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POLYNOMIAL EQUATIONS OF IMMERSED
SURFACES

S. AKBULUT AND H. K I N G

If V is a nonsingular real algebraic set we say Ht(V;Z2) *s

algebraic if it is generated by nonsingular algebraic subsets of V.
Let V3 be a 3-dimensional nonsingular real algebraic set. Then, we

prove that any immersed surface in V3 can be isotoped to an algebraic
subset if and only if Ht (V: Z 2 ) / = 1,2 are algebraic. This isotopy above
carries the natural stratification of the immersed surface to the algebraic
stratification of the algebraic set. Along the way we prove that if V is
any nonsingular algebraic set then any simple closed curve in V is
ε-isotopic to a nonsingular algebraic curve if and only if H1(V:Z2) is
algebraic.

Let V3 be a 3-dimensional nonsingular real algebraic set. We call a

homology group of V algebraic if it is generated by nonsingular algebraic

subsets. In this paper we prove:

THEOREM. The following are equivalent:

(a) If f:M2*r* V3 is any immersion of a closed smooth surface in

general position, thenf(M2) is isotopic to an algebraic subset Z of V3 by an

arbitrarily small isotopy. This isotopy carries the natural stratification of

f(M2) to the algebraic stratification ofZ.

(b) Hλ(V; Z 2 ) andH2(V; Z 2 ) are algebraic.

To be more precise for / = 1,2 let AH^V3; Z 2 ) be the subgroup of

H^V3; Z 2 ) generated by nonsingular algebraic subsets. Then Hi(V;Z2) is

algebraic if it is equal to AHt(V; Z 2 ) . In particular zero homology groups

are algebraic. We will refer to elements of AH^V3; Z 2 ) as algebraic

homology classes. This definition is consistent with the conventions of

[AKJ.

In case / is an imbedding this theorem reduces to a special case

of Proposition 1 below, which is Theorem 4.1 and Remark 4.2 of

[AKJ. Recall, if Wn is a nonsingular algebraic set of dimension n, then

AHn_ι(W\ Z 2 ) is the subgroup of Hn_ι(W; Z 2 ) generated by nonsingular

algebraic subsets. Also if M c W is a closed submanifold, denote the

209



210 S. AKBULUT AND H. KING

Z2-homology class in W induced by the fundamental class of M by [M]2.

Then

PROPOSITION 1. A codimension one closed smooth submanifold M of W

is ε-isotopic to a nonsingular real algebraic subset if and only if [M]2 e

AHn_x(W\ Z 2 ) . Furthermore, this isotopy can fix any smooth submanifold

L of M which is already a nonsingular algebraic set.

REMARK. Proposition 1 remains true if L is a union of nonsingular

algebraic sets in M ([T]).

We first prove a codimension two version of this proposition for F 3 ,

which is an interesting result in itself.

PROPOSITION 2. A simple closed curve C c V3 is ε-isotopic to a

nonsingular algebraic curve if and only if [C] 2 ^ AHΎ{V\ Z 2 ) . Furthermore

this isotopy can fix any collection of points in C.

REMARK. This proposition remains true if V3 is replaced by a

nonsingular algebraic set of any dimension. The proof is essentially the

same.

LEMMA 3. Let C c V3 be a nonsingular algebraic curve and L c V3 be

a smooth manifold. Then C can be moved by an ε-isotopy to a nonsingular

algebraic curve C" which is transversal to L.

Proof. Let F2 be the boundary of a small closed tubular neighbor-

hood of C in V. F is a circle bundle over C and hence has a section, so

after a small isotopy of F we can assume that C c F , Since F is null

homologous, by Proposition 1, it is ε-isotopic to a nonsingular algebraic

surface Z with C c Z. By the terminology of [AKJ C is a stable algebraic

set. Stable algebraic sets have the required property (Proposition 4.3 of

[AKJ).

LEMMA 4. // V3 is orientable and F2 c V3 is a compact orientable

surface with dF2 = C U A where A is a nonsingular algebraic curve, then C

is ε-isotopic to a nonsingular algebraic curve.

Proof. Since V is orientable F has a trivial normal bundle in V. Let

F = 3 ( F X / ) c V3 corners smoothed, and C U A = d(F X 0) c F'.

C U A separates F'. Since [.F']2 = 0 by Proposition 1 Ff is ε-isotopic to a

nonsingular algebraic surface Z with A c Z. After a small isotopy of C
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we can assume C c Z. Then C U A separates Z; this means [C]2 = [A]2

e AHλ(Z; Z 2). Hence by Proposition 1 C is ε-isotopic to a nonsingular
algebraic curve C* in Z. C* is the required algebraic curve. D

REMARK. We can assume that the isotopy C ~> C* fixes any finite
number of points of C. This is because by Proposition 1 we can arrange
that Z and C* fix these points.

LEMMA 5. If S c V3 is an orientable surface and

it:Hι(V-S;Z2)-+H1(V;Z2)

is the map induced by the inclusion, then keφ**) c AHλ(V— S; Z2).

Proof. From the homology exact sequence

H2(V,V-S; Z2)^Hλ{V- S; Z2) $ H^V; Z2) im(3) = ker(/*).

Also we have isomorphisms

H2(V,V-S; Z2)
eXfDH2(N,BN; Z 2 ) ^ ( S ; Z2)

where TV is a small closed tubular neighborhood of S in V. In particular N
is an /-bundle over S, and dN is an /-bundle over S (/ = S°). From the
above isomorphism we see that elements of im(3) are represented by the
induced /-bundles γ over the curves γ of S

F2

Let E be a small closed tubular neighborhood of γ in S, since S
orientable E » γ x /. Let E' be the induced /-bundle over E. Let
F2 = dE'. Clearly F2 is a null homologous surface in V containing γ.
Furthermore γ separates F2. By Proposition IF2 can be ε-isotoped to a
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nonsingular algebraic surface Z. After a small isotopy of γ we can assume
that γ c Z . Since γ separates Z, by Proposition 1 γ is ε-isotopic to a
nonsingular algebraic curve γ* in Z. By construction γ* c V — S and

V-S;Z2). D

LEMMA 6. Every element of AHλ{V\ Z2) can be represented by a
connected nonsingular algebraic curve.

Proof. Let a e AHX(V\ Z2) then a is represented by a union of
nonsingular algebraic curves C = C\ U U Q . By Lemma 3 we can
assume that they are disjoint. Let S be the boundary of a closed tubular
neighborhood of C. Since the normal bundle of C has nowhere zero
section, after an ε-isotopy of S we can assume that C c S. Then by
tubing the components of S we get a connected surface S" with C c S ' .
Let C[ be ε-isotopic copies of Cf- on S" which are in general position with
C, . Connect C/, / = 1, ...,&, by tubes in S" to get a connected curve
C" = C/# #C'k such that C is homologous to C in S"

By construction [S"]2 = 0 in H2(V; Z2), so by Proposition 1 we can
ε-isotop S" to a nonsingular algebraic surface Z with C c Z . Continue to
denote the isotopic copy of C in Z by Cr. Again since [C r] 2 = [C]2 e
AHλ(Z; Z 2) by Proposition 1, C" is ε-isotopic to a nonsingular algebraic
curve C* in Z. C* is connected and a = [C]2 = [C*] 2 e ^ ( F ; Z2). D

Proof of Proposition 2. We will prove this in three steps,

Gzse 1. V3 is orientable.

Let c = [C] G /^(F; Z). Since [C]2 is algebraic there is a nonsingular
algebraic curve A c V such that [C] = [A] + 26 for some b e ^ ( F ; Z).
This means if 5 c F is a simple closed curve with b = [B], then A U 2J5
U C bounds an orientable surface. Here IB denotes the link BOB'
where B1 is a parallel copy of 5, so 25 is a boundary of an orientable
surface B X / in F. By Lemma 4 we can assume that IB is a nonsingular
algebraic curve. Again by Lemma 4 C is ε-isotopic to a nonsingular
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algebraic curve. By the Remark following Lemma 4 we can assume that
this isotopy fixes any finite number of points of C.

Let S c V be a surface representing the dual of the first Steif el-Whit-
ney class wλ{V) of V. We can assume that C Π S = 0 . This is because by
homological reasons C Π S must be an even number of points, and we
can modify S as in the picture below without affecting its homology class.

old S new S

Hence C c V — S, and by assumption [C]2 ^ keφ*) where

u:H2(V-S;Z2)^H2(V;Z2)

is the induced map by inclusion. Since [S]2 = wλ(V), S is orientable
(exercise), so by Lemma 5 [C]2 e AHλ(V - S; Z 2). Since V-S is
orientable, by Case 1 C is ε-isotopic to a nonsingular algebraic curve in
V — S, fixing any finite number of points of C.

Case 3. The general case.

We choose a connected nonsingular algebraic curve D disjoint from C
so that [C]2 = [D]2. Let S be the boundary of a closed tubular neighbor-
hood of C U D. As in the proof of Lemma 6 after a small isotopy of S we
can assume that C U Z> c S, and let £ ' be the connected surface ob-
tained by tubing the two components of S. By construction C U D c S'.
Let C and Df be ε-isotopic transverse copies of C and 2) in S'. Then by
tubing C" and D r in S" we get a curve £ = C'#D' as in the picture

S'
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By construction we have
(a)[S'] 2 = 0 i n i / 2 ( F ; Z 2 )
(b) [ £ ] 2 = [CUZ>]2 in ^OS'; Z2)

By Case 2 E is ε-isotopic to a nonsingular algebraic curve E * in V fixing
the points E Γ) (C U D). After an ε-isotopy of S" we may assume
C U ΰ U £ * c S'. By Proposition 1 (and by the remark following it) we
can ε-isotop S' to a nonsingular algebraic surface Z with ΰ U £ * c Z .
Let C" be the corresponding ε-isotopic copy of C in Z. Since [C']2 =
[D U £'*] 2 G AHλ(Z\ Z2) by Proposition 1. C is ε-isotopic to a nonsin-
gular algebraic curve C* in Z. Furthermore given any finite number of
points on Cx by Proposition 1 we can require that all these isotopies fix
these points. D

Proof of the Theorem. First we show (b) => (a). For every y e f(M2)
consider n(y) = max{ n | there are n distinct points xl9..., xn e M with
/(jcf ) = 7 for / = 1,2,. . . ,Λ} = the cardinality of f~\y). f(M) is a
stratified set with strata [Li}]==ι where Li are the /-fold point sets,
L = {y <=f(M)\n(y) = i}. Call d(f) = max{i|Lf. # 0}, then </(/) <
3 and if ^/(/) = 3, L3 is a collection of points (the triple points). Let
M3 =/~ 1 (L 3 ) . By ([AKJ, Lemma 2.3) there is a unique immersion / '
with d(f') = 2 making the following commute

M' = B{M,M3) <^ B(V,L3)=V

where the vertical maps are the blowing up maps along the centers Af3, L3.

Since the points are algebraic, we can assume that V -» F is the algebraic

blow up of F along L3.
Since J ( / r ) = 2 the 2-fold point set L2 c K' of the map / ' is a

smooth manifold (i.e., collection of smooth circles). Let M2 = {ff)~ιL2.
Once again by [AKJ there is a unique immersion / " with d(f") = 1
(i.e., it is an imbedding) making the following commute

M" = B(M\ M2) I-> B(V\ L2) = V"

i P" I ίr"
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where the vertical maps are the blowing up maps. In particular M" = Mf

and p" = identity, since M2 c M r is codimension one.

V = γ # Rp3 s o aw) = Ht{V) Θ #.( # RP 3 ) for i = 1,2; in

particular HX{V'\ Z 2) and H2(V'\ Z 2) are algebraic. By Proposition 2 the

curve L 2 is ε-isotopic to a nonsingular algebraic set. We can change f(M)

by a small isotopy in F keeping L3 fixed so that the corresponding

double point set L2 in V is this nonsingular algebraic set. Therefore we

can take m" to be the algebraic blow up along L2, in particular V" is a

nonsingular algebraic set.

We claim that H2{V"\ Z 2) is algebraic. This can be seen by the

homology exact sequences

••• -> H2{C") $ H2(Vf/) -> # 2 ( F " , C " ) -» •--

I π*' i w£' = I excision

••• -> / / 2 ( C ) - // 2 (F') -> H2(V',C) -> •••

where all the homology groups have coefficient Z 2 , and Cr, C / r are closed

tubular neighborhoods of L2, (ττ//)~1(L2) respectively. Since π " is degree

1 77*' is onto, and by the above diagram kerτ7*'= im(i#) where i is the

inclusion C//c^> F / r . So H2(V"; Z 2) is generated by the nonsingular

algebraic sets (7r//)"1(L2), and ( π " ) ' 1 ^ / ) where S,. are surfaces in V'. By

Proposition 1 we can assume St are nonsingular algebraic surfaces. By

([AKt] Proposition 4.3) we can assume St are transverse to L2. Hence

H2(V";Z2)is generated by nonsingular algebraic sets.

By Proposition 1 we can ε-isotop the smooth submanifold f'\M")

to a nonsingular algebraic subset Q of V" by a smooth isotopy. By

([AKt] Lemma 2.5) π'<>ir"(Q) is an algebraic set. π' °π"(Q) is isotopic

to f(M) by a small isotopy. More precisely, the last remark can be seen

by applying ([AK2] Proposition 5.5). Namely [AK2] gives an isotopy ht:

V" -• V" such that

(1) h0 = Id,

(2) hάf'ΪM")) = Q,

(3) h-\v-\x)) = ir~\x) for all x e L c F, where TΓ = ^ o τrr/, L =

L3 U τrXL2).

Then we can define an isotopy

g , : F ^ F byg/(x) = τrAί(j) for Γ '
^ G 7Γ X ( x ) , if JC G L.
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(Notice π is a diffeomorphism over the complement of L.) gt gives an

isotopy of f(M) to τr(β) fixing L pointwise. Also gt is smooth in the

complement of L.

I

It remains to show (a) =» (b). Clearly (a) implies H2(V; Z 2 ) algebraic.

To see HY(V\ Z 2 ) algebraic we write every simple closed curve C c V3 as

the double point of an immersion. C has a normal bundle C X D2 c F.

Then CX XaV where X is the figure eight, so C X X = / ( S 1 X S1)

where / : S 1 X 5 1 -> K is the obvious immersion. Hence by (a)

/ ( S 1 X Sι) can be made algebraic and C is the singular set of this

algebraic set. D

Note added in proof. After writing this paper we have been informed

by W. Kucharz that he had proved a special case of Proposition 2 when V

is orientable in "Topology of Real Algebraic Threefolds" Duke Math.

Journal, vol. 53, No. 4, Dec. 1986.
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