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ON THE HARDY SPACE Hι ON PRODUCTS
OF HALF-SPACES

NATIVI VIANA PEREIRA BERTOLO

We show that the Hardy space H^{R2

+ x R2

+) can be identified
with the class of functions / such that / and all its double and partial
Hubert transforms Hkf belong to L^R 2). A basic tool used in the
proof is the bisubharmonicity of \F\q, where F is a vector field that
satisfies a generalized conjugate system of Cauchy-Riemann type.

Introduction. The interest of a theory for the Hp spaces on products
of half-spaces was first raised by C. Fefferman and E. M. Stein in the
now classic paper "Hp spaces of several variables" [6]. Afterward sev-
eral authors have contributed on this subject. It is worth mentioning
the survey paper by C. Y. A. Chang and R. Fefferman [4], and the
references quoted there. In particular, the Hι spaces on products of
half-spaces was studied by H. Sato [8] giving definitions via maximal
functions and via the multiple Hubert transform. On the other hand
Merryfield [7] proves the equivalence of the definitions given via the
area integrals and via the multiple Hubert transforms. More recently
S. Sato [9] proved the equivalence between the Lusin area integral and
the nontangential maximal function.

The purpose of this paper is to derive directly the equivalence of
the definitions of the Hι space given via the multiple Hubert trans-
forms and via an Lι condition on a biharmonic vector field F =
(u\, #2,^3,^4) which is a solution of a generalized Cauchy-Riemann
system introduced by Bordin-Fernandez [3]. The main tool we shall
use is the bi-subharmonicity of \F\g ,0 < q < I. But the proof of this
fact here is different from the classical one given by Stein-Weiss [10].
We rely on ideas of A. P. Calderόn, R. Coiffman and G. Weiss (see
[5]). We shall confine ourselves to the bidimensional case.

This paper is part of the author's doctoral thesis presented to UNI-
CAMP in 1982, and the results are announced in [1] and [2].

NOTATION. We shall use the following notations throughout:

Π = {k = (kl9k2), £, = 0 , 1 , y = 1,2}
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i.e.

and

R^ x R i = {(x,s;y,t);x9y e R, s9t > 0} .

1. The Hardy spaces H^ and Hx

Hh.

1.1. DEFINITION. A generalized conjugate vector field or simply
a conjugate vector field is a vector field F(x,s;y,t) = (u^x^s yj);
k G D), in R+ x R .̂, such that each uk is biharmonic and satisfies the
generalized Cauchy-Riemann system

7 = 1,2,

dtj

where Xi = x,x 2 = ^> h = ^^2 = ί
The generalized Cauchy-Riemann system was introduced by Bordin-

Fernandez [3],
Let Pr(x) and Qr(x) denote the Poisson and conjugate Poisson ker-

nels in R̂ _, i.e.,

PΓ(JC) = cr/(r2 + x2) and Qr{x) = cx/(r2 + x2)

the vector field (PsPt * f,QsPt * f,PsQt * f,QsQt * / ) , where / e
LP(R 2), 1 < p < oo, is a generalized conjugate vector field.

1.2. DEFINITION. Let F = (uk;k eO) be a, conjugate vector field.
We say that F belongs to H^Jβ^ x R2) if

\\F\\Hι = sup / [\F(x9s;y,t)\dxdy < oo.
anai

 5 , / > O J y

1.3. DEFINITION. The partial and double Hubert transforms of
/ G lΉR 2 ) are the tempered distributions, Hkf, defined by

(1) 3r{Hl0F){x,y) = i(tάgnx)f(x9y)9

9y) = i(signy)f(x9y)9

9y) = i(signx)i(signy)f(x,y),

and
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or shortly by

(2) Γ(Hkf)(x,y)

= (/signx^/signy)^2/(*,};), k = (kuk2) e D,

where & denotes the Fourier transformation and / the Fourier trans-
form of / .

1.4. DEFINITION. By Hx

Hb{R x R) we mean all / e L1 (R2) such that
Hkf e Lι(R2), for each k e D. The norm of / e Hι

Hb is defined by

ken

2. The subharmonidty of \F\q. The basic fact which enables us to
develop the theory of /P-spaces on the product of half spaces is the
existence of a positive q < 1 such that \F\q is bisubharmonic. We
shall show that every conjugate vector field has this property.

2.1. DEFINITION. Let {Aj)9j = 1,... ,n, be a family of matrices
d x m. We say that (Aj) is an elliptic family provided that for an
m-dimensional vector v and an ft-tuple λ = (λ\ ,λ2,... ,λn) we have

only if either v or λ is zero.

2.2. LEMMA (Calderόn). Let {Aj)9j = 1,. . . , n, be an elliptic family,
v and uι,...,un vectors ofRm andλ = (λι9λ2,...9λn). Suppose that

n n

J2 AjUj = 0 and J ^ λjAjv = 0.
7=1 7=1

ΓΛ^«, ίΛ^r^ exwί.s a positive a < 1, depending only on Aγ,... ,An, such
that

n n

(1)

Proof. See [5].

2.3. PROPOSITION. The generalized Cauchy-Riemann system 1.1(1)
can be put in the form

* 9F . dF . dF . dF .
( 1 ) A + A + A + A 0
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and Aj, 1 < j < 4, are the 8 x 4 matrices given by

*•(*)• M £ ) *•(£)
1
0
0
0
1
0
0
o

—

0
0
1
0

0
1
0
0

—

0
0
1
0

0
1
0
0

0 \
0
0

- i J
' 2 =

'0
1
0

,0

o λ /o
0
0

- 1 0,

, B4 =

1

1
0

Vo

1
0
0
0

0
0
0
1

0
0
0
1

1
0
0
0

0\
0
1

oj

0
1

0;
and N is the 4 x 4 null matrix. Moreover the families
(2?3,2?4) are elliptic.

and

Proof. We will first show that {B^.B^) is an elliptic family. The
proof that {B\ ,B2) is an elliptic family is exactly the same.

Let λ = (^3,^4), v = (v\9V2,V3,V4) denote elements of R2 and R4,
respectively, such that

4

(2) ΣλJBJv = °>
7=3

we will show that λ = 0 or υ = 0. Suppose υ Φ 0 with v\ Φ 0, for
example; then we will show that λ = 0. Indeed, from (2) we have

= 0 and - λ-^v^ + λ^V\ = 0.

Since V\ φθ, then ^3 = ̂ 4 = 0; therefore λ = 0. In the same way, if
Vj Φ 0, j' Φ 1, we have that λ = 0. This proves the proposition.

2.4. THEOREM. Let F — {u^.k ^ Π) be a generalized conjugate
vector field. Then, there exists a positive q < 1 such that \F\q is bisub-
harmonic.

Proof. We shall use the following notation:

F 'G = Σuk'υk> where F = (uk\ k e D)

and G = (υk;keΏ).
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We shall prove that there exists 0 < q\ < 1 such that

(1) Δoiliψ1 =

Since F = (w ;̂ k e D) is a conjugate vector field, then

(2) B3^ + B4^ = 0,

where Bι and B4 are defined in Proposition 2.3.
The system (2) is elliptic, by Proposition 2.3. Therefore, by Lemma

2.2, there exists 0 < ax < 1 such that

Hence, since

dF
dy

dF_
dt

d_F_
dy

Fte F

we have, by (3),

(4)

~\( F dF\ (F dF+(9|-!| tew) HMW

Aoι\F\«' > 0

with q\ > 2 — \/a.\. In this way, for #2 > 2 - l/α2, with aι given as
in Lemma 2.2 we have

(5) 0.

Hence, by (4) and (5) we have that there exists 0 < q < 1 such that
\F\q is bisubharmonic and therefore subharmonic.

3. The equivalence of H^b(R x R) and ^ xR%).

3.1. THEOREM, (i) 7/"F = (uk;k e D) belongs to H*neΛ(Rl x R^.),
ίΛere exists an f e Lι(R2) such that Hkf e L^R2) and uk = (PsPt) *
Hkf for each k e D. Moreover, there is a positive constant C, indepen-
dent ofF, such that

(1)
ken
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(ii) Let f G Lι(R2). If Hkf e L^R 2), for each k e D, then the
conjugate vector field

belongs to #anai(R+ x R+) and there exists a positive constant C, inde-
pendent off, such that

(2) ka.
ken

Thus, Hzna\(R+ x R+) can be identified with H^b(R x R) with equiv-
alence of norms. In the proof of this theorem we will use the result
stated in the next lemma.

3.2. LEMMA. If F = (uk;k e •) belongs to H^Rl x R£), there
exists α positive constant C, independent ofFy such that

(1) / / sup \F{x,s\y,t)\dxdy<C sup [ [ \F(x,s;y9t)\dxdy.
J J s,t>0 s,t>OJ J

Moreover,

]imF(x,s;y,ή =

exists almost everywhere and in Lι(R2) norm.

Proof. Suppose that each uk takes values in a fixed finite-dimen-
sional Hubert space, V\. We take a conjugate vector field φ =
(v^k G D), where each υk takes its values in Vχ (Vι is another finite-
dimensional Hubert space and we consider V = V\ @ V2), satisfying:

(2) \φ(x,s; y, t)\2 = 2/[x2 + (1 + s)2]2[y2 + (1 + ί) 2 ] 2 ,

(3) lim \υk(x,s;y,t)\ = 0, for each pair (y,t) e i?+,
\(x,s)\-+oo,(x,s)eR2

+

and

(4) lim \vk(x,s\yj)\ = 0, for each pair (x,s) e R+.
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We define

_ [_^ d2H d2H\
V°°~ [ds2 dfi 'dsdxdtdyj'

( \
\dsdx dt2 ' dx2dtdy)'

_ (d2H d2H d2H d2H\
Vol~ [ds2 dtdy'dsdxdy2)'

_ ( d2H Θ2H d2Hd2H\
Vn ~ \dsdxdtdy' dx2 dy2 ) '

2 — 2

where H: R2 x R+ —• R for

(2), (3) and (4) follow easily.
Now, we define for every ε > 0

We can verify that Fε is continuous in (x9s) G R+ ((y9t) G R+) for
each pair (y9t) ((x9s)); Fε tends to zero as |(JC,^)| or \(y9t)\ tends to
oo, and \Fe\ > 0. Then by Theorem 2.4, there exists a <?, 0 < q < 1,
such that \Fε\

q is bisubharmonic.
Next, we define gε(x9y) = |-fβ(-^,0;^,0)|^. By (2) and from our

assumptions on F9 for p = l/q, we have

Now let Ge(x9s9y9t) be the iterated Poisson integral of gε. By the
properties of F69 the properties of the iterated Poisson integral and
the maximum principle, we get

\Fe(x,s;y9t)\« <Ge(x9s;y9t).

Hence, we can select a subsequence gε which converges weakly to a
function g G Z/(R2) and such that

Hence, this yields

\F(x9s;y9t)\*<G(x9s;y,t),

where G(x9s;y9t) is the iterated Poisson integral of g. By the proper-
ties of the partial Hardy-Littlewood maximal functions M01 and M10
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[10], and of the maximal functions u*(G)(x9y) = suρ5 / > 0 G(x9s\y9 ί),
we have

/ / sap\F(x9s;y9t)\dxdy
J J 5,/>0

<C ί ίMoι(Mιo(u*(G))(x,y)dxdy

< C\\u*(Gψp < C\\g\ψp < C\\F\\HL.

Hence, we have

sup \F{x,s\y,t)\dxdy < C\\F\\W
5,/>0 anal

This proves (1).

Next, we shall prove that ]imS9t-J>QF(x9s\y9t) exists almost every-
where and in the Lι(R2) norm. We have that

\uk{x9s\y9t)\<G{x9s\y9tγ9 keΠ.

Since G is nontangentially bounded, each uk is nontangentially bound-
ed, lim5/_+o ttfc(x,s;y, t) exists almost everywhere. On the other hand,
the dominated convergence theorem implies the convergence in the

PROOF OF THEOREM 3.1. Step 1. Let F = (uk\k e D) in
Then, there exists finite Borel measures μk such that

uk(x,s9y9t) = (PsPt) * μk{x>y)-

Now, by the Lemma 3.2, the limits

(1) \ΐmuk{x9s\y91) = fk{x,y), keU,

exists in the Lι(R2) norm, and by the Fourier transform we have

(2) uk(x,s;y,t) = j f ({PsPtWr{x',y')e~2ni{xx'+yy>) dx1 dy1.

Then, as F = (uk; k e D) is a conjugate vector field, we have from (1)
and (2) that

(3) fk(x,y) = (Hkfm){x,y), keΠ.

Since fk £ Lι(R2), from (3) we have Too Ξ Hjjh and

<4suρ / ί \F{x,s;y,t)\dxdy.
s.t>oJ J
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Therefore / = / 0 0 e Hι

Hb and H/H^ < C\\F\\HU This proves (i).

Step 2. Let / be a function in LJ(R2) such that fl^/ <= L'(R2),
k € D. We will show that the vector field given by

(4) F = ((PsPt)*Hkf;keΠ)

belongs to H*mi.
By Fourier transform we see that F is a conjugate vector field. In-

deed,
ύk(x,s;y,t) = (PsPtΠx,y)(Hkf)~(x,y).

Since Hkf e Lι, we have (i/fc/)~in L00 and

/ / |fiifc(x,ί;y,ί)|</ x</j'

< \\(Hkfr\\ooJ J(PsPtnx,y)dxdy.

Then, for each fc 6 D, we have,

uk(x,s;y,ή = J Juk(x',s;y',t)e-2πi(χx'+yy'ϊdx'dy'

and consequently

MOO(*,S;.M) = / ίe-2π^se-2π]y'ltf(x',y')e-2π^xx'+yy^dx'dy',

uιQ(x,s;y,ή = j j e-2π\χ'^e-2π\y'Hisi&ix')f(x',yf)

• e~2πi(-xx>+yy>)dx' dy',

uoι(x,s;y,t) = 11 e-2π^se-2π\yΉisigny')f(x',y')

. e-2πi(xx'+yy') dχ> dy< ^

un(x,s;y,t) = j f e

Henceforth (uk;k G D) is a conjugate vector field. Moreover, from
(4) and Young's inequality we get

ί ί\F(x,s;y,t)\dxdy < £ \\(PsPt).Hkf\\i

This proves that F € ΛΓJnai(R+ x R+) and (2).
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