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THE BOUNDARY BEHAVIOUR OF
HARMONIC UNIVALENT MAPS

YUSUF ABU-MUHANNA AND ABDALLAH LYZZAIK

Let D denote the open unit disc in the complex plane and / = h+~g
a complex-valued, harmonic, univalent and orientation preserving map
in D, where h and g are analytic in D. We show that g,h £ Hλ and
/ G hλ for some λ > 0, where Hλ (hλ) is the Hardy space of order λ
for analytic (harmonic) functions. We also study the correspondence
under / between 3D (boundary of D) and the prime ends of f{D).

1. Introduction. Let D denote the open unit disk and SH denote the
class of all complex valued, harmonic, orientation-preserving, univa-
lent functions / in D normalized by

(1) /(0) = 0 and Λ(0) = l.

Each / eSff can be expressed as

where h = z + Y^=1anz
n and g = Σ™=ϊ bnz

n are analytic in D.
Clunie and Sheil-Small, [3], studied SH together with some geometric
subclasses of SH- They proved, among other results, that SH is normal
with respect to the topology of uniform convergence on compact sub-
sets of D. In this paper, we study the aspect of boundary behaviour
of functions in 5#. We point out that, although some of our results
are stated for / G 5//, conditions (1) are not needed.

It is known that, when / G SH is also analytic, the length of the
image of the radius [0,eiθ], /J \f{reiθ)\ dr, is finite for all θ except
for a set of logarithmic capacity zero [8, p. 341]. It is also known
that / G Hλ, 0 < λ < \, where Hλ is the Hardy space of analytic
functions of order λ [8, p. 127], [5, p. 61]. In §2, we prove that the
length of the image of the radius [0, eiθ] under / e SH, /</ \^(reiθ)\9

is finite for almost all θ. We also prove that h, g G Hλ and / G hλ

for some λ small, where hλ is the Hardy space of harmonic functions
of order λ [4, p. 2]. Furthermore, as a corollary, we conclude that the
radial limits h(eiθ) = limr^\- h(reiθ), g(eiθ) = \imr^{- g(reiθ) and
f(eiθ) = l i m ^ , - f(reiθ) exist for almost all θ [4, pp. 15-17].
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One of the many differences between harmonic univalent maps and
conformal maps is that a harmonic univalent map can be constant on
an interval of the boundary of D, ΘD. In §3, we show that if / e SH

and / is constant on an interval then the interval "corresponds" to a
prime-end satisfying a wedge condition (see Theorem 3). In addition,
we obtain some corollaries.

In §4, we study the correspondence, under / e SH, between points
of dD and the prime-ends of f(D) (see Theorems 6, 7).

2. Radial limits. First, we have the following two lemmas.

IS,

(2)

LEMMA 1. Let f = h +~g e SH. Then log/z' is a Block function, that

h"{z)

h'{z)
<

JΓ7
= reiΘ),

for some absolute constant c.

Proof. For fixed ζ e D consider the function

F(z) =
[l-\ζ\2)h'(ζ)

Then F ESH, and we can write

where

By direct computation we obtain

Since A = sup5H \aι\ is finite [3],

h"(ζ)
h'(ζ)

< 2A + 2 = c,

and the proof is complete since ζ is arbitrary.

LEMMA 2. Let h be an analytic and locally univalent function in D
satisfying inequality (2). If a > 0, then

lim (1 - r)ah'(reιθ) = 0

for almost all θ.
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This is a result of J. Clunie and T. MacGregor [2],. [7, p. 73]. As a
consequence of Lemma 2 we have the following theorem.

THEOREM 1. Let f = h + ~g eSH. Then the integrals

•1 rl /•! df ,
J dr

ί \h'{reiΘ)\dr, f \g'(reiθ)\dr, and ί
Jo Jo Jo

converge for almost all θ, and the boundary function f(eιθ) exists al-
most everywhere.

Proof. Choose 0 < a < 1. Then by Lemma 2,

lim(l-r)ah'(reiθ) = O

for almost all θ. Hence we have

\h'(reiθ) < (Λ

 kθ

 λ

for some constant kθ, which gives at once /J \h'(reιθ)\dr < oo for
almost all θ. This yields directly the convergence of the other integrals
since |^7 | < |/z'| because / e SH, and

y~{reiθ) = eiθh'{reiθ) + eiθg'(reiθ).

Now observe that /J |§^(r, θ)\ dr < oo means that the image curve
θunder / of the radius: reιθ, 0 < r < 1 is rectifiable. This evidently

implies that f{eιθ) exists a.e. and the proof is complete.

Our next result states that every normalized harmonic univalent
map together with its analytic and coanalytic parts belong to some
Hardy spaces which also imply that f(eiθ) exists almost everywhere.
In particular, we have:

T H E O R E M 2. Let f = h+J e SH. Then h,g e Hλ and f e hλ for
every λy 0 < λ < 1/c2, where c is the absolute constant of Lemma 1.

Proof. First we show that h e Hλ for all λ < 1/c2. For this purpose
we show that for λ > 0 the inequality:

(3) Iλ(r,hf) = Jj

V ( l - r ) ^ ( 0 < r <
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where β = ^(x/l +4c2λ2 - 1) < c2λ2 and c is the constant of Lem-
ma 1.

The proof of (3) is an adaptation of that of Lemma 5.3 in [8,
pp. 128-129] from which it follows that for rQ < r < 1 and λ > 0,

(4) Iλ(r,h')<u(r) =

where

(5) Kι(c,ro,λ)

K2(c,r0,λ)(ί -

l+2£
Iλ{r°'h'){ι ~

and

(6) K2(c,r0,λ) = \-β-ι

Using Lemma 5.1 [8, pp. 125-126] and Lemma 1, we obtain

2

τ-[rΓλ(r,h')] = ^ / \ti(reιβ)\λ

drL λK 2π Jo

CAY τ / I / x

lπ h"{reiθ)

h'{reiθ)
dθ

- Π -r\2
(l-r)2

Then

rl'λ{r,h')<c2λ2 f l .7Iλ(t,h')dt
Jo (i ~ 0

<c2λ2Iλ(r,h')JQ j ^ d t

since Iχ(t,hf) is a nondecreasing function of £. Hence

Using this inequality in (5) and (6) we infer

1 _L R

0 < ^ ( c r A ) < \

and

0 < K2(c,r0,λ) <
β _μ

Iλ(r0,h')(l -
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Consequently by using (4) for ro < r < 1 we obtain

h{r,h')< [^γ^2

. β
\+2β

^ 2 \l+AVoλ h(ro,h')(l - roΓ^11 (1 - r)-P.

Since ΓQ is arbitrary we can let ΓQ tend to zero. This proves our claim
because

and

attains its maximum value for β > 0 at β = 0.
Now we prove that Λ e //λ for 0 < A < 1/c2. The tools of proof are

the maximal function of h defined by

h*(r,θ)= Γ mπi\h'(seiθ)\dt
Jo s<*o

which clearly majorises h, and the inequality

[j dθ
/

π

Both the maximal function and inequality (7) are due to Hardy and
Littlewood [6, pp. 414-415]. So also the fact that there is an absolute
constant, Bλ, depending only on λ, such that

λ

d θ

<Bλ Γ \h\reiθ)\λdθ
J-π

<2(1 + c2λ2)Bλ{\ - r)-clχl

by using (3) and the fact β < c2λ2. Then from (7) we obtain

Γ[h*(reiθ)]λdθ < 2(1 +c2λ2)Bλ{\ - r)
λ~λ2c2

J -π

c2λ2)Bλ Γ ( l - t)λ-c2χ2-1 dt.
Jo
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If 0 < λ < 1/c2, then λ - λc2 > 0 and consequently

[h*(reiθ)]λdθ = 4 \
/

as r -• 1". Therefore h G Hλ for alU, 0 < λ < 1/c2.
In the same manner, we conclude that g G Hλ for the specific values

of λ since \g'\ < \h'\. Now h,g e Hλ yield directly that / = h +J G hλ.
This completes the proof.

From the above proof we immediately conclude:

COROLLARY 1. Let h be analytic in D. If 'log h! is a Block function,
then h G Hλ for some λ.

3. / constant on some arc of dD. The purpose of this section is to
study the boundary behaviour of a function / G SH along a closed
subarc of d D on which / extends continuously to a constant function
there.

First, we need the following:

DEFINITION 1. Let D be a simply connected domain in C with at
least two boundary points, P an accessible prime end, and (Cn) a
null-chain of P. We say that D satisfies the wedge condition at P if
there exists a closed circular sector whose vertex belongs to the impres-
sion, /(P), otherwise it lies in Z>, and whose sides intersect Cn for all
large n.

We also need the functions F and φ associated with / G SH such
that

(8) Φ = F~ιof

where F is a conformal map from D to f{D) satisfying F(0) = 0.
Hence φ is an automorphism of D with radial limits existing almost
everywhere.

The main theorem of this section can be stated as follows.

THEOREM 3. Let f = h+~g G SH- Suppose that f extends continu-
ously to a nondegenerate subinterval, J, ofdD such that f{z) — w0for
all z G /. Then φ{J) = λ, \λ\ = 1; and ifP is the prime end of f{D)
that corresponds to λ, under F, then f(D) satisfies the wedge condition
at P.

For a definition of a prime-end see [8, pp. 271-277].

The proof of the theorem makes use of the following interesting
lemma.
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LEMMA 3. Let f = h + ~g be continuous on D, where h and g are
analytic in D. Suppose that f(z) = w0 for all z belonging to a non-
degenerate subinterval J = {eίθ: θx < θ < θ2} of 3D. Then

(a) fθ(z) ^Oas z->ζfor every ζ e Int(/).
(b) h and g extend analytically to Int(/), and
(c) zh'{z) = zg'(z) for all z e Int(/).

Proof, (a) Since / is bounded, we can write

zeD.

Then

»2 ze~lt

π
dt

71 Jθi

ze,-it
f{eif)dt

π
i r2π+θ[

- - Im
π Jθ2

ze -it
/(*'"') dt,

which gives

< π
Re

1 1
— ze~iθl 1 — ze~iθι

'TO—it

Im

If C G Int(/), then for ε > 0 there is δ > 0 such that

Im

Re

dt.

and

1 1

1 -z^-^2 1 - z e - / 6

for all z, |z - C| < ^. Hence

V
and the proof of (a) is complete.

+
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(b) It follows from (9) that

w0 \ e~iθι - e~iθl

2 [(I - ze-iΘή(l - ze-iΘ>)

r2π+Θι p-it

Clearly, each of the latter terms is an analytic function in

C\(<9Z)\Int(/)).

Hence h! is an analytic function there, and so h extends to an analytic
function in any simply connected domain containing D e Int(/).

As for g we have

p~iv\ piϋ2 I

2πi -ze~iθ
ze~iθ*)

and arguing as above for Λ, we conclude (b).
(c) This follows immediately from (a) and (b), and the fact that

Proof of Theorem. First we claim that there is no loss of generality in
assuming that / satisfies the hypotheses of Lemma 3. For otherwise we
can replace / by a function W which we construct as follows. Let γ be
a crosscut of D meeting / at its endpoints, and let G be the subdomain
of D bounded by / u γ. Suppose without loss of generality that O G G ,
and let ψ: D -> G be a conformal map satisfying ^(0) = 0. Then the
function defined by W = (l/ψ'(0))fo ψ satisfies the hypotheses of/
in Lemma 3. Since the desired result is intrinsic to f(D) and not to
W, our claim follows at once.

Hence, suppose that / is exactly as in Lemma 3. Also, suppose
that h'(z) Φ 0 for all z e /; otherwise we take a subinterval of /
with this condition. Let £i, C2 be a pair of distinct points of /, and
/ the subinterval of / with endpoints ζ\ and &• Also let l\Jι be the
radii of D ending at ζ\, £2 respectively, S the closed sector bounded
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by / U lx U /2, Ω = /(S), L! = /(/j), and L2 = /(/ 2 ). Then it follows
directly that Ω is the simply connected subdomain of f(D) bounded
only by Lx U L2.

First, we observe that the inner angle of Ω at WQ exists and has size

arg
fr(ζl)

Mb)
arg

arg
ClΛ'(ίl)

because of Lemma 3.c.
Now suppose that f(D) does not satisfy the wedge condition at

Then it is immediate in view of the above that

arg = 0
' fr(ζl)

for all Ci, ζ2 G /; or equivalently,

zh'{z) = \zh'{z)\eιη, z G Int(/),

where η is a constant. Then by Lemma 3 we also have

zg'{z) = \zti(z)\e-i\ ZG Int(/),

Hence
_ ( z ) = e2iη

9 Z G Int(/),

and h'/gf is a constant function in D by the identity theorem, and
Ih' I = |g'| in Zλ This contradicts that f eSπ. Therefore, our assump-
tion is false and f(D) satisfies the wedge condition at WQ.

REMARK. The conclusion of theorem is best possible. In other
words, P may not be a prime-end of the first kind, that is the impres-
sion of P, /(P), is non-degenerate, as shown by the following example.

EXAMPLE 1. Let

+ / Im

It was shown in [3] that Ko e SH, KO maps D to the complement of
the ray on the negative real-axis from -1/6 to oc and K0(ζ) = -1/6
for all ζ G ΘD\{\}. Let a be the circular arc in D with endpoints 1,
/ and perpendicular to 3D (see Figure 1). Let β — K0(a), G the lens
domain between dD and a and H = K0(G). Then H is the domain in
the upper half-plane bounded by β and [-oo, -1/6]. For n — 1,2,...
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Ω ,

-1/6

FIGURE 1

we let Γn to be the horizontal slit in H ending at β and satisfying
Imw = 1 for w e ΓΛ (see Figure 1). Then the arcs KQl(Γn) — an lie
in G and converge to d D as shown. Let A denote the reflection of A
about the real axis. Now we let

Fo: D - K0(D)\\J(ΓnυTn) = Ω
Λ = l

be the two conformal maps satisfying W(0) = FQ(0) = 0 and Wf(0),
F'(0) > 0 and define

Φo = Fo ° Jo-
Observe that Δ has two accessible prime-ends P\, Pi of non-degenerate

impressions with accessible points /, -/ and Ω has one accessible

prime end P with impression (-00,-1/6], accessibility point -1/6
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and which satisfy the wedge condition. Note that there exist symmet-
ric points ζ9ζ e dD (ζ Φ -1,1) corresponding, under W9 to Pi and
P2 respectively, and that -1 corresponds, under FQ9 to P. Then f0

extends continuously to the circular arc ending at ζ and ζ and con-
taining — 1, fo = —1/6 there, and fo(D) satisfies the wedge condition
at P.

We finally prove two corollaries which extend a result for normal
functions [8, p. 267].

COROLLARY 2. Let f — u + v e SH satisfy u,v e hp, p > 1, and
a: z(t), 0 < t < 1, be a Jordan arc in D with \z{t)\ -+ 1 (t -+ 1). //
f(z(t))-+wo(t-+l)and

(10)

exists, then z(t) -* ζ(t -+ I) for some ζ edD so that a is an asymptotic
path.

For the definition of an asymptotic path see [8, p. 267].

Proof. Suppose that the set of accumulation points of a on dD
form a nondegenerate arc /. Then f(ζ) — WQ for every ζ e I where
f(ζ) exists. Because radial limits exist a.e. and u,v e hp, p > 1, /
extends continuously to a constant function in Int(7). Using this, we
conclude from the proof of Theorem 3 that for distinct ζΪ9 £2 G Int(7)
the images l\, I2, under /, of the radii ending at ζ\, £2* respectively, are
Jordan half-intervals in /(/>), both ending at WQ and make, in f(D)9

an angle of positive size at WQ. This contradicts (10), since each of
the arcs l\ and lι meets f(μ) in a sequence converging to WQ9 and the
proof is complete.

REMARK. Condition (10) of Corollary 2 is essential. For example:

EXAMPLE 2. Let / be the function defined by

{ 1, 0 < # < 2 π / 3 ,

/, 2π/3 < θ < 4π/3,

- /, 4π/3 < θ < 2π,

and

Then / is a univalent harmonic map and f(D) is a triangle (see [3]).
Let γ be a curve in D converging to a non-degenerate arc subset to the
arc {eiθ: 0<θ< π/2}. Then f(γ) converges to 1.
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COROLLARY 3. Let f be as in Corollary 2, w0 an accessible point
off(D), and aj: zj(t), 0 < t < 1 (7 = 1,2) be Jordan arcs in D with
\zj(t)\ -> 1 (ί -> 1). Iff(zj(t)) ->wo(t-> 1),

(11) limarg(f(zJ(t))-w0) = Θ (7 = 1,2)

and the zero cusp at w0 with sides /(αy) lies in f(D), then Zj(t) —> C
(/-> l y = 1,2) for some ζedD.

Proof. It follows at once from Corollary 2 that each αy is an asymp-
totic path with zj(t) —> £/ (ί —* 1). If £i 7̂  C2? then there exists a
Jordan arc Γ: z(t), 0 < t < l9 in D such that for some positive se-
quence tn —> 1" Γ meets aj at z7 (ίrt) (7 =1,2) for all ft, f(z(ή) —• t̂ o
(ί-> 1), and

By Corollary 2 Γ is an asymptotic path, a contradiction. This com-
pletes the proof.

REMARK. Condition (11) is essential. For example, let / be as in
Example 2 and α b «2 be two disjoint curves terminating at eιπ/4 and
/. Then f(a\), f(oί2) terminate at 1 with a positive angle between
them.

4. Correspondence under / between D and the prime-ends of f(D).
Throughout this section, we let

(12) E = {ζ e dD: C(φ, ζ) is not a singleton}, and

G = {λ e dD: C(φ~\λ) is not a singleton}

where φ is as given by (8) and C(φ, ζ) is the cluster set of φ at ζ. For
the definition of a cluster set, see [1, p. 66] or [8, p. 276]. In addition,
let CR(Φ, ζ) and CL(Φ, C) denote the right and left cluster sets of φ at
ζ [1, P. 83].

We next state Theorem 4, whose proof is a consequence of Theorem
3 and the forthcoming Lemma 5.

THEOREM 4. Let λ e G. Then the prime-end P of f(D) corre-
sponding to λ, under Fy is accessible and satisfies the wedge condition
at P.

The next lemma is purely topological and is true for all automor-
phisms of D with radial limits almost everywhere.
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LEMMA 4. Let ζ, ζ' e dD.

(a) If C(φ,ζ) = dD, then φ extends continuously to a constant λ,
\λ\ = 1, on dD\ζ, and ζ is unique.

(b) IfC(φ,ζ), C(φ,ζ') are not dD, then Int C(φ,ζ) n C(φ,ζf) =

C(φ,ζ)Γ\lntC(φ,ζ') = φ.
(c) IfC{φ, ζ) Π C{φ, ζ') = λ, \λ\ = 1, then φ extends continuously to

an open circular arc between ζ and ζ1, and φ = λ there.

Proof, (a) Let γ be a union of two radii of D so that ζ and ζ' are
on different sides of γ and φ has radial limits along these radii. Since
C(φ, ζ) = dD, φ(γ) is a loop that meets dD at a unique point λ. We
infer at once that C(φ, ζr) = λ for all ζf φ ζ, and ζ is unique. This
proves (a).

(b) Choose ζ\9 C2 € dD, different from ζ, ζ'9 so that the radial limits
Φ(ζ\), Φ{ζ>i) exist and the crosscup 7, made up of the radii terminating
at ζ\ and ζ2, separates ζ and ζf in D. Then the crosscut, φ(y) of D,
separates D into two simply connected domains such that one contains
C(φ, ζ) on its boundary and the other C(φ9 ζ1). This proves (b).

(c) If C(φ9 ζ) = dD for some a G dD, then we are done. Suppose
otherwise and let I, V be the subarcs of dD determined by ζ9 ζ'. If
for every ζ\ e Int(/), ^(α) exists and φ(ζ\) = λ9 then (c) follows,
otherwise choose ζ\ e Int(/), C2 ̂  Int(/;) such that φ(ζ\)9 Φ{ζi) exists
and φ{ζ\) φ λ. Then an argument similar to that of (b) yields (c) and
the proof is complete.

REMARK. (1) AΓ0 indicates that (a) is possible.
(2) It follows from Lemma 4, that the set E (see [12]) is at most

countable.

LEMMA 5. Let ζ9 ζ1 e dD.

(a) IfC(φ9 ζ) = dD, then f extends continuously to dD\ζ and f is
constant there.

(b) IfC(φ9 ζ) n C(φ9 C) = λ, \λ\ = 1, then f extends continuously to
an open circular arc between ζ and ζ', and f = F(λ) there.

Proof, (a) By Lemma 4 φ extends continuously to some constant,
λ, \λ\ = 1 on dD\ζ. Let ζΪ9ζ2 € dD\ζ be chosen such that f(ζx)9

/(C2) exist. If γ\9 72 are the images, under φ, of the radii ending at
Ci, ζ2, respectively, then yi, 72 are asymptotic paths of F both ending
at λ. Since F is univalent, F is normal (see [8, pp. 262-263]), and
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F(ζ{) = F(ζ2) (see [8, p. 267]). Therefore, /(£,) = f(ζ2). Since Ci,
ζ2 are arbitrary, the desired result follows.

The truth of (b) follows in the same manner. This completes the
proof.

As an immediate consequence of Theorem 4 we have

COROLLARY 4. Suppose that f(D) does not satisfy the wedge condi-
tion at the prime-end P corresponding to λ G dD; then there exists a
unique ζ edD such that λ e C(φ, ζ).

In what follows, we assume that f = u + iv satisfies u, v G hP, p > 1.
Let [a, b], a Φ b G C u {00}, denote the line segment from a to b.

We call [α, b] a side of a domain H if no point of the interior, (a, b),
of [α, b] is a point of accumulation of ΘH\[a, b] and H lies on the left

of [a,b]. For λ\9 λ2 G <9Z>, let X ^ be the circular arc described by
going positively from λ\ to λ2.

Suppose that / is defined on an open subarc {eιθ: θo - δ < θ <
θ0 + δ} of dD. We say that / is constant on the right (left) of eiθo if
f(eiθ) is constant for all 0, θ0 - δ < θ < θ0 (θo<θ <θo + δ).

The following theorem describes the cluster set of / at a point
in E.

THEOREM 5. Let f = u + iv, u,v e hp, p > 1, Co = eiθo G E and

C(φ, Co) = ffi

where [α, έ] w a side ofdf(D), and I\— a (I2 = b) iff is constant on
the right (left) ofζ0, otherwise Ix = I(PX) (I2 = I(P2))> where P{ are P2

are the prime ends off(D) corresponding to λ\ and λ2, respectively. In
this case, P{ (P2) is accessible at a (b)} and I(P{) (I(P2)) has at most
one continuum of subsidiary points given by CR(F,λ\) (Cι(F,λ2)).

Proof. We show first that φ~ι has radial limits a.e. on C(φ,ζo).
Choose λo G Int C(φ9 Co) so that F(λ0) exists, and let γo be the radius
ending at Λo, and αo = Φ~ι(yo) We claim that α 0 is a Jordan half-
interval ending at Co- Let / denote the interval of accumulation points
of α 0 on ΘD. Since u, v G hp\ p > 1, / is a proper subinterval of dD;
otherwise / is identically F(λ0), a contradiction. Pick ζ e (Int(/))\Co?

and ζ' e J so that φ(ζ') exists and φ(ζ') Φ Λo? and let α, a1 be the
radii ending at ζ, ζf, respectively. Then φ(a) U φ(af) is a crosscut of



HARMONIC UNIVALENT MAPS 15

D dividing D into two simply connected domains the boundary of
each of which contains a subarc of C(φ, Co) n ° t shared by the other,
a contradiction.

Now we choose λ\, λ2 e C(φ, Co) s ° that λ\λ'2 lies in λ\λ2, and F(λ\),
F(Λ/2) exist. For 7 = 1,2, let y, be the radius ending at λ1^ βj = F(γj)
and oίj = φ~ι(γj). Then a\ U #2 is a loop which, except for Co? lies in
/), and bounds a simply connected subdomain, G, of D. \ϊW;D-+G
is a conformal map satisfying W{\) = Co? and H = f oW, then //
is a harmonic univalent map which equals F(λ\) on the right of 1
and F(λ'2) on the left, and Re//, lmH e hP, p > 1, by Littlewood's
subordination theorem [4, pp. 10-11]. Call Ω the domain bounded

by β\Όβ2\J [F(λ\), F(λf

2)], and S the sector bounded by γ{ U γ2 U A ^ .
Then C(//, 1) = [ F ^ ) , / 7 ^ ) ] by a theorem of Schwarz [9, p. 131],
the cluster set of / at ζ within G is [ Z 7 ^ ) , / 7 ^ ) ] , and F extends to

a homeomorphism between S and Ω mapping λ\λ2 to [ J F ^ ) , / 7 ^ ) ] .
Letting A;j —> Λi and A'2 —• A2, then F ^ Ί ) —• α and - F ^ ) —• ft, where
α, ft G C U {ex)}, and C(/, Co) contains [a, ft] which obviously is a side
of f(D).

Now suppose that / is constant on the left (right) of Co? then by re-
placing a\ (a2) by some circular arc {eiΘ: ΘQ-S < θ < θo} {{eiθ: θ0 <
θ < ΘQ + δ}) and carrying the same argument above, we infer that
h=a (/2 = ft).

Suppose to the contrary that / is not constant either on the right or
on the left of Co? then because u,υ ehp, p > 1, there exist θnθ'n, θn —>
ΘQ, θ'n —• ΘQ and rn —• 1~ such that if, for ẑ = 1,2,...,

Qn - (eiθ'9 rne
iθ»] U { Γ ^ ' 7 : θn<t<θ'n}U [rne

iθ*9e
iθ*)9

then </>(Q̂ ) is a crosscut of Z) (see [8, p. 267]) which meets λ\λ2

nowhere, and φ(Qn) —• λ\λ2 {n —• 00). Hence /1 = /(Λ) and /2 =
I (Pi). It is also immediate that P\ and P2 are accessible at a and

ft, respectively, since F extends conformally to Int(Iiλ2) and maps

\rΛ(λ\λι) to (a,ft). Therefore the radial limits F(λ\), F(λ2) exist and
they are α, ft, respectively. Consequently, by Lindelofs theorem [1,
p. 72] CL(F9λ\) = a and CR(F,λ2) = ft, which forces each of Px

and P2 to have at most one continuum of subsidiary points given by
CR(F,λ{) and CL(F,λ2), respectively, (see [1, pp. 188-189]). This
completes the proof.
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FIGURE 2

EXAMPLE 3. Let / be the function defined in Example 2. For

reflection of Γn about the real axis. Then G = f(D)\([J™=2(Γn U Γπ))
is the simply connected domain shown in Figure 2. Let γn = f~x(Yn)
and γn be the reflection of γn about the real axis, for all n. Because
of the symmetry f(z) = /(z), it follows that γn — f~ι(Γn). It is
immediate that each of the arcs γn and γn is an asymptotic path,
under /, in D meeting dD at ei2π^ and e/ 4 π/3, respectively, such that
the sequences (γn) and (γn) converge uniformly to the circular arcs
{eiθ: 0 < θ < 2π/3} and {eiθ: 4π/3 < θ < 2π}, respectively. If

A = D\({J(γnUγn)\,
\n=2 )

then Δ is a simply connected domain symmetric about the real axis and
has a prime end, P9 accessible at 1, with impression the arc {eιθ: -
2π/3 < θ < 2π/3}, see Figure 2. So if ψ: D -^ Δ is the Riemann
mapping satisfying ^/(0) = 0 and ^'(0) > 0, then 1 corresponds, in
the Caratheodory sense, to P under ψ. Furthermore, it can be easily
verified that the harmonic univalent map g = f o ψ has a nonempty
set E such that 1 e E and C(g91) satisfies the conclusion of Theo-
rem 5.

The next two corollaries follow from Theorem 5.

COROLLARY 5. Under the assumptions of Theorem 5, iff(D) has no
sides, then E = 0.
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COROLLARY 6. Under the assumptions of Theorem 5, ifP is a prime
end of f{D) which is either non-accessible, or accessible but has two
subsidairy continua without the wedge condition, then there exists a
unique ζ e dD, with ζ e dD\E such that C(φ, ζ) = λ, where λ is the
corresponding point to P under F.

In the final part of this section, we give conclusive statements of
correspondence between various points of dD and the prime-ends of
f(D), where / is assumed univalent and in hp, p > 1. First we need
the following definition.

DEFINITION 3. Let A and B be subsets of dD (B corresponds to a
set of prime ends of f(D) under F). Then we say

(a) A corresponds to B if C(φ, ζ) c B and C(φ, ζ!) c dD\B for all
ζeAandζ'e dD\A.

(b) B corresponds to A if C(φ~\ ζ) c A and C(φ~ι

9ζ') c dD\A for
all ζ e B and ζ' e dD\B.

(c) A and B correspond to each other if (a) and (b).
(d) There is one to one correspondence between A and B if every

point of A corresponds to a single point of B and conversely.
In accordance with this definition, if si is the set of all ζ G dD\E

where / is constant neither on the left nor the right of ζ, and SB =
{φ(ζ): ζ £ A}, then Theorem 3 and an argument of the proof of
Theorem 5 yield the following:

THEOREM 6. There is a one-to-one correspondence between sf
and 38.

In view of this result, special attention need be given to the case
when / is constant on some non-degenerate open subinterval of dD.

Let J — ζ\ζι be such a subinterval. Since Schwarz's Theorem [9,
p. 131] offers an exact description of / at ζ\ (fo) if / is also constant on
the right of ζ\ (left of ζι), we restrict ourselves to the complementary
case when / is constant neither on the right of ζ\ nor the left of ζι-

THEOREM 7. Suppose that f(ζ) = w for all ζ e Int£iC2 and f is
constant neither on the right ofζ\ nor the left ofζi Then the following
is true:

(a) Ifζ\,ζ2 € dD\E, then there is a prime end, λ, off(D) satisfying

the wedge condition at WQ such that ζ\ £2 ctndλ correspond to each other
with C(φ, Ci) = CR(F9λ) and C(φ9 ζ2) = CL(F,λ) (see Figure 3.a).
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FIGURE 3.a

FIGURE 3.b

(b) Ifζ\,ζ2 £ £, £/zeft there is a non-degenerate interval λ\λ2 of prime

ends off(D) such that Ci C2 and λ\λ2 correspond to each other. Both of
λ\ and λ2 are {prime ends) accessible, say at a and c, respectively, and

the impressions of all the prime ends in λ\λ2 is I{λ\) U [a, w$\ u [w0, c] U
I(λ2). (See Figure 3.b)
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FIGURE 3.C

(c) lfζ\ £ 9D\E and ζ2 Ξ E, then there is a non-degenerate interval

λ\λ2 of prime ends off(D) such that Ci C2 and λ\λ2 correspond to each
other. Both ofλ\ and λ2 are (prime ends) accessible, say at WQ and c,
respectively, and the former satisfy the wedge condition. Furthermore,
the impressions on all the prime ends is I{λ\)U[wo, c]Ul(λ2) (see Figure
3.c).

The proof of this theorem follows immediately from Theorems 3,
4 and 5 and the fact that f ehp, p > 1.

REMARK. Wherever and throughout the paper, the assumption / e
hp, p > 1 or equivalently u,v e hP, p > 1 can be replaced by the
property that sets of positive measure on 3D are sets of uniqueness
for / or u,v.
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