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ON THE GLOBAL DIMENSION OF FIBRE PRODUCTS

ELLEN KIRKMAN AND JAMES KUZMANOVICH

In this paper we will sharpen Wiseman's upper bound on the global
dimension of a fibre product [Theorem 2] and use our bound to com-
pute the global dimension of some examples. Our upper bound is
used to prove a new change of rings theorem [Corollary 4]. Lower
bounds on the global dimension of a fibre product seem more diffi-
cult; we obtain a result [Proposition 12] which allows us to compute
lower bounds in some special cases.

A commutative square of rings and ring homomorphisms

is said to be a Cartesian square if given rγ e R\, rι E Rι with j \ (r{) =
Ji{r2) there exists a unique element r e R such that i\(r) = r\ and
/2(r) = 2̂. We will assume that jι is a surjection so that results of
Milnor [M] apply. The ring R is called a fibre product (or pullback)
of R\ and i?2 over R'.

The homological properties of a fibre product R have been studied
previously. Milnor [M, Chapter 2] has characterized projective mod-
ules over such a ring R. Facchini and Vamos [FV] have obtained ana-
logues of Milnor's theorems for injective and flat modules. Wiseman
[W] has used Milnor's results to obtain an upper bound on lgldimi?;
in particular, Wiseman's results show that R has finite left global di-
mension whenever the rings Rι have finite left global dimension and
fd(Ri)R are both finite, where fd(i?/)# represents the flat dimension
of R( as a right /{-module. Vasconcelos [V, Chapters 3 and 4] and
Greenberg [Gl and G2] have studied commutative rings of finite global
dimension which are fibre products and have used their results to clas-
sify commutative rings of global dimension 2. Osofsky's example of a
commutative local ring of finite global dimension having zero divisors
can be described as a fibre product (see [V, p. 29-30]). Fibre products
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have been used to construct noncommutative Noetherian rings of fi-
nite global dimension by Robson [R2, §2], by Stafford [St] and by the
authors [KK2].

We begin by noting that a fibre product R can be thought of as the
standard pullback R = {(rhr2): j\(r\) = j2(r2)}, a subring of R\ ®R2,
with the maps ij: R —• Rj given by ij(r\, r2) = rj, j = 1,2. Moreover,
if A is a subring of a ring B and Q is an ideal of B, Q < A, then the
diagram

A > A/Q

I 1
B > B/Q

with the obvious maps, is a Cartesian square. Greenberg [Gl and G2]
has studied the case where B is a commutative, flat epimorphic image
of A, and Q is ,4-flat (including the "D + M construction", see Dobbs
[D]). Two important examples of rings of finite global dimension can
thus be regarded as fibre products: the trivial extension (see [PR])
A = R\κM (which can be regarded as a subring of the triangular matrix
ring B - (o jί) w i t h common ideal Q = ( Q ^ ) ) and the subidealizer
R in S at Q (see [R2]) (where R can be regarded as a subring of
B = II«2), sharing the ideal Q).

We begin by stating Wiseman's upper bound and our generalization
of it.

THEOREM 1. [W, Theorem 3.1]. If R is a fibre product of Rh R2

over Rf then lgldimi? < max/{lgidim(li|)} + maxi{ΐd{Ri)R}. °

THEOREM 2. IfR is a fibre product ofR\, R2 over R1 then lgldimi? <
ίl?/) + fd{Ri)R}. π

Theorem 2 is an immediate consequence of the following proposi-
tion.

PROPOSITION 3. Let M be a left R-module such that Tor^+m(i?/, M)
= 0form>l, i= 1,2. Then

pdR M < max{rt/ + pd(Λ|(i?/ ®R Im/„,))}

i

where

fk+l T> fk fl p /l p Λ 1^ A

w α projective resolution ofM.
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Proof. The projective resolution (*) of M gives rise to a sequence
of short exact sequences:

and

0 - Im/* + 1 ->Pk-> Imfk - 0, k > 1.

From this we conclude that Tor^+k{Rif M) = Tor^{Rit ίmfk).
Let n = max{«/ + pdR(Rj <8>R Im fni)}, and consider the resolution

o - L A pn_! ̂  ... A px A p0 A M - o

obtained from (*) by letting L = lmfn. The isomorphism noted above
gives Toτ%(Ri,lmfni) = 0 for m > 1. Hence if we tensor the exact
sequence

0->!,->/>,_!->•• . - / ^ - i m / ^ - O

over i? with i?/? we obtain an exact sequence

0 -> Ri ®R L -+ Ri ®R Pn-X -> • Ri ®R Pni -+ Ri ®R Im/ Λ / -* 0.

Each Ri®RPk is i?/-projective, hence since n > ni+χ>άR.{Ri®Rlm/,.),
Λι (8)/? L is i?;-projective. By [W, Theorem 2.3], L is R-projective and
the result holds. D

We state Theorem 2 in the "shared ideal" case, where it can be re-
garded as a change of rings theorem; it bounds the global dimension of
A by the maximum of two quantities: one involving a homomorphic
image of A and the other involving an overling of A. Both quantities
are similar to those in other change of rings theorems: the quantity
involving the homomorphic image of A is the same as that in Small's
change of rings theorem [SI], and the quantity involving the over-
ring B can be compared to the McConnell-Roos Theorem [see Rot,
Theorem 9.39, p. 250].

COROLLARY 4. Let A be a subring ofB with Q an ideal ofB, Q < A.
Then

< max{lgldimμ/ρ) + ΐά{A/Q)Ailgldimtf + ίά{BA)}.

EXAMPLE 5. Let

A = (k[x] + tk[x,x~ι,t] tk[x,x~l,t]\
\ k[x,χ-ι,t] k[x,χ-ι,t]J
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where A: is a field and x and t are commuting indeterminates. (This
affine PI ring is considered in [S2; p. 32]). We claim lgldim^ = 2.
Let

and

= ίk[x,χ-χ,t] tk[x,χ-\t]\
\k[x,χ-ι,t] k[x,χ-ι,t]J

= (tk[x,x~x,t] tk[x,x~ι,t]\
\k[x,χ-ι,t] k[x,χ-ι,t]J'

As B is a central localization of A9 lgldim B < lgldim A, and lgldim B =
2 by [J, Theorem 3.5]. Since A/Q = k[x], fd{A/Q)A = 1, and
ΐd(BA) = 0, Corollary 4 gives lgldim,4 < max{l + 1,2 + 0}, so that
lgldim A = 2 (and similarly rgldim^l = 2).

More generally, let S = k[xι,...fxn,x~ι,...,χ-ι,th...,tm], R =
/r-Γ γ V* 1 I / / / \ C* T — / / / ^ O ^4 ^— i I /? — f t
i\, \jΛ, γ f . . •/•Λ'/jj i" l ' i ; * ' / w / * ^ 5 •* — v 1 ' * * * * wι) ? "^ — v c c / ? ^ — I c1 c /

and Q = (55). Similar arguments show that rgldim^ = lgldim A =
n + m (note that the upper bound given by Theorem 1 is lgldim A <
n + 2m since fd(A/Q)A = m; we know no other way of computing the
global dimension of A). π

It is not hard to produce an example to show that the bound in
Corollary 4 is not always an equality. Let

k 0
A § " " Ax{k)

where A: is a field of characteristic 0 and Aι(k)is the first Weyl algebra.
Then A has rgldim^ = lgldim ,4 = 1 by [PR, Corollary 4']. Take

= / ^ ( * ) ° ) a n d θ = ί ° °
1/Mk)

since gldimi? = 2, the bound of Corollary 4 exceeds gldimΛ.
To show the utility of Corollary 4 we provide a further example in

which it can be applied.

EXAMPLE 6. Let R be an arbitrary ring; consider the ring

/ R[x] R[x] R[x)\
A' = I χR[χ] R[χ] R[χ] I

V^2i?[jc] xR[x] R[x]'
(which is a generalization of an example of Tarsy [T, Theorem 10]).
Taking

/ R[x] R[x] R[x]\
B = χR[χ] R[χ] R[χ]

\χR[x] xR[x] R[xy
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and
/ xR[x] xR[x] xR[x]\

Q = xR[x] xR[x] xR[x] I,
\χ2R[x] xR[x] xR[xy

and noting that fd{Λ,Q) = 0, ϊd{Λ,B) < 1, rgldim(^VQ) = rgldimi? +
1, and rgldim# = rgldimi? +1 [KK1], we get rgldimΛ' < rgldimi? + 2
(when R is a field, rgldim^' = 2). Now take

/ (R[x]Y R[x] R[x] \
A = χR[χ] R[χ] R[χ]

\χ2R[x] xR[x] (i?[jc])*/

where * entries agree modulo x (this example is a generalization of an
example of Fields [Fl, p. 129]), B = Af,

/ xR[x] R[x] R[x]\
Q = xR[x] xR[x] R[x]

\χ2R[x] xR[x] xR[xy

since ΐά(ΛQ) < 1, fd(AB) < 1, we get that rgldim^ί < rgldimi? + 3
(when R is a field, rgldimi = 2; so the bound is not sharp in this
case). D

In using Corollary 4 to show that the ring A has finite global dimen-
sion, it is necessary to compute two flat dimensions. The following
corollary shows that often it is, in fact, necessary to compute only one.

COROLLARY 7. If A is a subring of a ring B of finite left global
dimension with Q an ideal ofBf Q <A, ΐd(QA) < oo, rgldim(^/β) <
oo and lgldim(^4/Q) < oo then lgldim^ < oo.

Proof. By Corollary 4 (or Theorem 1) it suffices to show that
< oo. Consider the exact sequences of right yl-modules 0 —> Q —• B ->
B/Q - 0. Since fd(B/Q)A < fd(B/Q){A/Q) + fd(A/Q)A by [McR,
Proposition 2.2], fd(B/Q)A/Q < oo so fd(J^) < oo. •

We note that we have constructed a ring R of finite global dimen-
sion which is a fibre product of two rings of infinite global dimension,
so that the conditions of Corollary 7 (or Theorems 1 or 2) are not
necessary conditions for the ring R to have finite global dimension.
The problem of determining the global dimension of R from homo-
logical properties of the rings or modules in the commutative diagram
seems difficult, except in some special cases. For example, when R\9
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R2 are von Neumann regular, so is R, and it is not difficult to show
that rgldimi? = max{rgldimi?/}. More generally we have the follow-
ing proposition (which applies to examples of Robson [R2, §2] and
Osofsky [V, p. 29-30]).

PROPOSITION 8. Let R be the fibre product ofR\ and R2 over R\/U\
= R2/U2. Suppose that both 17/ are idempotent, and (ί/,-)*, are flat
Then U\ Θ U2 is aflat right R-module and

max{lgldimiϊ/} < lgldimi? < max{lgldimi?/} + 1.

Proof. We will show that (l/ l f 0) is right i?-flat. Let / be a left ideal
of R; we need to show that (U\,0) ®R I -> (U\,0)I is one-to-one.
Since (Uh 0)2 = (Uh 0), (Uh 0) ®R I = (Uh 0) ®Λ {Uh 0)1 and hence,
without loss of generality, we may assume / = (J,0) for / < R\. Now
(t/i, 0) ®R (J,0) = Uλ ® Λ l / because R/(0, U2) = Ru Gί0)(0, U2) =
0 = (ί7i,0)(0, C/2), and (C7i,O)(JfO) = (C/i ίO). But t/i ® Λ / ^ C/i/
is one-to-one since (C/i)̂ , is flat. Similarly (0, U2) is right i?-flat. The
upper bound then follows from Theorem 2, thinking of R as arising
from the Cartesian square:

R v R/(0, U2) = Rx

i i
R2 = R/(Uι,0) > Rf.

Since R/(Q, U2) = Rγ, and since (0, U2) is a flat idempotent right
ideal of R, it follows from Fields [F2] that lgldimi? > lgldimi?i.
Similarly lgldimi? > lgldimi?2 Q

As an example where Proposition 8 can be applied, we present the
following:

EXAMPLE 9. Let

R = [ \ 2 Z Z*)'\
where Z is the integers and * entries agree modulo 2. Here

Z

\ „ _/Z 2Z\

)' Rl-\z z)
)'

Z Z

z
z z \ TJ (z 2Z

2Z) U =
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As R is not hereditary, Proposition 8 shows that gldimi? = 2. We
note that R is not a right or left subidealizer in M2{Z) © M2(Z), so
the trick of thinking of R as a subidealizer used in [R2] and [KK2]
cannot be used to show that R has finite global dimension. D

Proposition 8 does not extend to nilpotent ideals (or hence to even-
tually ldempotent ideals) or to ldempotent ideals of finite flat dimen-
sion.

EXAMPLES 10. (a) Let

where a, b, c, d e k, a field. It is not hard to show that R has infinite
global dimension, despite the fact that the i?y are hereditary and the
Uj are projective, nilpotent ideals.

(b) Let
Z 2Z 4Z1
Z Z 2Z
Z Z Z

RX=R2 =

a ring of gldim = 2. Let

U{ = U2 =

an idempotent ideal of flat dimension 1. Then

R =

where the indicated entries agree modulo 2. Since the exact sequences
below do not split, R has infinite right global dimension:

0-+([2Z,2Z,4Z], [0,0,0])
([Z,2Z,4Z], [0,0,0])

—> Θ —+
([2Z,2Z,2Z], [0,0,0])

([Z,2Z,2Z],[0,0,0])-^0

0 -> ([0,0,0], [Z, 2Z, 2Z] -+ ([Z, Z\ 2Z]), [Z, Z\ 2Z]) -> ([Z, Z, 2Z], [0,0,0]) - 0. D

We next calculate the global dimension of the particular rings Rn =
Z + (ΛΓI, ..., xn)Q[x\,.. ,Xn] where Z is the integers and Q is the ra-
tionals. Such rings were considered by Carrig [C, Example 1.8] and
are mentioned by Greenberg [G2] for n > 2 as behaving differently
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than when the common ideal is flat; they are symmetric algebras
Rn = S(M) where M = βW = β θ θ β, over Z. Carrig was
able to show that gldimi?n < n + 1 by showing that wdim(Rn) = n
(where wdim stands for the weak or Tor dimension) and then using
Jensen's lemma [Je] and the fact that Rn is countable to conclude
that gldim(i?Λ) < n + 1. If Rn = D + (xh...,xn)K[xh...,xn] for
any Dedekind domain D (not necessarily countable) with quotient
field K, Corollary 4 shows that gldim(i?Λ) < n + 1 taking A = Rn,
B = K[xι,...,xn], Q = (* i , . . . ,x n )Jφ: i , . . . , * Λ ] , and fd(yί/β)^ = «,
gldim(^4/β) = 1, gldimi? = n, and fd(i^) = 0. Using chain condi-
tions, Carrig notes that gldimi?i = 2 (since R\ is not Noetherian)
and gldimi?2 = 3 (since i?2 is not coherent); he conjectures that
gldimi?rt = n + 1, which we will prove using generalizations of two
change of rings theorems. Our proofs follow those of Kaplansky [K],
The original theorems concern the change of rings from A to A/xA
where x is a central regular element of A; our generalizations con-
cern the change of rings from A to A/xB where xB is a shared ideal
between A and a flat epimorphic image B.

LEMMA 11. (Compare to [K, Theorem 8, p. 176].) Let A be a subring
of By x a regular element ofB with Bx = xB < A and AB flat. Let T
be a submodule of a free A-module. Then pd{T/T{xB))A. < pd(T)A,
where A* = A/xB.

Proof. Since Bx = B, fd(^Λl*) < 1. Taking a projective A -resolution
of Γ, 0 -» Pk -> • Pi -> Po -* ̂  -^ 0 and tensoring over ^ with
A* we get 0 -> Pk®ΛA* -+ • PQ®AA* ~* T®AA* = T/T(xB) -• 0
since Γ is a submodule of a free i?-module and fd(^^4*) < 1. D

PROPOSITION 12. (Compare with [K, Theorem 3, /?. 172].) Lei ̂ ί έe
α subring of Bf x a central regular element of B, xB < A, AB flat,
and B an epimorphic image of A (i.e. B®AB = B)\ then for any right
B* = B/xB-module C, with pdC^* Jίrnte, pdC^ > pdC^. + 1, where
A* = A/xB.

Proof. The result is clear when p d ^ * ) = 0. Suppose that pd CΛ =
n and pd CA < n. Let H be a free ^4-module mapping onto C

(-**-) 0-+Γ-+//-+C-+0
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so pdTA < n - 1. We have 0 -> T/H(xB) -> H/H{xB) -> C -» 0
exact, so pd(T/H(xB))A* < n - 1 (assuming w > 1). By Lemma
11 pd(T/TxB)A* < n - 1, so the exact sequence 0 -• HxB/TxB -+
Γ/Γ ctf -• Γ//ίxJ? -+ 0 yields pd(HxB/TxB)A+ <n-l. But tensoring
(-**-) above over A with 5 gives

0 -» Γ®^5 -^ H®AB-^C®AB->0
I - I -

+ H ®A Bx

Then {HxB)/{TxB) = C ®AB = C ®B B since B ®AB = B\ but
B* = C so pd(C>) < n - 1, a contradiction. D

THEOREM 13. For/?„ = D + (x b...,x n)K[x\,...,x n]forD aDede-
kind domain with quotient field K, gldimi?π = n + 1.

Proof. By remarks above, it suffices to show n + 1 < gldimi?π,
which will be shown inductively. We know that gldimi?! = 2, and
it is not hard to show that pd(K[x\]/\x\)) = 2; inductively assume
V&{K[x\>- >Xn-\V(Xh--->Xn-\))Rn-x =n In Proposition 12, let A =
Rn, B = K[xι,...,xn], C = K[xι,...,xn]/(xι,...,xn) and x = xn\
then since ,4* = A/xnB = Rn-\, we have pdC^π > pdC^π_, + 1 =
n + l. D

We conclude with the following example which illustrates how the
preceding techniques can be used to calculate (or bound) the global
dimensions of particular rings.

EXAMPLE 14. Let A: be a field,

R = k[xh ..., Xn] + (th ..., tm)k{xh ..., Xn)[t\, , tml

I = {tι,...,tm)k{xι,...,xn)[tι,...,tm\, S = k(xu...,xn)[th...,tm],

CLAIM.

rgldim^ = max{m, n, pd(B/Q)A/Q + 1}

= max{m, /ι, pd*[JClf...Λ] /:(xi,..., xn) + 1}.
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Since B is a flat epimorphic image of A we have m < rgldim(^4);
since Q is an idempotent, projective left yί-module, n < rgldim(v4) by
[F2]. As in [G2, Proposition 3.11], note that B is isomorphic to a right
ideal of A> and hence by [W, Proposition 3.3]

= max{pd(£ ®A B)B, pd{B ®Λ

= mzx{pdBB,pd{B/Q)(A/Q)}

therefore rgldim.4 > pd^[^ XMJ k(x\,..., xn) + 1.

To show equality, let / be a right ideal of A. As in [G2, Lemma
2.3], I < FA < FB where FA is a free right ^4-module and FB is a free
right ^-module. Then IQ < I < IB, so that I/IQ < IB/IQ, a module
over B/Q, a field. Hence I/IQ is contained in a free 2?/<2-module,
and we have the exact sequence 0 —• I/IQ -• φ B/Q -> cokernel -• 0.
lfpd(B/Q){A/Q) < n, then pd(///Q) < n; if pd(B/Q\A/Q) = n9 then
pd(///Q) < n. By [W, Proposition 3.3]

pd(/^) = max{pd(/ ®A B)B, pd(/ ®A (A/Q))}

= max{pd(IB)B, max{pd(B/Q\A/Q), n - I}}

< max{m - 1, pd{B/Q){A/Q)f n-l}

so rgldim^ < max{m,pd(B/Q)(A/Q) + 1, n}.

CLAIM. max{pd(B/Q)(A/Q) + m,n} < lgldim^ <n + m.
Since a projective resolution of Q over B gives a flat resolution of Q

over A9 ϊdA(A/Q) < m, and the upper bound follows from Theorem
2.

To obtain the lower bound, consider first the case in which m = 1.
Let u = [β J]; then uAu~l = [Jf] so that lgldim^ί = rgldim^ί =
max{pdA/Q(B/Q) + 1,«}. For an arbitrary m, let

O

and Q' < C Note that ^4/Q' is isomorphic to a similar ring A
with one fewer ίy. Both A and 5 are subidealizers in C, so by [Rl,
Lemma 2.1] C ®B C = C = C ®^ C. Furthermore, C is left and
right projective over B and C is right projective and left flat over A.
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By Proposition 12, pdA(C/Q') > pd(A/Q,)(C/Qf) + 1, so inductively
lgldim^ > X>dk[xx,...,xn]k(x\,...,xn) + m. As in the case of the right
global dimension of A, [F2] implies that lgldim^l > n. D
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