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ON EQUIVARIANT FUNCTION SPACES

JESPER MICHAEL MΘLLER

Some basic features of the homotopy theory of mapping spaces are
generalized to an equivariant setting.

1. Introduction. The aim of this paper is to extend some well-known
theorems about mapping spaces to spaces of equivariant maps. Along
the way we consider Bredon cohomology with local coefficients and
Postnikov resolutions of equivariant fibrations.

For a finite group G, we begin by defining Bredon cohomology
HQ with local coefficients. Obstructions to equivariant sections of
G-fibrations lie in these cohomology groups and the associated clas-
sifying G-fibrations are thus steps on equivariant Postnikov ladders.
See Section 4 for these G-Postnikov resolutions and see the preceding
sections for the definition of HQ and the construction of the associated
classifying G-fibrations.

In Section 5 we consider spaces of equivariant sections of G-fibra-
tions. By resolving the target fibration, we obtain an equivariant, rel-
ative, and twisted version of the Federer spectral sequence converging
to the homotopy of the space of equivariant sections. As in the non-
equivariant case, this spectral sequence implies nilpotency of spaces
of G-sections in certain cases. Fibrewise, equivariant localization of
the target induces localization of the section space.

Throughout this paper, G denotes a finite (discrete) group with orbit
category <$Q [1]. I write K < G to indicate that K is a subgroup of G.

2. Local coefficients in G - CW complexes. In this section equivari-
ant Bredon cohomology is introduced as a framework for equivariant
obstruction theory.

Denote by 2? the category whose objects are pairs (X, L) with X a
(compactly generated) space and L a local coefficient system on X. A
morphism φ: (X\\L\) —> (X2,Lι) in S* is a pair φ = ((p\,(p2) consist-
ing of a continuous map'$?i: X\ —• Xι and a morphism ψ2: L\ —• φ\L2

of local coefficient systems on X\\ see [20].
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104 JESPER MICHAEL M0LLER

Furthermore, for any G-space X, let Φ(X): <9Q —> Top be the fixed
point set system ([2], p. 275) of X, and let F: & -> Top denote the
forgetful functor.

DEFINITION 2.1. A local G-coefficient system on a G-space X is a
contravariant functor

such that FJi = Φ(X).

We shall often use the notation

where M[G/H) is understood to be a local coefficient system on
XH, g: G/H -> G/K is left multiplication by g, g~ιHg c K, and
M(g): MiG/K) —• g*M(G/H) a moφhism of local coefficient sys-
tems on Xκ.

EXAMPLE 2.2. Let P: Y —• B be a Cr-fibration in the sense of Bre-
don [1]. Then pκ: Yκ -> Bκ is an ordinary Serre fibration for each
subgroup K < G and hence the ίth homotopy groups of the fibres, if
connected and simple spaces, define an ordinary local coefficient sys-
tem πi(^κ) on Bκ. Moreover, if g e G and g~ιHg c K, then left
translation by g is a fibre map g: pκ —> pH and the induced maps

g*:πi((pκ)-ι(b))->πi((pH)-ι(gb)\ beBκ,

constitute a morphism

Hence the functor

given by m(^)(G/K) = (Bκ,πi(^κ)) and π^^g) = (g,g.) is a
local G-coefficient system on B.

Let J be a G - C ̂ -complex and J£_ a local G-coefficient sys-
tem on X, Since G is finite, each fixed point set Xκ

9 K < G, is
an ordinary sub-CW-complex [10], and as such it carries for each
n > 0 a cellular cochain group Γn(Xκ;Λ£(G/K)) with local coeffi-
cients M(G/K): Γn(Xκ;M(G/K)) is the group ([20], p. 287) of all
functions c which to each «-cell E£ = (En -* X^) assigns an element
c(Eg) = M(G/K)(za) where za = Λα(^0) is the image of the base point
eoeEn.
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In order to obtain a useable cohomology group we must demand
that these functions for all fixed point spaces behave well under left
translations by elements of G. This motivates

DEFINITION 2.3. TG(X\Jβ is the group of all arrays

c = (c(G/K)) e 0 Γ»(XK;M(G/K))
K<G

such that for any π-cell E£ = (En -A χn) of X the equation

c(G/H)(gE»a) = M(g)(za)(c(G/K)E»a)

holds in M(G/K)(gza) whenever K < G fixes El and g~ιHg c K.

EXAMPLE 2.4. A. If each local coefficient system M[G/K) on Xκ is
simple, then M_\ @G —• ^ a b is just an abelian ^-group and

reduces to the cellular G-cochains of Bredon [1].
B. Let %i{ST) \@G-*3' be the system of Example 2.2 and / : X -+ B

some equivariant map. Then the array

if and only if

c(G/H)(gEZ) = g*c{GIK){En

a) e πi{(pH)

whenever K fixes E% and g~{Hg c K.

We get a cochain complex (Γ*G(X;^),δG) simply by taking as
the restriction to T^{X\Jί) of the direct sum

of the ordinary coboundary operators. To do so, we of course first
need to verify

LEMMA 2.5.

Proof. Suppose that g~ιHg c K such that left multiplication

g:G/H-+G/K

is a morphism in &G and

MS) = (g,M(g)): (XK,K(G/K)) -+ (XH,M(G/H))
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one in S* inducing a commutative diagram

Γn(XH M{G/H)) δ{G/H\ Γn+ι(XH;M(G/H))

Γ»(Xκ;g*M(G/K)) —*-> Γ»+ι(Xκ;g*M(G/H))

Γn(Xκ;M(G/K)) δ{G/K\ Γn+ι(Xκ;M(G/K)).

Suppose c e Γ^(X JΓ). The equations of Definition 2.3 are equiv-
alent to the equations

g*c(G/H) = M(g)*c(G/K)

and the commutative diagram above implies that δc_ satisfies these
equations if c does so. D

The above definition is easily generalized to relative G - CW com-
plexes (X, A). For G - CW pairs (X, A) one then obtains a short exact
sequence of cochain complexes

0 - ΓG(X,A;^_) - ΓG(X;JΓ) - ΓG{A\*\A) - 0

resulting in the long exact sequence for Bredon cohomology with local
coefficients. Of course, this sequence is natural. (For this statement
to be meaningful one must define morphisms in the category of local
G-coefficient systems on G - CW pairs; cf. ([20], p. 270).)

The scene is now set for equivariant obstruction theory. Suppose
that (X9A) is a relative G - CW complex, p: Y —> B a (7-fibration as
in Example 2.2, / : X —> B a G-map, and

Xn - ^ y

I l
X -^—> B

an equivariant lift of / denned on the ^-skeleton of (X,A), n > 1. It
is routine to define an equivariant obstruction cycle

to extending the lift g equivariantly to the (n + l)-skeleton. In fact,

cn

G

+l(g) = (cn+ι(gκ)) E φ
K<G
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where cn+ι(gκ) is the usual non-equivariant obstruction to extending
the lift gκ: Xξ -> Yκ of fκ: Xκ -* Bκ to X*+v Example 2.4.B
shows that ctQrX{g) does satisfy the relations of Definition 2.3.

All the standard non-equivariant properties as listed in Whitehead
([20], VI) are easily transferred to the equivariant category. In partic-
ular, one may define equivariant primary obstruction and difference
cohomology classes under suitable G-connectedness conditions. We
shall return to this in the following chapter.

3. Realizing local G-coeffident systems. In this section we con-
struct classifying fibrations for equivariant cohomology with local G-
coefficients.

Let (^a b) 9 denote the category of (abelian) groups and let π: ffG -•
& and M_:@G-^ &ab be contravariant functors (<PG groups for short).

DEFINITION 3.1. A π-module structure on M is a natural transfor-
mation π x M_ -• M_ defining a π(G/Λ:)-module structure on M(G/K)
for each subgroup K <G.

If B is a G-connected ([9], Definition 3) pointed G-space, then a
π1(5,6o)-module is the same thing as a local G-coefficient system on
B ([20], XV 1.11-1.12), so if p: Y -> B is a G-fibration with G-
connected and G-simple fibre F = p~x(b0), then π^i 7 ) is a πι(B>bo)-
module for all / > 1. The next lemma shows, conversely, that in fact
any 7Γ-module M_ has such a geometric realization.

Recall that if A£ is an (abelian) ^-group and n > 1 an integer,
then K[M_, ri) denotes any G-connected pointed G-space G-homotopy
equivalent to&G-CW complex with 7i_nK(Λ£y ή) = M_ and π ^ ( M , ή)
= 0 for / Φ n. See [2], [18] for the existence of these equivariant
Eilenberg-Mac Lane spaces.

LEMMA 3.2. Let A£ be a π-module and n > 1 an integer. There
exists a sectioned G-fibration

K(M, n) -* L(π,M, n) ^ K(π, 1)

of G-connected pointed G-spaces G-homotopy equivalent to G - CW
complexes realizing the given module structure as the associated action
ofπιK(π, 1) = π on πnK(A£, n) = M_.

Proof. Let E,B: & —> Top be Milnor's functors for the construction
of universal principal bundles [7] and let Eπ,Bπ: @G —> Top be the
^--spaces [2] obtained by pre-composition with π.
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For each subgroup K < G, let Bnλ£(G/K) denote (the geometric
realization of) the iterated bar construction on M(G/K); cf. ([2], §2).
The π(G/ΛΓ)-module structure on M(G/K) determines a representa-
tion

φ(G/K): π(G/K) -> Auto(BnM(G/K))

of 7£(G/K) as a group of based homeomorphisms of BnM_(G/K) such
that ([11], §3), for any ξ e π(G/K), φ(G/K)(ξ)* is multiplication
by ξ on πn(BnM(G/K)) = M(G/K). Since M is a π-module, these
homeomorphisms behave coherently in the sense that

BnM(g)oφ(G/K)(ζ) = φ(G/H)(π(g)ξ)oBnM(g)

for any ^-morphism g: G/H —> G/^. It follows that there is a well
defined ^fc-space, l{n_,JIL,n), which on G/AΓ e ^ is given by

BnM(G/K).

Note that this space is the total space of a sectioned fibration

BnM(G/K)-+l(π,M,n)(G/K) T? Bπ(G/K)

from which the π(G/A^)-module structure on M_{GjK) can be recov-
ered as the action of π\ (base) on πw (fibre). The collection of these
sectioned fibrations constitute a diagram

( , ϋ £ , )

in the category of f̂c spaces. Apply Elmendorfs functor C to it [2]:

Cl(π,M, n) ^ CBπ = K(π, 1).

Cp_ is in general just a quasi-fibration [8], [12]. At each fixed point set
there exist, however, homotopy equivalences ([2], Theorem 1) such
that the diagram

Cl(π,M,n)κ

(Cp)κ IT (Cs_)κ

(Bπ)κ η )

l{π,M,n)(G/K)

IT
BπiGIK)

commutes. Hence the fibre of Cp_ has only one non-trivial ^-homoto-
py group namely

πn = πn+ι(K(π, 1), C7(π, M, n)) = M,
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and the induced natural transformation

π x M = πx{K{π, 1)) x πn+ι(K(π, 1),C7(π,M,n))

+ fe, 1), C7(π, M,")) = M

is the presentation of M as a π-module.
Now factor Cp_ as a G-homotopy equivalence, w, followed by a G-

fibration, p,
Cl(π,M,n) A L(π,M,n)

This doesn't change the associated action of the base space on the
fibre. Moreover, the fibre of p, i.e. the G-homotopy fibre of Cp, is
a K(M_,n) since it has the G-homotopy type of a G - CW-complex
([19], Corollary 4.14) and only one non-trivial homotopy (?G-gτo\ip.

Finally, put s = uo Cs. Thenps = puoCs = Cp_o Cs = C(p_os_) =
C(id) = id, by functoriality of C. D

Suppose that u: X —• L(π, M, n) is a G-map on a relative G- CW
complex (X,A). Put Wi =pw. Consider the space

Fu(X,A;L(π,M,n),K(π,l))G

of all G-maps v: X —• L(π, M,«) such that pi; = pw and u\A = υ|^4.
Associated to any such v is a primary obstruction

to G-homotoping u vertically (rel. A) to v; here ΛΓ is M considered as
a local G-coefficient system on K(π, 1). Obstruction theory yields

THEOREM 3.3. 77zere is a bijection

π0Fu(X, A; L(π, M, n), K(π, 1)) -> flg(JΓ, ^ i i j ^

induced by the map v -+ SQ(U9V).

It is for this reason that the G-fibration of Lemma 3.2 deserves to
be called the classifying fibration for equivariant Bredon cohomology
with local G-coefficients.

Over L(π,Λ£,/i) is another fundamental G-fibration

K(M, Λ - 1) -> PL{π,M, n) -> L(π,M, *)
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which, in analogy with [11], is called the equivariant path fibration
over and under K(π,l) and which is constructed by factoring the sec-
tion s

PL(π,M,n)

into a G-homotopy equivalence followed by a G-fibration. This Ca-
libration will later serve as a typical building block in equivariant
Moore-Postnikov factorizations. As preparation for the construction
of these factorizations we now continue to list a few further properties
of L(π, M<n).

Now suppose that both L and M_ are π-modules and let Hom^L, M_)
be the abelian group of natural π-module transformations of L into
M. This functor C of [2] induces a map

into the set of (j-homotopy classes of G-maps over and under AΓ(π, 1).
An inverse is obtained by associating to each G-map u over and under
K(π, 1) the induced map

u,: L = πn(L(π,L9n\K(π,ί)) ^ πn(L(π,M9n\K(π,l)) = M

of πw(^(7Γ, 1)) = π-modules. This proves an equivariant version of
([14]), Lemma 2.1).

LEMMA 3.4. There is a bijective correspondence

COROLLARY 3.5.

H£{L(π,L,n),K(π, l);p*<£) =

COROLLARY 3.6. There is a short split-exact sequence

O^H£(K(π, 1);ΛΓ) ~P Hn(L(π,M,n);p'
S
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Proof. Chase the commutative diagram:

0 - H«(L(π,M,n),K(π, 1)) -> H«(L(π,M,n)) % Hn

G{K{π, 1)) - 0

H£(K(M,n);M)

The cohomology classes

are defined, respectively,as the primary G-difference δ£(M) = δn(l9sp)
of the lifts 1 and sp over p and the primary obstruction to sectioning
the equivariant path-space fibration TL(π,M, n) -> L(π, M, w).

COROLLARY 3.7.

Proof. This follows from the short split-exact sequence of Corollary
3.6 since both cohomology classes are mapped to zero by s* and to the
identity transformation by i*. D

4. Equivariant Postnikov resolutions. Equivariant Postnikov reso-
lutions of G-spaces have been constructed by Triantafillou [18] and
Elmendorf [2]. We shall here develop a theory, following [11], [17]
for equivariant resolutions of G-fibrations.

Consider a G-fibration p: Y —• B with base points yo € YG and
b0 = ρ(y0) e BG. Assume that all three spaces F = p~ι{b0), Y and B
are G-connected and G-homotopy equivalent to G - CW complexes.

Let M_ be an abelian ^fc-group and

[F,K{M, n)]G = Hom^(π w (F,y 0 ), K)

the set of based G-homotopy classes of G-maps of F into K(λ£, n)
identified ([1], 1-26) to the corresponding set of natural transforma-
tion.
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If, furthermore, M_ is equipped with a π-module structure, as we
shall assume from now on, then the classifying G-fibration

exists. Make also B into a G-space by choosing a based G-map B —•
K(π, 1) inducing the identity on fundamental ^-groups.

DEFINITION 4.1. We say that the G-map a: F -• K(A£,n),n > 1,
can be G-realized by the G-map k: B -+ L(π_,M_, n+\) over K(π, 1)
if k lifts to a G-fibre map

Y —£-> PL(π,M,n+l)

I

such that ^li 7 : i 7 —• ΛΓ(M, n) is G-homotopic to a.

All maps and homotopies in this definition are assumed to be
based. Hence a and k represent cohomology classes in Hg(F;λ£) and
HQ+1(B;M), respectively. If F is G - (n - l)-connected, then here is
a partially defined homomorphism connecting these two Bredon co-
homology groups:

DEFINITION 4.2. Suppose that F is G - (n - l)-connected (and that
π{(F) is abelian if n = 1) and let yn

G+\p) e H^\B\πn{^)) be the
primary obstruction to sectioning p. The homomorphism

τG: Homκ(πn(F),M) - H^ι(

is called the equivariant transgression.

With the help of these concepts we can now formulate an equivari-
ant version of ([11], Theorem 4.1). The assumptions of F are as in
Definition 4.2.

THEOREM 4.3. Any G-map F —• K{M_,ή) in the G-homotopy class
of an

can be G-realized by a G-map over K(π, 1) in the G-homotopy class of
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The proof of this theorem follows the scheme of [11] and is accord-
ingly omitted. I needed Corollary 3.7 to prove the G-version of ([11],
Lemma 2.1).

We are now in a position to copy [14] and factor p: Y —• B into
equivariant fibrations of the following type:

DEFINITION 4.4. Let Z —• K(π_, 1) be a G-space over K(π, 1). Any
equivariant fibration over Z obtained as the pullback of a diagram of
the form __

PL(π,M,n+l)

Z —κ—> L{π,M,n + l)

where n > 1, M_ is some π-module, and k some G-map over K(π_, 1),
is called a K(π, l)-principal G-fibration.

Suppose that

is an exact sequence of ̂ -groups and that N_ is a ̂ -module. Consider
N_ as an A-mod\ήe through K and form the descending chain of abelian
^-groups

N = Γι

ά(N) D Γ2

ά(N) D o I^OV) D I ^ ϋ Ώ D •••

where ΓJ-{(N)(G/H) is the subgroup of Pά(N)(G/H) generated by
the set (am - m\a e A(G/H), m e N_{G/H)}. Note ([14], Lemma
3.2) that each Γ^(iV) is a G-submodule of N_ and all subquotients

Γ^(iV)/Γ^+1 (N), being trivial ^-modules, inherit a π-module structure.

The equivariant path fibrations over K(π, 1)

then exist. Using Lemma 3.7 and Theorem 4.3 these G-fibrations
can be exploited to prove the following equivariant version of ([14],
Lemma 3.3).

LEMMA 4.5. Suppose that N_ is A-nilpotent (i.e. that Γ^+1 (N) = 0for

some c > 1). Then the equivariant path fibration over K(B_, 1)

K(N,n) -• PL(B,N,n+ 1) -> L{B,N,n+ 1)

can be factored into a finite string ofK(π, 1)-principal G-fibrations.

It is understood that K(R9l)9 and then also L(B_,N_,n + 1), is a
G-space over K(π, 1) through the projection of B_ onto π.
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The equivariant version of ([14], Theorem 3.4) is now readily ob-
tained.

THEOREM 4.6. Suppose that F is G-nilpotent and that π^F) is
abelian. Then, for any given γ > 1, there exists a factorization

ofp: y —• B into a finite string of equivariant fibrations such that Y —•
Ys+ι is G - (r + \)-connected and each Y/+i —• Yj, 1 < / < s, is a
K(π, \)-principal G-fibration.

Proof, First G-realize the identity map of π{(F) as in Theorem 4.3.
There results a factorization

Y > Y2 • Yγ = B

of p such that G-homotopy fibre Y —• I2 is G-simply connected, in
particular G-simple. Then (Theorem 4.3 again) factor Y —> Y2 into a
finite string of K(7t_ι(Y2)9 l)-principal G-fibrations in the usual way by
killing the homotopy groups of the fibre one at a time. Finally apply
Lemma 4.5 with A = nx{F), B = πx(Y2) = πx(Y), N = πn(F) =
π_n+ι(B, Y), n > 1, and the G-nilpotency of F to factor each of these
K(Kι(Y)> l)-principal fibrations into finitely many K(JL, l)-principal
G-fibrations. D

The condition that πx(F) be abelian seems to be of a technical
nature and can presumably be omitted.

5. Applications to equivariant mapping spaces. Let p: Y —• B be a

G-fibration as in the previous section, let (X, A) be a relative G-CW
complex, and let u: X —• Y be a G-map. We shall study the space
FU(X9A;Y9B)G, consisting of all equivariant maps v: X -> Y such
that v\A = u\A and pv = pu=: U\, under various assumptions on the
fibre F.

Suppose first that M_\ @Q —> ^ a b is an abelian ^%-group and F =
ΛT(Λ/, Λ), « > 1, is the corresponding equivariant Eilenberg-Mac Lane
complex. Let J£_ = n_n{^) denote the resulting local G-coefficient
system on B.
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THEOREM 5.1. There exists a weak homotopy equivalence

which is natural in the first argument

Theorem 5.1 follows, exactly as in [13], from a Kϋnneth splitting:

LEMMA 5.2. There exists an isomorphism ofcofunctors

fl£(? x {X,A)\pi*2Jβ - H*Cl\IΓG{X,A\4))

on the category of trivial G -CW complexes.

Proof, Let Z be a trivial G - CW complex (i.e. ZG = Z) and let
(Γ*) Γ* denote the cellular (co)chain complex functor.

For each subgroup H < G, there is a natural adjointness isomor-
phism of chain complexes,

Γ*(Zx(XH

9A
H);pr$jr(G/H)) = Hom(Γ*(Z),Γ*(X/ /, i /

and the collection of all these form an isomorphism

ΓG(Z x (X,A);pr*2^) = Hom(Γ*(Z),Γ£(X,

Compose this isomorphism with the quasi-isomorphism

of ([13], Lemma 2.2). D

Suppose next that F is G-simple ([19], Definition 3) such that the
π-module π*(F) or, alternatively, the local G-coefficient system π+G^)
is defined. Then, by Theorem 4.6, we can factor p: Y -» B into finite
strings

of K(π, l)-principal G-fibrations inducing finite strings

ΐ
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of fibrations of equivariant mapping spaces. The interlocking homo-
topy sequences for these fibrations constitute an exact couple

E2

(-2,1)/ \ (0,0)

D2 <— D2.
(i,-i)

with homomoφhisms of the indicated bidegrees and with

E2

pq = πp+g(Fu(X, A; Yq+U Ygf, u),

D2

q = π

Since

E2 = ί H
pq I 0=
pq I 0 otherwise

by Theorem 5.1, this exact couple generates a Federer spectral se-
quence [3], [15], convergent under certain finiteness conditions.

THEOREM 5.3. Suppose that F is G-simple and that (X9A) is finite
dimensional or that F is finitely G-anticonnected. Then there exists a
2nd quadrant homology spectral sequence with

for p + q > 0 and E2

q = 0 otherwise, converging to

πp+q(Fu(X,A;Y,B)G,u)

when p + q > 0.

EXAMPLE 5.4. Let G = Z/2 act on (S71, *), « > 2, by reflection in a
hyperplane. Then π*+ Λ(Fw(5'w, *; Y)G) = π*+Π( Y; r G ) for any G-simple
space Y. The above spectral sequence has

{ coker(πq(YG) —• πq(Y)), p = -n, q >n,

keτ(πq(YG) - . π,(7)), p = -n + 1, 4 > * - 1,

0, otherwise.

and ^2 = 0. The spectral sequence of R. Schultz, ([15], Theorem
II.4.4) with πp+^+/(y'"^) corrected to πp+q-i(y[-v), has

( π oΓΓ) D = -n-2

π 9 _ i ( r G ) , p = -«,

0, otherwise
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and the differential

d2: πg(YG) = sEln>q+ϊ - sEln.u+2 = πq{Y)

is induced by the inclusion. Thus SE
3 — E1 and we see that these two

spectral sequences, in cases where they both apply, are not in general
isomorphic.

As to the global structure of FU(X, A; Y, B)G one has

THEOREM 5.5. Suppose that F is G-nilpotent with abelian funda-
mental @G-group and that the finiteness condition of Theorem 5.3 is
satisfied. Then each component ofFu(X,A; Y,B)G is nilpotent

To prove this statement, apply the refined Postnikov tower of The-
orem 4.5 and proceed as in [14].

A convenient feature of nilpotent spaces is the existence of local-
izations and we shall next determine a localization of the component
F°{X, A; 7, B)G of FU{X9 A; Y, B)G containing u.

Let ΛΓ: (fG —> <& be a local G-coeίficient system on the relative G -
CW complex (X, A), let P be a family of primes, and let Jί_p \<9G-*&
be the P-localization of jf_ defined in the obvious way: If Jt{G/H) =
(XH,MG/H)) the *£p(G/H) = (XH

9JL(G/H)P). We denote the P-
localization morphism by e: J[_ -> J(P.

LEMMA 5.6. The coefficient group homomorphism

is a P-localization if(X,A) has finite skeleta.

Proof. For each n > 0 and each configuration (H, g, K) such that
g~ιHg c K, let £(H9g9K) denote the equalizer of the homomor-
phisms

Γn(XH;<*(G/H))

Then ΓG(X,A;JΓ) = [)J?(H, g9K) is the intersection of these finitely
many equilizer subgroups and since, moreover,

> Γn{X,A;<£(G/H)P)
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is a /^-localization ([14], Lemma 5.1), the lemma follows from the
general facts that localization of abelian groups is an exact functor
which commutes with direct sums, equalizers, and finite intersections
[4], [6]. D

In [9], J. P. May et al. proved the existence of an equivariant P-
localization e: F —• FP for the G-nilpotent G-space F. Suppose that
Y(P) -> B is a G-fibration (of the type considered here) with fibre FP

and that e extends to an equivariant fibre map e\ Y —• Y^ over B.
Let

e:F2(X9A;Y,B)G-+F?u(X,A;Yp),B)G

be the map defined by post-composition with this map e.

THEOREM 5.7. Suppose in addition to the assumptions of Theorem
5.4 that (X,A) has finite skeleta. Then e is a P-localization.

Proof. Replace ([14], Lemma 5.2) by Lemma 5.5 but proceed
otherwise as in [14], [5] by induction on the refined Postnikov tower
of Theorem 4.6. D

See [4], [5], [21] for non-equivariant versions of 5.5 and 5.7.

Finally, let me use the opportunity for a correction. Corollary 5.4 of
[14] is incorrectly stated as the nonequivariant localization of F need
not be G-space. Instead, the right hand side of the equality should be
a component of the section space of (X XQ F)(P) ~^ %-
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