case where E/F is a finite separable algebraic
field extension and use Galois theory. If M/F is the normal closures of
E/F, then M(T)/F(T) is the normal closure of E(T)/F(T), the Galois
groups are isomorphic, and any field between F(T) and E(T) is gen-
erated over F(T') by an element of E.

In comparison to Example 2.15, Example 2.18 is more specific in
nature. Also, while Example 2.15 is designed to produce a linearly ordered
set of intermediate extensions in a separable J-extension, the main point
of Example 2.18 is to show that branching may occur infinitely often in
such an extension. Again we require two lemmas in Example 2.18.

LEMMA 2.16. Let F be a field of characteristic distinct from 2 and 3 and
let g = (X*+ 1)2X* € F[X]. The lattice of fields between F(X) and F(g)

is as follows.

F(X)

|
F(X?)
F(X® + X2)< >F(X4)
F(g)

Proof. We have g = (X% + X?)2, and clearly g is a polynomial in
both X? and X*, so there exist distinct intermediate fields as indicated in
the diagram. Theorem 2.12 shows that for each divisor d of 12, there
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exists at most one intermediate field of degree d over F(g). Hence, to
complete the proof, it suffices to show that there exists no intermediate
field of degree 4 over F(g). Equivalently, we need to show that g &
F[f(X)] for each cubic polynomial f(X) € F[X]. Assume, to the con-
trary, that g = f* + af3 + bf? + ¢f + d where, without loss of generality,
we assume that f is monic with constant term 0. As a power series in X, g
has order 4, so c=d=0and g = (X*+ 1)2X* = f2(f> + af + b). The
polynomials ( X* + 1)2 and X* are relatively prime; if b # 0, then /2 and
f? + af + b are relatively prime, and in this case (X* + 1)? divides either
f? or f*+ af + b, an impossibility by a degree argument. Hence b = 0
and g = f3(f+ a). Now a = 0 is impossible because g is not a fourth
power in F[X]. Butif a # 0, then f> and f + a are relatively prime and
we conclude that f3 is an associate of either (X* + 1)? or X*, neither of
which is possible by a degree argument. We conclude that there exists no
intermediate field of degree 4 over F(g).

LEmMMA 2.17. Assume that F is a field of characteristic distinct from 2
and 3. The lattice of fields between F(X) and F((X + 1)*X?) is as follows.

F(X)
|

F((X +1)°X)
I

F((x +1)"'x?)

Proof. As in Lemma 2.16, we need only show that (X + 1)*X? &
F[f(X)] for each quadratic f € F[X]. Because of its similarity to the
proof of Lemma 2.16, we omit the proof of this statement.

ExaMPLE 2.18. Let F be a field of characteristic distinct from 2 and 3.
To obtain a separable J-extension with infinite branching, we iterate
infinitely many times the extension suggested by Lemma 2.16. To wit, let
F, = F(X) and let F, = F,(y,), where y, is aroot of (Y* + 1)2Y* — X in
an extension field of F, let F, = F,(y,), where (y; + 1)%y; —y, =0,
and so forth. We take K = U ,F, and intend to show that K/F; is a
separable J-extension. That K/F, is separable is clear. The key result in
showing that KF, is a J-extension is a proof that each subfield of F,
containing F; lies between F, and F,_; for some i € {1,2,...,n}. The
proof is by induction on »n, and the case n = 2 is crucial in the process.
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Thus, label the lattice of fields between F, and F, and between F, and F,
as follows.
F 1 F 2
l I

E
E1/

Letting ¢ = y,', we examine the following piece of the joined lattice.

= F(1)

E, = F((t+1)%?)

According to Lemma 2.17, no subfield of E; containing E; has degree 3
over E,. Since X is a polynomial in y, of degree 144, Theorem 2.12
implies that there exists no intermediate field E, F, C E C F,, with
[E: F,] = 18, for since 6|18 and 18|36, such a field E would lie between
E,, of degree 6 over F,, and Ej, of degree 36 over F;, and would have
degree 3 over E;, an impossibility. Now let S = {d |d = [E: F] for some
field E with F,C E C F,}. The set S contains 7 = {1,2,3,6,12,24,
36,72,144}, it is closed under taking greatest common divisors and least
common multiples, and we know that 4, 18, 48 ¢ S. It is then straightfor-
ward to show that S = T, and hence the assertion holds for »n = 2.
Assume by induction that each subfield of F, containing F, lies between
F,_, and F, for some i between 1 and n. Since the map y, =y,
determines an F-isomorphism of F, onto F, , that maps F, to F;, we
know also that each subfield of F,; containing F, lies between F, ;| and
F, for some i between 2 and n + 1. Let £ be a subfield of FH1
containing Fy and let & = [E: Fy]. If 12| h orif [F,: F] = 22"3"| h, then E
lies between some F,_; and F, Otherwise, EF, > F, and [EF,: F)] =
lem{ #,2%"3"} is a proper multiple of 22"3". Therefore either (i) 2*"*!|h
and 3+ h or (ii) 3""!|A. If (i) is true, we obtain the contradiction that
E N F| has degree 4 over F. Suppose (ii) holds. If 2 + h, we obtain the
contradiction that E N E; has degree 9 over F,, and if 2|k, then
[E N E,: F,] = 18 yields a contradiction. Hence E lies between some F;_;
and F,.
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Finally we conclude that K/F, is a J-extension, for if x, € K\ F,
for each n, then the above result shows that F,(x,) 2 F,, so Fy({x,}2_,)
= K. Also, the fields between E and K are not linearly ordered for any
proper intermediate field E, for any such E is contained in some F,.

We remark that Example 2.18 has the following group-theoretic
implication. If E is an intermediate field of K/F, such that E is maximal
with respect to failure to contain a € K\ F,, the E(a) is the unique
minimal proper extension of £ in K. If K_ is the separable closure of
K/E, G = Gal(K,/E) and H = Gal(K,/K), then H is contained in a
unique maximal subgroup of G. Since the fields between E and K are not
linearly ordered, neither are the subgroups of G containing H linearly
ordered. By taking finite extensions of £ in K, examples similar to the
above can be obtained, where G is a finite group. On the other hand, it is
easy to see that if H is a normal subgroup of G contained in a unique
maximal subgroup of G, then the subgroups of G containing H are
linearly ordered.

We conclude this section with some remarks concerning the structure
of purely inseparable J-extensions. For sake of reference, we call a purely
inseparable J-extension constructed as in example (E2) of the introduc-
tion standard. Nonstandard examples are not easy to construct, but they
do exist. Deveney in [De] constructs, in fact, a purely inseparable J-exten-
sion U/V, where charV = p, so that if U = {x € U|x? € V}, then
[U:V]=p* for each i; the set of intermediate fields is not linearly
ordered, nor is there a proper intermediate field W such that the set of
subfields of U containing W is linearly ordered. If x € U\ V and if W is
an intermediate field maximal with respect to failure to contain x, then
U/W provides an example of a nonstandard J-extension such that
{u € U|u? € W} has degree p over W. Proposition 2.19 contains some
positive information concerning purely inseparable J-extensions.

PROPOSITION 2.19. Assume F is a field of characteristicp # 0 and let K
be a purely inseparable J-extension of F. Forn € Z,, let K, = {x € K |x?"
€ F)=FY"NnK.

(1) The sequence {K,}S_, is strictly ascending—that is, K does not
have finite exponent over F.

(2) K/F is standard if and only if there exists s € F\ F? such that
s/?" € K for eachn € Z*.

Proof. (1): Suppose K = K, for some n. Clearly n > 0. We assume
that n is minimal so that K = K,. Then K/K,_; is a J-extension of
exponent 1. This is impossible, for if B is a p-basis for K/K,_; and if
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b € B, then K, _(B\ {b}) is an infinite-dimensional extension of K,_,
properly contained in K. Therefore K, < K for each n.

(2) If K/F is standard, then the stated condition is satisfied by
definition. Conversely, if K contains {s/?"}*_, for some s € F\ F?,
then F({s'/?"}9) is an infinite-dimensional extension of F in K, and
hence is equal to K.

While a standard purely inseparable J-extension is such that the set of
intermediate fields is linearly ordered, a purely inseparable J-extension
L/E with linearly ordered intermediate fields need not be standard. For
example, we can take

E=M({X,}72,), wherecharM =p +#0, and

L=E({x7 + X7 + o 4 X1} ).

3. Fields that admit a J-extension. We consider in this section the
problem of determining those fields that admit a J-extension or a Galois
J-extension. We begin with a consideration of the Galois case. Theorem
2.5 answers the question in one sense: F admits a Galois J-extension if
and only if W, can be realized as a Galois group over F for some prime p.
This criterion, however, is elusive, and we seek to give it more substance.
If W, can be realized as a Galois group over F, then F admits a cyclic
extension of degree p. The converse fails (for example, let F be the real
field and let p = 2), but we are able to establish the converse in enough
cases to provide a large class of fields that admit Galois J-extensions. In
fact, there are three related questions here for a field F. We list these as
Q(1), Q(2), and Q(3); their answers depend upon the fields F and K. Q(1)
is most clearly related to the problem at hand.

Q(1) If F admits a cyclic extension of prime degree, does F admit a
Galois J-extension?

Q(2) If K/F is cyclic of prime degree p, can W, can be realized as a
Galois group over F??

Q(3) If K/F is cyclic of prime degree, can K be extended to a Galois
J-extension of F?

We note that an affirmative answer to question Q(n) implies an
affirmative answer to Q(n — 1); a more general version of Q(3) asks
whether K can be extended to a Galois J-extension of F if K/F is cyclic
of prime-power degree.

2For an odd prime p, Q(2) has an affirmative answer; see the appendix to this paper.
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Cyclic extension fields play a classical role in Galois theory, and
papers of Artin and Schreier [AS] and Albert [A1], [A2] are landmarks in
the area. In fact, part (1) of Theorem 3.1 listed below comes from [AS],
and part (2) comes from [A1]. Theorem 3.1 provides a case in which Q(3)
has an affirmative answer.

THEOREM 3.1 (Artin-Schreier; Albert). Assume that F is a field of
characteristic p # 0.

(1) F admits a cyclic extension of degree p if and only if F + {a” — a|a
€ F}.

(2) If K is a cyclic extension of F of degree p®, than K can be extended
to a cyclic extension of degree p***'. Consequently, K can be extended to a
Galois J-extension of F.

A second case in which Q(3) has an affirmative answer is provided by
Proposition 3.2.

PRrROPOSITION 3.2. If K/F is cyclic of prime degree p and if F contains
the p"th roots of unity for all n € Z*, then K is contained in a Galois
J-extension of F.

Proof. 1f char F = p, then the result follows from Theorem 3.1. If
charF # p, then K = F(%_), where a € F [Ba, p. 174]. The Vahlen-Capelli
Theorem [K, Theorem 51] then implies that X?" — g is irreducible over F
for each n € Z™, except in the case where p = 2, char F # 2, and -4a is a
fourth power in F. Since F contains a primitive fourth root of unity i, this
exceptional case does not occur, for —4a = b* = —i’b* implies a =
(ib%/2)?, so a has a square root in F, a contradiction. Therefore X?" — a
is irreduci?le over F for each n, and since F contains the p”th roots of
unity, F(p\/E ) = K, is cyclic over F of degree p” for each n [Ba, p. 175].
Therefore E = UX_, K, is a Galois J-extension of F containing K.

In passing to the case where F does not contain the p”th roots of
unity for all n, some distinction must be made between the cases where
p = 2 and where p is odd. The following lemma, which fails for p = 2
and k = 1, is at the root of the distinction. The routine proof of Lemma
3.3 is omitted.

LeMMA 33. Ifk, r€ Z*, b € Z, and p is prime, then (1 + p*b)? =
1 + p**'b (mod p**"*Y) if p is odd. If p = 2, this congruence is valid for
k> 2.
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PROPOSITION 3.4. Assume that p is prime and that F is a field that
contains the p*th roots of unity but not the p** st roots of unity, where k > 1
and where k > 2 if p = 2. Let { be a primitive p*th root of unity in F and
forr € Z*, let {, be a root of X" — { in an extension field of F. Then §, is
a primitive p**" — th root of unity and F({,)/F is cyclic of order p'.
Therefore F({,}52,) is a Galois J-extension of F with Galois group W,.

k-1

Proof. We have (§,)7" = ({7)? = ¢ =1 and (§,)7 =77 #
1, so {, has order p**’. Since F contains the pth roots of unity, the
equation X? — ¢ is either irreducible over F or it has a root in F [vdW, p.
180], but the latter condition fails by choice of k. Hence X? — { is
irreducible over F, and as in the proof of Proposition 3.2, the Vahlen-
Capelli Theorem implies that [F({,): F] = p” for each r. To show that
F(¢,)/F is cyclic, observe that ({1+7)? = (77" = ¢ Hence, there
exists o € Gal(F(§,)/F) such that o(§,) = ¢1*+7* The order of o is the
order of 1 + p* modulo p**’, which, according to Lemma 3.3, is p".
Thus, ¢ generates Gal( F(¢,)/F).

k+r—

Proposition 3.4 may fail for p = 2 and k = 1; for example, it fails if
F = Q. The distinction between the cases p = 2 and p > 2 carries over to
the statement of the next result.

PROPOSITION 3.5. Let F be a field.

(a) Assume that p is an odd prime and that F does not contain the pth
roots of unity. Let § be a primitive pth root of unity in an extension field of
F, and assume that F({) does not contain the p"th roots of unity for some n.
Then F admits a Galois J-extension with Galois group W,

(b) If p = 2, the statement of (a) remains valid if F does not contain the
fourth roots of unity and if F(i), where i is a primitive fourth root of unity in
an extension field of F, does not contain a 2"th root of unity for some n.

Proof. The proof is similar to the one used in Example 2.7 to show
that Q admits Galois J-extensions, and indeed, Example 2.7 is a special
case of Proposition 3.5. To prove (a), assume that k € Z* is such that
F({) contains the p*th, but not the p**!st roots of unity. Fix an algebraic
closure L of F({) and for each r € Z*, let {, be a primitive p**"th root
of unity in L. Proposition 3.4 shows that F({,) is cyclic over F({) of
degree p”. Hence F({,) is cyclic over F of degree divisible by p”. It follows
that F({,) admits a unique subfield K, of degree p” over F. Uniqueness
also implies that K,_, € K, for r > 2. hence K =U?_,K, is a Galois
J-extension of F with Galois group W,.
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The proof of (b) differs slightly from that of (a). Thus, assume that
F(i) contains the 2“th but not the 2**!st roots of unity. If ¢, is a
primitive 2%*"th root of unity in a fixed algebraic closure of F(i), then
F($,)/F(i) is cyclic of degree 2”. Therefore F(§,)/F is a Galois extension
of degree 2"*1. The automorphism o, of F({,)/F determined by {, — ¢!
has fixed subfield K, = F({, + { ') of codimension 2 in F({,). Moreover,
0,(i) # i, so F(i) £ K,. It follows that F(i) and K, are linearly disjoint
subfields of F({,) with composite field F({,). Therefore Gal(K,/F) =
Gal( F($)/F(i)) is cyclic of order 2. The definition of K, implies that
K, c K,,, for each r; hence U K, is a Galois J-extension of F and
Gal(K/F) = W,.

We note that in the notation of part (a) of the proof of Proposition
3.5, the field K, does not contain the pth roots of unity, but K,({)
contains the p”**th roots of unity; hence { & K, but K({) contains the
p"th roots of unity for all r. A similar example for the fourth and 2"th
roots of unity can be obtained from the proof of part (b) of Proposition
3.5.

PROPOSITION 3.6. If F is a field of positive characteristic and if F
admits a cyclic extension of prime degree p, then F admits a Galois
J-extension.

Proof. Let E be the algebraic closure in F of the prime subfield of F.
If F contains the p"th roots of unity for all n, then the result follows from
Proposition 3.2. Otherwise, E is a field as described in Example (E1) of
the introduction, so E admits a Galois J-extension L. By Corollary 2.6,
LF is a Galois J-extension of F.

Suppose the field F admits a cyclic extension of prime degree p. The
results of this section leave one case in which we have not given an
affirmative answer to Q(1); this is the case where char F = 0, F does not
contain a primitive pth root of unity {, but F({) contains the p”th roots
of unity for all ». In this case it may happen that F is not real closed and
yet does not admit a Galois J-extension. If S is the solvable closure of Q,
then S admits no Galois J-extension since solvability of field extensions
is a transitive property [G1, Cor. 3.9]. Since S/Q is normal and S is not
contained in the field R of real numbers, F = S N R is a subfield of S
such that S/F is cyclic of degree two. But Corollary 2.6 implies that F
does not admit a Galois J-extension. It would be interesting to know
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whether a field F that admits a cyclic extension of degree p > 2 neces-
sarily admits a Galois J-extension (See the appendix.)

Our next result shows that there exists a finite extension of S that
does admit a Galois J-extension. Proposition 3.7 will also be useful in
proving that a field that is neither algebraically closed nor real closed
admits a J-extension.

PROPOSITION 3.7. If the field F is imperfect, then F admits a standard
purely inseparable J-extension. If the separable algebraic closure F, of F is
such that F,/F is infinite, then there exists a finite separable extension E of
F such that E admits a Galois J-extension.

Proof. If F is imperfect, then as in example (E2) of the introduction.
F admits a standard purely inseparable J-extension. If there exists a finite
separable algebraic extension of F of degree over F divisible by an odd
prime p, then the normal closure of this extension is a finite Galois
extension K/F such that p divides |G|, where G = Gal(K/F). Let H be
a subgroup of G of order p, and let E be the fixed field of H acting on
K. If E contains a primitive pth root of unity, then E admits a Galois
J-extension by Propositions 3.2 and 3.4. Otherwise, let E;, = E({), where
¢ is a primitive pth root of unity. We note that KE, /‘E1 is cyclic of order
p since [K: E] and [E, : E] are relatively prime, and hence the previous
case implies that E; admits a Galois J-extension.

The remaining case is where each finite separable algebraic extension
of F is of degree over F a power of 2. The field F(i), where i is a
primitive fourth root of unity, has this same property. Since any group of
order 2% contains a subgroup of index 2, it follows that F(i) admits a
cyclic extension of degree 2, and Propositions 3.2 and 3.4 again show that
F(i) admits a Galois J-extension. This completes the proof of Proposition
3.7.

We move to a consideration of fields that admit a J-extension. In this
connection, it is useful to note that if L/K is a J-extension, then the
fields between K and L satisfy the descending chain condition (d.c.c.).
Moreover, if L/F is a field extension that is not finitely generated but is
such that the fields between F and L satisfy d.c.c., then there exists a
J-extension of F contained in L. For if E is an intermediate field such
that E is minimal with respect to the property that E/F is not finitely
generated, then E/F is a J-extension.

Concerning d.c.c. on intermediate fields, we note the following easy
fact.
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LemMma 3.8. If K/F is a finite algebraic field extension and L/K is a
field extension such that the intermediate fields satisfy d.c.c., then the fields
between F and L also satisfy d.c.c.

Proof. Suppose there exists a strictly descending chain of fields
E, > E,> --- between F and L. Since the fields between K and L
satisfy d.c.c., the chain E;K 2 E,K D --- stabilizes, so there exists a
positive integer n such that E,K = E, K for all i > 0. If [K:F] =y,
then [E,K:E,] < s for each i. But [E,:E, ] > s since the chain { E,}
strictly descends. This gives E,. ., C E, € E,K = E, K with
[E,.,K:E, ]J<sand[E, :E,, ]> s, acontradiction. We conclude that
the fields between F and L satisfy d.c.c..

Proposition 3.7 and Lemma 3.8 yield the following general result.

THEOREM 3.9. If the field F is neither algebraically closed nor real
closed, then F admits a J-extension. More precisely, if the separable
algebraic closure F, of F is such that F./F is infinite, then F admits a
separable J-extension. If F is not perfect, then F admits a standard purely
inseparable J-extension.

Theorem 3.9 shows that the class of fields that admit a J-extension
properly contains the class of fields that admit a Galois J-extension. We
record this formally in the following corollary.

COROLLARY 3.10. There exist fields F, such as the solvable closure S of
Q, that admit a J-extension but do not admit a Galois J-extension.

Theorem 3.9 is genuinely an existence theorem. For a field F that is
the quotient field of a nontrivial valuation domain with principal maximal
ideal, we present in Theorem 3.11 a more explicit result and construction.

THEOREM 3.11. Assume that F is the quotient field of a nontrivial
valuation domain V with principal maximal ideal M = mV. Then F admits a
separable J-extension for which the intermediate fields are linearly ordered
with respect to inclusion.

Proof. Choose a prime p # char(V /M) and a sequence 8,, 8,, - - - of
elements in a fixed algebraic closure of F such that 87 = m, 0} = 0,,
07 =40,,---. We show that K = F(0,,0,, ---) = U2, F(0,) has the de-
sired properties. Separability is no problem; to prove the theorem, it will
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suffice to show that the set of subfields of F(6,) containing F is linearly
ordered for each n € Z™. Let {, be a primitive p"th root of unity in an
extension field of K. We show below that (i) [F(8,): F]= p", and (ii)
F(6,) N F({,) = F. Assuming (i) and (ii) for the moment, we complete the
proof of Theorem 3.11. Thus, since F({,)/F is Galois, it follows that
F(6,) and F({,) are linearly disjoint over F. Write 6 and { for 6, and ¢,
and consider the following diagram, where G denotes the Galois group of
F(0,{)/F and G, and G, are subgroups of G corresponding to the fields
F(0) and F(¢), respectively

I N
\ / \G/

We have |G,| = p” = [G:G,], and G = G,G,, where G, is normal in G
and G, N G, = {e}. The subfields of F(f#) are in 1-1 order-reversing
correspondence with the subgroups of G containing G,, and each such
subgroup H is of the form G,(G, N H). Since G, is cyclic of order p”, its
subgroups form a chain; hence the subgroups of G containing G, form a
chain, and consequently, the subfields of F(#) containing F are linearly
ordered. Since [F(6,):F]= p", where 07" € F, it follows easily that
[F(67):F]=p" " for 0 <i < n, and hence { F(6/)}", is the set of
intermediate fields of F(6,)/F.

We proceed to establish the equality F(8) N F({) = F in (ii) by
showing that V is totally ramified with respect to E if F C E C F(8); in
the process, we also prove (i). Let v be a valuation associated with V" and
let w,...,w, be the extensions of v to F(8). Let e; and f, respectively,
denote the reduced ramification index and the relative degree of w, with
respect to v. We have p"w,(8) = v(m) > 0 for each i, and since v(m) is
the smallest positive element of the value group of v, it follows that
{ jw,(0)} };"1 is a set of representatives of distinct cosets of the value group
of v in the value group of w; Therefore e, > p” for each i. Since
E§=1eif,- < [F(6):F] < p" [Ri, p. 228], we conclude that g = 1 and e, =
p", fi =1— that is, V is totally ramified with respect to F(f) and
[F(8):F]=p". If E is a subfield of F(8)/F, then standard techniques
and two applications of the inequality cited in the preceding sentences
show that V' is totally ramified with respect to E—that is, v admits a
unique extension u to E and the reduced ramification index of u with
respect to v is [ E: F]. Next we consider the behavior of V' with respect to
F($). Since p is a unit of V/M, Theorem 10.18 of [N] shows that V[{] is
the integral closure of V in F({); thus, each extension of ¥ to F({) is a
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quotient ring of the Priifer domain V'[{]. Then [N, (38.6)] implies that V is
unramified with respect to F({); this means that for each extension
(V*, M*) of V to F({), V*/M* is separable over V/M, and V* and V
have the same value group. Since these two properties are obviously
inherited by extensions of V' to an intermediate field E, then V is
unramified with respect to each such field E. We conclude that V' is both
unramified and totally ramified with respect to F({) N F(8), so F($) N
F(8) = F as we wished to prove.

What fields F are not the quotient field of a nontrivial valuation
domain V' with principal maximal ideal? A sufficient condition for this to
occur is that the equation X” — ¢ = 0 has a solution in F for each t € F
and for infinitely many integers n € Z*. Thus, if char F = p # 0, then the
hypothesis of Theorem 3.11 implies that F is imperfect, and hence F also
admits a standard purely inseparable J-extension. It seems reasonable to
ask whether F is the quotient field of a rank-one discrete valuation
domain if F satisfies the hypothesis of Theorem 3.11. We proceed to show
(Example 3.13) that this question has a negative answer. The presentation
of Example 3.13 involves the notion of a Henselian domain, defined as
follows (see [N, p. 103]). Let (D, M) be a quasi-local domain with
quotient field K. We say that (D, M) is Henselian and that K is
Henselian with respect to D if the following condition is satisfied. If f, g,
h, are monic polynomials in D[X] such that f= gk, (mod M[X]),
where g, and h, are relatively prime modulo M[X], then there exist
monic polynomials g, 7 € D[ X] such that f= gh, g = g, (mod M[X]),
and h = h, (mod M[X]). We use a result (Satz 2.3.11, p. 60) from
[BKKN] in Example 3.13. This result, labelled below as Theorem 3.12, is
attributed to F. K. Schmidt [S] in [BKKN].

THEOREM 3.12 (Schmidt). If (D, M) is a Henselian integral domain
with quotient field K and if V is a rank-one discrete valuation domain on K,
then D C V.

ExaMPLE 3.13. We exhibit a field L that is the quotient field of a
valuation domain with principal maximal ideal, but not the quotient field
of a rank-one discrete valuation domain. Existence follows from Theorem
3.12 once we give an example of a Henselian valuation domain with
principal maximal ideal that is not contained in a rank-one discrete
valuation domain of its quotient field. It is easy to construct a valuation
domain ¥V such that V' has principal maximal ideal and V' is not contained
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in a rank-one discrete valuation domain of its quotient field. For example,
if X,Y,Z are indeterminates over a field k, we define a rank-one
nondiscrete valuation domain W on the field k(X, Y, Z) over k(X) by
defining W(Y) =1 and W(Z) = V2. Then W = k(X) + N, where N is
the maximal ideal of W [G2, Exer. 12, p. 271]. Therefore V' = k[ X] x, + N
is a rank-two valuation domain with the required properties. The Henseli-
zation V* of V is a localization of the integral closure D of V in a
appropriate algebraic extension field L [N, p. 180]; hence D is a Prufer
domain ang V* is a Henselian valuation domain with principal maximal
ideal M* = MV* [ibid]. The rank-one valuation overring of V* is D,
where P is the rank-one prime of D contained in M* N D. Hence D, is
an extension of V¥ to L, and since V' is nondiscrete, so is Dp.

We remark that the sufficient condition given in Theorem 3.11 for F
to admit a separable J-extension with linearly ordered intermediate fields
is not necessary. This is shown, for example, by the fields of example (E1)
of the introduction; other examples can be obtained from Proposition 3.7
or by taking F = K({ X/7"}%_,), where K has characteristic p # 0 and
K admits a Galois J-extension.

REMARK 3.14. A field F that is the quotient field of a rank-one
discrete valuation domain need not admit a Galois J-extension. To see
this, let R denote the field of real numbers, and let F = R(( X)) be the
quotient field of the formal power series ring R[[ X]]. Then f does not
admit an abelian field extension of degree n > 4, and hence does not
admit a Galois J-extension. For suppose F,/F is an abelian field exten-
sion of degree n > 4, and consider the compositum K, = F,C, where C is
the field of complex numbers. Since C(( X)) /F is cyclic of degree 2, K, /F
is an abelian extension and [K,: C(( X))] = m, where m = n or m = n/2.
By Puiseaux’s Theorem [Co, p. 418], K, = C((Y)), where Y” = X. There-
fore K, contains the subfield R((Y)). But R((Y))/F is not Galois for
m > 2, which means that K, /F cannot be abelian. We conclude that F
does not admit an abelian extension of degree n > 4, so by Theorem 2.5,
F does not admit a Galois J-extension.

4. Abelian extensions of Q. Denote by 4 the abelian closure of Q.
This section deals with the same general theme as §3, but is more concrete
in nature; to wit, the main result of the section is Corollary 4.11, which
states that each subfield F of 4 admits a Galois J-extension.

To begin, we introduce some notation that will be used throughout
this section. For n € Z*, let {, be a primitive nth root of unity over Q.
Let P = { p;}%2, be the sequence of primes, where p, = 2, and for p € P,
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denote by A, the Galois J-extension of Q with Galois group W, exhibited
in Example 2.7. Recall that for p odd, A, =U%_,4, ;, where A, . is the
unique subfield of Q({,+1) of degree p/ over Q, while A, =UT_,A, ,
where A, ;, the real subfield of Q({,/+2), is cyclic over Q of degree 2/.
We have Q(§,i+2) = 4, (i), while Q($,+1) =4, (§,). Hence 4 =
A($4, 83,85, -+ - ), where A is the compositum of the family {A | p € P}.

The first three results of the section are used in the proof of Theorem
44.

LEMMA 4.1. Assume that F(a, B) is an abelian extension of the field F
and that F(a) N F(B) = F. If K is a subfield of F(a) containing F, then
[F(a, B):K(B)] = [F(a):K].

Proof. Since F(a) N F(B) = F, then [F(a,B):F(B)] =[F(a): F].
Also, K N F(B) = F implies [K(B): F(B)] = [K: F]. Therefore
[F(a,B):K(B)] = [F(a, 8): F(B)]/[K(B): F(B)]
= [F(a):F]/[K:F] = [F(a):K].

If r, s € Z* have greatest common divisor d and least common

multiple m, then Q(§,) N O(§,) = Q(§,) and Q(§,, §,) = O(§,,) [C, Th. 1],
[L, p. 314]. We use this result in the proof of Lemma 4.2.

LEMMA 4.2. Assume thatk, n € Z* withk < n, and that {e;}]_, is a
subset of Z*. Let

k n
r = 262 npj?1+1, § = l—[ pj.e'f+1,
j=1 k+1

t=4p, - - pys, U=Pry1 """ Pa-

Let K, = l_‘[jl'(=OApl,e/’ Ky =11j_4118,, ., Where IT denotes compositum,
and let K = K, K, be the compositum of K, and K,. Then [K({,,$,)K({,)]
= [Ky(§) K] = o(1) = [Q(§) Q1.

Proof. We note that K, ({,) = Q(§,) and K,({,) = Q(§,), where
0(¢) N Q&) = Q. Since K({,,¢,) is the compositum of K,({,) and
K,(¢,) and since K({,) is the compositum of K; and K,({,), it follows
that

(K. 8): K] = [K(..8): 01 /[K(.): 2]
= [Kl(ft):Q][Kz(fu):Q]/[Kl:Q][K2(§2)3Q]
= [Kl(gt)Q]/[KlQ] = [Kl(gt):KJ‘
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To see that K;(A,) has degree ¢(¢) over K;, note that the equality

, NAHA, . |0<v<kv#j})=0 (which follows since Ap,,e, c
Q(g‘pe + 2) for “each J) implies that [K,: Q] = TT}_o[4,, . : Q] = T1}_,p).
Therefore

[Ki(8):K ] = [0(5,): K] = [0(5,): 0] /[ K, : Q]
r)/1K, 0] = (1) = [0(5): Q.

COROLLARY 4.3. Let U = {4} U { p;}72;.

(V) If {u;}]_, is a finite nonempty subset of U, if u = wyu, --- u,, and
if V.="UN\/{u;}j_y, then §, has degree ¢(u) over A({§,|v € V'}); hence
the minimal polynomial for {, over A({{,|v € V'}) is the uth cyclotomic
polynomial ®,( X).

(2) If U = V U W is a partition of U into nonempty subsets V and W,
and if V¥ = {{,|lveEV}, W*={{, |w€E W}, then A(V*) and A(W*)
are linearly disjoint over A.

Proof. In (1), assume first that 4 € U. The minimal polynomial f( X)
for {, over A({§,|v € V'}) has coefficients in a finite extension E of A in
A(¢,}). There exists a finite subset {v;}7., of V and a set {e;}/_; of
positive integers such that E C K({,), where K is the compositum of
{4,,)j-1 and w = vy, -+ - v, Since the degree of {, over A({{,}) is the
same as its degree over any subfield of A({{,}) containing E, we assume
without loss of generality that { p; } h=A{u 1i-1 Y {v;}72;. Then Lemma
4.2 implies that the degree of f( X), which is the degree of {, over K(,),
is ¢(u), and hence f(X) = ®(X).If4 & U,let F = A({§,|v € V,v # 4}).
By the case just considered, F(§,,) = F({,,§,) has degree ¢(4u) = 2¢(u)
over F and {, has degree 2 over F({,). Therefore {, has degree ¢(u) over
F(¢,) = A({§,|v € V}), and again this implies that ®,(X) is the minimal
polynomial for {, over A({{,}).

(2): If V is finite, the assertion in (2) follows from (1). Otherwise, let

= {v;}%,. Since A(V*) = UT_,A(S,, .. ,) and since A(S,, . ) 0 S(W*)
= A for each j, it follows that A(V*) N A(W*) — A—that | is, A(V*) and
A(W*) are linearly disjoint over A.

THEOREM 4.4. Let F be a proper subfield of A and let L be the
compositum of the set of Galois J-extensions of F in A. Then L = A.

Proof. Since F < A, there exists p such that A, ¢ F. Then FA, C L
and hence A, C L for each p with A, ¢ F. Since the inclusion A, C L is
clear if A, C F, we conclude that A C L. Suppose that the inclusion is
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proper, and let E C A be a Galois J-extension of F that is not contained
in A. Choose 8 € E\ A. There exists k € Z* such that § € A({,), where
u=4p,p, -+ py- Let M= A({{Pj}ﬁkﬂ); part (1) of Corollary 4.3
shows that B = M({,) is Galois over F of degree ¢(u). Since § € M by
part (2) of Corollary 4.3, it follows that there exists an M-automorphism o
of B such that ¢(8) # 6. Since F C M and E/F is Galois, ¢ induces an
F-automorphism p of E such that p has finite order. Since E/F is a
J-extension, it follows that p = 1, contrary to the fact that u(6) # 6.
Consequently, L C A, equality holds, and this completes the proof of
Theorem 4.4.

CoROLLARY 4.5 (Iwasawa [I]). The field A, is the unique Galois
J-extension of Q with Galois group W,

Proof. 1f E is a Galois J-extension of Q with Galois group W, then
by Theorem 4.4, E C {6 € A|[Q(8):Q] is a power of p} = A,. Hence
A, = E since A,/Q is a J-extension.

We have observed in more than one place that Q(3) fails in general,
but Corollary 4.5 shows that this failure occurs on a wide scale. To wit,
(4.5) implies that for each prime p, there exists a unique extension E, of
Q such that E,/Q is cyclic of degree p and E, can be extended to a
Galois J-extension of Q.

By a result of Brumer [Br], (4.5) is known to extend to a finite totally
real® abelian extension F of Q—that is, FA , is the unique Galois
J-extension of F with Galois group W,. Thus, the phrase “in 4” in the
statement of Theorem 4.4 is redundant if [ F: Q] is finite and F is totally
real®. On the other hand, if Q € F < A and if [F: Q] is infinite, then F
may admit a Galois J-extension that is not contained in A; for example,
slight modifications of the proofs of (4.8) and (4.9) show that A, admits a
Galois J-extension E with Galois group W, such that E ¢ A.°

3Recall that a finite algebraic extension L of Q is fotally real if each of the conjugate
fields of L over Q is real; hence if L/Q is Galois, then L is totally real if and only if L is
real.

41f F is a finite abelian extension of Q that is not totally real, then it is known that F
admits infinitely many W,-extensions (see [I, p. 253], [Bm, p. 248]).

3In fact, using Remark 4.6, it follows that E ¢ A for any such field E.
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REMARK 4.6. The proof of Theorem 4.4 shows that each element
0 € A\ A is moved by an automorphism o, of 4 of finite order; any such
0, induces the identity map on A. Using this fact and an argument similar
to that of (4.4), it can be shown that if A C F C A, then F admits no
Galois J-extension within 4. On the other hand, Corollary 4.11 shows
that F admits a Galois J-extension.

REMARK 4.7. For each n € Z™, there exists a unique extension =, of
Q in A such that [2,: A] = n. Specifically, if n > 1 and n =TI;_;p} is
the prime factorization of n, then 2, is the composite of the fields A e,
for 1 < j < k. For the sake of future reference, we note that =, = Q(v2)
and =, = Q({, + {51); thus, =, is the splitting field over Q of the
polynomial X3 — 3X + 1.

We turn to a proof of the result that each subfield of 4 admits a
Galois J-extension. The proof is obtained by showing (Corollary 4.10)
that A admits a Galois J-extension with Galois group W,.

THEOREM 4.8. If there exist a € A, |a| < 1, such that /(1 — a*) € A
and the polynomial s,(X) = X¥ — 2aX*"" + 1 is irreducible over A for
eachn € Z*, then A admits a Galois J-extension with Galois group W,.

Proof. Choose elements B, 8,, 6,, - -+ so that 8 = a + iy(1 — a?) is
a root of s;(X), 6, = /B, and 0,,, = /8, for each n € Z*. We show for
each n that (1) A(6,) = A(8,,i) is Galois over A with Galois group
Z, X Zyn, (2) A(6, + 6;") is a subfield of A(8,) that is cyclic over A of
degree 2", and (3) A(8, + 6,') € A(6,,; + 0;1,). Once these statements
have been proved, it then follows that U%_;A(6, + 6;%) is a Galois
J-extension of A with Galois group W,. The assertion in (3) follows at
once from the equality 6, + 6, = (8,.,, + 6,},)* — 2. To prove (1), fix n
and write 8 in place of 8,. Since @ is a root of s, ;( X), it has degree 2" !
over A. Also, 82" = B, so A(B) = A(i) is a subfield of A(B), and A(i)
contains the 2*th roots of unity for all k; in particular, A(i) contains a
primitive 2”th root of unity §. Since 8 has degree 2" over A(i), it follows
that {{/6}725" is the set of conjugates of § over A(i); hence {§/6}225" is
a set of 2" conjugates of § over A. What are the other 2" conjugates of 6
over A? To answer this question, let G be the galois group of s, ,( X) over
A. There exists ¢ € G such that o(i) = —i; thus a(8%)=06(B) =B =
[6(8)]*" = B~1. Since (-1)*" = B, it follows that the other 2" conjugates
of 6 over A are the elements {/§~! for 0 <j < 2" — 1. Consequently,
A(0)/A is normal. An element of G is completely determined by its
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action on ; hence G = {,}7_,' U {7,}7", where 0,(8) = {/§ and 7,(0)
= {/671. We note 0,(0%") = ({/6)*" = 0" and 7,(6*") = 6", the complex
conjugate of #%". It follows that o, induces the identity automorphism on
A(i) and 7; restricted to A(i) is complex conjugation on this field. In
particular, ¢,($’) = {/ and ({/) = ¢ ~J. It is then straightforward to show
that ¢/(#) = {/“¢ and 7].2"(0) = {79 for each k € Z* and that G is
abelian. In particular, the order of o; and of 7; is the additive order of j in
the group Z/2"Z. Hence G contains elements, such as o, of order 2", but
no element of order 2"*! It follows that G = Z,, X Z,, and in fact,

G = (6;) X (7,), where 1,(8) = 6~1. This completes the proof of (1).

Continuing the notation of the preceding paragraph, it is clear that
A(8 + 071) is contained in the fixed subfield of 7,. On the other hand, 6
satisfies the quadratic polynomial X2 — (6 + 6-") X + 1 over A(8 + 671,
and consequently, A(§ + 67') is the fixed field of =,. Therefore, the
Galois group of A(8 + 67') over A is isomorphic to ((o;,) X {(7))/{7)
= (o,)—that is, A(8 + 87") is cyclic over A of degree 2", as asserted in

2.

PROPOSITION 4.9. The polynomial t,(X) = X* — (8/5) X% + 1 is
irreducible over the field A for eachn € Z*.

Proof. The roots of t(X) are 8= (4+ 3i)/5 and B=8"=
(4 — 3i)/5. Since A is a real field, it follows that ¢, is irreducible over A.
Let # = /B. The roots of t,(X) are +0 and +6°'. We show that
0 & A(B) = A(i); this will imply that A(8) = A(i, 8) has degree 4 over A,
and hence #,( X) is irreducible over A. Note that (6§ + 671)2 = 6% + 2 +
62 = 18 /5, and hence V10 € Q(#). Thus, if § € A(i), then V10 € A(i).
On the other hand, Remark 4.7 shows that Q(v2) is the unique quadratic
extension of Q in A, so V10 & A and A(i) = A(Y10); this is a contradic-
tion, for A(Y10) is a real field.

We have shown that X2 — B is irreducible over A(i), and hence the
Vahlen-Capelli Theorem implies that X?" — B is irreducible over A(i) for
each n € Z*. If 6§, is a root of X*' — B, then 0, is also a root of ¢, ,(X)
and A(6,) = A(i,0,) has degree 2"*! over A, so ¢,,, is irreducible, as
asserted.

CoOROLLARY 4.10. The field A admits a Galois J-extension with Galois
group W,.

Proof. Apply (4.8) and (4.9).
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COROLLARY 4.11. Each subfield F of the abelian closure A of Q admits
a Galois J-extension.

Proof. If there exists a Galois J-extension K of Q such that K ¢ F,
then FK is a Galois J-extension of F. On the other hand, if F contains
each Galois J-extension of Q, then A C F. Let M be a Galois J-exten-
sion of A; existence is assured by Corollary 4.10. Remark 4.6 shows that
M ¢ A, and hence M ¢ F as well. Consequently, FM is a Galois J-exten-
sion of F.

Using the description of the unique cubic extension Z; of Q in A
given in Remark 4.7, we have been able to prove that W, can be realized
as a Galois group over A. In fact, if B is a root of X?> — (2/7)X + 1
and if 6,, 6,,--- are chosen so that 8, = BY3, 6, =673 ..., then

A0, + Hj“l) is a Galois J-extension of A with Galois group W;. For
p > 3, we have been unable to determine whether W, can be realized as a
Galois group over A. Since A does admit a cyclic extension of degree p*
for each k € Z7, the field F = A represents a test case for Q(2). (See the
appendix.)

5. Concluding remarks. We conclude with some remarks con-
cerning two open questions that seem to merit further study. The first
question concerns the restriction to the case of algebraic extensions in the
definition of a J-extension. To wit, if K is an extension field of F, then
consider the following condition (#): K is not finitely generated as an
extension field of F, but E/F is finitely generated over F for each proper
intermediate field E. If K/F is algebraic, then a (#)-extension is the
same as a J-extension, but we have been unable to determine whether a
(#)-extension is necessarily algebraic. If not, then it is straightforward to
show that there exists a (#)-extension K/F of transcendence degree 1
with F algebraically closed in K. In this case, K/F(t) is a J-extension for
each ¢t € K\ F; moreover, either (1) [K: F(2)], = oo for each r € K\ F,
or else (2) [K: F(2)]; = o for each ¢t € K\ F. Condition (1) leads to a
contradiction in the case where char F # 0, and (2) is impossible in the
case where char F # 0 and F is perfect. Beyond this, we have no addi-
tional information.

The second question is the case of Q(2), §3, where p is odd: if F
admits a cyclic extension of degree p, can W, be realized as a Galois
group over F? While the corresponding case of Q(3) has a negative
answer, the answer to Q(2) has been shown to be “yes” except possibly in
the case where char F = 0, { » & F, and F( ¢ ) contains the p”th roots of
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unity for all n. As mentioned in §4, the case where F = A and p > 3 is
one test case for this second question. (See the appendix.)
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APPENDIX

Professor David Saltman has informed us that Q(2) has an affirmative
answer for an odd prime p, and this may have been previously known.
The argument given below was supplied by him.

THEOREM 1. If p is an odd prime and if the field F admits a cyclic
extension of degree p, then W, can be realized as a Galois group over F. If F
admits a cyclic extension of degree 4, then W, can be realized as a Galois
group over F.

Proof. We begin with some general comments. Let F' be any field and
G = Gal(F,/F) the Galois group of F in its separable closure. The
character group x(F) is the group of continuous homomorphisms
Hom (G, Q/Z), where Q is the additive group of the rational field and Z
is the subgroup of integers. Q/Z is supplied with the discrete topology.
Let x(F), be the p-primary component of x(F). If f: G — Q/Z is in
x(F), then f7(0) is open in G, so f(G) is finite. But all finite subgroups
of Q/Z are cyclic, so if N is the kernel of f, then G/N is cyclic of order,
say, n and fY(1/n + Z) = oN is a generator of G/N. Conversely, if
L/F is cyclic of degree n and 7 generates Gal(L/F), set N = Gal(F,/L)
C G. N is normal in G and G/N = Gal(L/F). Viewed in G/N, let 7 be
oN. Define f: G - Q/Z by setting f(n) =i/n + Z if n € ¢'N. It is not
hard to see that f € x(F). In this way we have a bijection between x(F')
and pairs (L/F, 7), where L/F is cyclic and 7 generates the Galois group
of L/F. Note that in this correspondence, the order of f is the degree of
L/F. The following lemma is the way we find W -extensions.

LEMMA. Suppose f € x(F), and that f corresponds to (L/F, ). Then
L/F embeds in a W,-extension if and only if f is in a divisible subgroup of

X(F),.
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Proof. Let f, (L/F,7) be as above, assume that L/F has degree g,
and let L C L', where L’/F is a W,-extension. Then there are L C L, C
L,C --- € L’ such that L,/F is cyclic of degree gp'. Furthermore,
Gal(L'/F) has a topological generator ¢ such that o restricted to L is 7.
Let 7, be the restriction of ¢ to L,. Define f; € x(F), to be the character
associated with (L,/F, ). Then p'f,=f for all i. That is, f is in a
divisible subgroup of x(F),.

Conversely, suppose f is in a divisible subgroup of x(F'),. Then there
are f; € x(F), such that pf,,, = f, and pf, = f. Then L, C L,,, and the
restriction of 7,,, to L, is 7. If L’ = UL,, then L’/F is a W, -extension.
This proves the lemma.

We require one more general observation. Let F,G be as above and
let H C G be a subgroup of finite index m. The restriction map defines a
homomorphism res: Hom (G,Q/Z) —» Hom (H,Q/Z). On the other
hand, if we supply Q/Z with the trivial G- (and hence H-) action, then
Hom (G,Q/Z) = H(G,Q/Z) and Hom ,(H,Q/Z) = H(H,Q/Z). By,
for example, [1, p. 82], there is a corestriction homomorphism cor:
Hom (H,Q/Z) - Hom (G,Q/Z) such that the composition (cor)(res)
is just multiplication by m. Using our definition of x(F),, we have that if
F'/F is a separable extension of degree m, there are maps res: x(F), -
x(F"), and cor: x(F"), = x(F), such that (cor)(res) is multiplication by
m.

We are ready to prove the theorem. Let F be a field with a cyclic
extension L/F of degree g, where g = p if p is odd and g = 4 if p is 2.
Assume that F has no W -extension. Let F’ be the field gotten by
adjoining all p° roots of one to F. Let the group U be cyclic of order
p — 1lif p is odd and cyclic of order 2 if p is 2. Then Gal( F'/F) = U’ @ B,
where U’ is a subgroup of U and B is either (0) or W,. Since F has no
W,-extensions, B = (0) and F’/F is finite of degree m, where m is prime
to p if p isodd and m is 1 or 2 if p is 2. Over F’, all cyclic p-extensions
can be embedded in a W -extension. Thus x(F"), is divisible. If p is odd,
the fact that (cor)(res) is multiplication by an integer prime to p implies
that cor: x(F’), = x(F), is a surjection. Thus x(F), is nonzero and
divisible. This case is done by the lemma. If p is 2, let f be a character
associated with L/F, so f € x(F), has order 4. cor(res(f)) = f or 2f,
which are not 0. Thus cor(x(F"),) is a nonzero divisible subgroup of
x(F),, and we are again done by the lemma. Thus the theorem is proved.

(1] K. Brown, Cohomology of Groups, Springer-Verlag, New York and
Berlin 1982.
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Professor David Leep has pointed out to us some consequences of
Theorem 1 that we proceed to record below as Theorems 2—4. The first of
these theorems is related to Q(3).

THEOREM 2. Assume that F is a field and p is prime. Denote by § either
a primitive pth root of unity, for p odd, or a primitive fourth root of unity if
p = 2. Assume that F({) contains the p"th roots of unity for all n, and that
K/ F is cyclic of degree p.

(1) If p is odd, K can be extended to a Galois J-extension of F.

(2) If p = 2, then K can be extended to a Galois J-extension of F if and
only if K can be extended to a cyclic extension of F of degree 4.

Proof. The proof of Theorem 2 is essentially contained in the proof of
Theorem 1. In fact, in the notation of that proof, the hypothesis on F
implies that for p even or odd, B = (0). Thus, (1) follows exactly as in the
proof of Theorem 1. In (2), let L be an extension field of K such that
L/F is cyclic of degree 4. If f is the character associated with L/F, the
proof of Theorem 1 shows that either f or 2f belongs to a nonzero
divisible subgroup of x(F),, and hence in either case 2f, the character
associated with K/F, belongs to such a subgroup. Hence K/F can be
extended to a Galois J-extension of F, as asserted.

Another consequence of Theorem 1 is a result which represents a
stronger form of Corollary 4.11.

THEOREM 3. Each subfield F of A admits a Galois J-extension with
Galois group W, for each prime p. '

Proof. Fix p. If A, ¢ F, then FA,/F is Galois with Galois group W,.
Suppose A, C F. We show first that A, admits a Galois J-extension with
Galois group W,. To do so, it suffices, in view of Theorem 1, to show that
A, admits a cyclic extension of degree p>. This is easy to do: take g prime
such that ¢ =1 (mod p?). If { is a primitive gth root of unity then
A,(£)/4, is cyclic of degree g — 1, and hence A ({) contains a subfield
that is cyclic over A, of degree p>. Let K bea W -extension of A . Since
no element of A has degree p over A - it follows that K ¢ A, and hence
AK/A is also a J-extension. Remark 4.6 then implies that AK ¢ A; hence
Kg A, K¢ F, and FK is a Galois J-extension of F with Galois group
w,.

In relation to part (2) of Theorem 2, we remark that even under the
hypothesis of that result, it need not be true that a cyclic extension K/F
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of degree 4 can be extended to a Galois J-extension of F. (Thus, if 2f
belongs to a divisible subgroup of x(F),, f itself need not belong to such
a subgroup.) For example, let F = A,. If { is a primitive fourth root of
unity over F, then F({) contains the 2"th roots of unity for all n. If u is a
primitive fifth root of unity over F, then F(p)/F is cyclic of degree 4, and
the unique subfield E = F(cos2#/5) of F(p) of degree 2 over F is a
subfield of the reals. We claim that F(p) cannot be extended to a field L
that is cyclic over F of degree 8. We argue by contradiction. If such a field
L exists, then L/E is cyclic of degree 4, and it is known that this implies
that the intermediate field F(p) is of the form E(V?), where ¢ is the sum
of two squares in E [A3, Exer. 1, p. 208], [D, p. 43]. This leads to the
contradiction that F(u) = E(Vt) is a subfield of the reals. Therefore K/F
cannot be extended to a J-extension of F.

Finally, Leep pointed out to us that the following known result (*)
which is included in Satz 1 of [DD), yields a more complete answer to
Q(2) than that provided by Theorem 1. In the statement of (*), recall that
a field F is Pythagorean if each sum of squares in F is a square in F.

(%) If F admits a cyclic extension of degree 2, then F fails to admit a
cyclic extension of degree 4 if and only if char F # 2 and F is Pythagorean.

Theorem 4 follows immediately from Theorem 1 and ().

THEOREM 4. If F admits a cyclic extension of degree 2, then W, can be
realized as a Galois group over F unless char F # 2 and F is Pythagorean.

Added in proof. We have learned that Theorem 2 of the paper
Algebraic extensions of arbitrary fields, Duke Math. J., 24 (1957), 201-204,
by G. Whaples, also answers (Q1) and (Q2). Propositions 3.2, 3.4 and 3.5,
as well as Theorems 1, 2 and 4 of the Appendix, can be obtained from
Whaples’ theorem and its proof.
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