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TIME-HARMONIC SOLUTIONS OF SOME DISSIPATIVE
PROBLEMS FOR MAXWELL'S EQUATIONS
IN A THREE-DIMENSIONAL HALF SPACE

J. R. SCHULENBERGER

In constructing solutions of steady-state wave propagation prob-
lems, a common procedure is to assume that the frequency has a
small imaginary part and, with an eventual solution in hand, to let
this imaginary part go to zero — the principle of limiting absorp-
tion. There are three basic problems involved here. The first is to
establish the principle of limiting absorption itself, i.e., to show in a
rigorous manner that a steady-state solution can actually be obtained
in this fashion. The second problem is to find a class of functions in
which the solution so constructed is unique (a "radiation condition").
While in problems in exterior domains or with bounded perturbations
of the coefficients uniqueness classes are essentially dictated by the
asymptotic behavior at large spatial distances of the free-space Green
functions, in the problems with infinite boundary considered below
it is not immediately clear how to specify uniqueness classes. For
example, must the asymptotic behavior at large distances of eventual
surface-wave components of the solution be included in the conditions
designating such classes? Finally, since, strictly speaking, steady-
state solutions are physically meaningless (they fail to have finite en-
ergy), a third problem is to determine in what sense they are approxi-
mations for large times to the original time-dependent solutions—the
principle of limiting amplitude. In this paper we study these questions
for the steady-state versions of the dissipative problems for Maxwell's
equations considered previously. While these problems are particu-
lar examples, the results obtained do provide a guide and generalize
to other problems. For example, although the equations of elasticity
are much more difficult to deal with, the steady-state Rayleigh sur-
face wave of elasticity theory has basically the same properties as the
surface wave in the selfadjoint Leontovich case considered below. As
far as we know, questions of uniqueness for steady-state wave prop-
agation problems in domains with infinite boundary have not been
considered previously, although Eidus has recently established the
principle of limiting absorption for some such domains. Unfortu-
nately, the abstract approach used there apparently does not provide
enough information to make it possible to define uniqueness classes
for the solutions so constructed.

0. Introduction. To formulate the problem, let E = diag(ε/3, μ/3)
be the diagonal 6 x 6 matrix with diagonal elements ε, μ which are
the electromagnetic constants of a homogeneous, isotropic, loss-free
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medium filling the halfspace R3

+ = {x e R3: x3 > 0}. Let A(D),
Dj = -idj, j = 1,2,3, be the 6 x 6 matrix operator

0 i rot]
, rot =

\ —i rot 0

0 -d3 d2

d3 0 -dι
-d2 d{ 0

With A(D) = E~ιA(D) we now formulate the problem with the Leon-
tovich boundary condition of finding time-harmonic solutions of

(0.2) idtu(x91) - A{D)u(x, t) = -f(x) exp(-ivt), x e R3

+9

u{(xf, 0, t) + au5(x', 0, t) = u2(x', 0, t) - au4(x', 0, t) = 0?

x1 = (xux2) Gi? 2 , ί > 0 ? Q G C , R e α > 0 , zv ^ 0,

(0.3) /arw
; + A(D)u'(x91) - /(x) exp(wt), x e i?^9

MΊ(Λ;', 0, ί) - αi/^y, 0, t) = u'2(xr, 0,7) + m/4(;c', 0, ί) = 0.

If υ(x), υf(x) are solutions of

[A(D) - ul]υ(x) = f(x), [A(D) - vl]v\x) = f(x)

satisfying the respective boundary conditions indicated in (0.2), (0.3),
then the functions

u(x, t) = exp(—ivt)v(x), u!(x, t) = Qxχ>(ivt)v'{x)

will be the desired time-harmonic solutions.

After recalling the required information from [1] in §1, we justify
the principle of limiting absorption and construct such solutions in
§2; we then determine their asymptotic behavior for \x\ —• oo in R\.
In §3 we prove uniqueness of these solutions in appropriate "radia-
tion" classes. It turns out that in the nonselfadjoint case (a\ > 0) we
are able to prove uniqueness only for solutions v(x), vf(x) for which
exp(—wt)v(x), exp(ivt)υf(x) behave for large \x\ like outgoing hemi-
spherical waves in R^. We show via the limiting-amplitude principle
that these are precisely the physically interesting solutions. Further, it
is found that the asymptotic behavior of the surface-wave component
of the solution must be included in the designation of a uniqueness
class only in the selfadjoint Leontovich case a = ia2, a2 φ 0, i.e.,
when the surface modes from which the solution is formed have real
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frequencies. Designation of uniqueness classes in this case is more
difficult (and more interesting), since asymptotically spatial waves are
hemispherical waves decaying like l^l"1 while surface waves are cylin-
drical waves decaying only like |x|~1//2 along the boundary {x3 = 0}.

As mentioned above, versions of the limiting-absorption principle
have been widely used. We note that for hyperbolic systems with
elliptic spatial part the principle in a half space was established in a
rigorous manner for self adjoint problems by Matsumura [4]. For the
same such systems the principle of limiting amplitude was established
by Wakabayashi [10].

1. Background. In this section we recall the information from [2]
needed below and record the principle of stationary phase in the form
required in the next section. Below ιM denotes the transpose of a
matrix M, ιM denotes the conjugate transpose, and the adjoint of a
matrix or operator is denoted by Λf*.

With respect to the E inner product (see (0.2)) in C 6 , (a9β) = ΊaEβ,
the symbol A(η)9 ηeR3\ {0} of the operator A(D) of (0.2),

μ ιηΛ

0 -1/3 ί/2

m m o

is self adjoint with distinct eigenvalues λj(η) = jc\η\, j = 0, ± 1 , c2 =
(εμ)~ι, each of multiplicity two. The resolution of the identity for
A(η) is

(1.2) /

Λ(»7) = λι(η)Pι(ω) + λ.ι{η)P-ι(ω), ω = η/\η\,

where the Pk(ω) are mutually orthogonal orthoprojectors with respect
to the E inner product:

(1.3) \EPk) = EPk, δjkPk = PjPk, k,j = 0,±l,
ιωω 0

0 'ωωm

p(ω) = 2-1 \ - ω A ω A -
y [ jεcωA -ωΛ

ω = η/\η\
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In the space %? of functions f,ge L2(R\, C6) with linear product

(/, g) = ί ΊfEG

(ϊ?the operators Λ, Λ* defined as the closure of Λ(£>) on {/ e Q°(ϊ?+, C 6):

Bf(x',0) = 0,x' = (xuX2)}, {/ e C0°°(ΐζ,C6): B'f(x',0) = 0},
where

(1.4) Bf(x',0) = '(/l +af59f2 - α

(1.40 * ' / ( * ' , 0) = '(/i - afs,f2 + α/ 4 (y,0 + ) ,

and αi + ia2, a\ > 0, a2 φ 0. The first case is that of the classical
boundary condition [8], while the second is the case considered in
[3]. In both these cases Λ is selfadjoint, and the spectrum of Λ, σ(A)
consists of the entire real line R. In the third case studied in [2] (which
includes the second case) the spectrum of Λ consists of three parts:

(1.5) σ(Λ*) = σ(Λ) = Ru{m}U {e},

{tn} = {m(λ) = -pλ/ε, λe(0,oo)},

{e} = {e{λ) = cqλ, A G ( 0 ? O C ) } ?

P=Pι+ ipi, Pi > 0, a2p\ > 0, p2 = l/{με~x - a2),

q = Q\ + i<tλ, Qi < 0, a2qχ > 0, q2 = -a2p2.

In the general case, the spectrum thus consists of R plus two lines in
the lower half plane issuing from the origin to the left and right of the
negative imaginary axis.

To points of R there correspond generalized eigenfunctions of A(D),
A*(D) satisfying A(D)Ψj(x, η)± = λj(η)Ψj(x, η)±9 A*(D)Ψj(x, η)± =
λj(η)Ψ'j(x,η)±, j = ±1, and the boundary conditions (1.4), (1.4;)
given by

(1.6) Ψj{x9η)±

= (2π)-^2χTJ(p)eiχ/ζ[eipX3Pj(ω) - e

where we have written η = (ξ,p) € i?3, χTj are the characteristic
functions of the half spaces i ? ^ , j = ±1 (e.g., R^j = R± for j = -1),
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and

(1.7) C(ω) = Δ(ω)~1[εcω3(α2 - με~ι)Q + ac(ω')],

C'(ω) = A'(ω)~x[εccoτ,{με~ι -a2)Q + ac(ω')],

A(ω) = (μc - a.ω?)(aεc — ω3),

A'(ω) = (μc + αω3)(αθc + ω3),

Q= diag[l, 1,-1,-1,-1,1],

c ( ω ' ) = Γ °

c(ω') =

Cj(ω) =

]
c(ω') 0 J '
ωi-ωi - 0

0
ω\-ω\ 0

0
= C'(ω jωi).

We observe that

(1.8) ΊCj(ω) = Cj(ώ), Cj(ω)Cj(ώ) = Cj(ώ)Cj(ω) = I,

ώ = (ω1, -ω 3 ),

Cj(ω)Pj(ω) = Pj(ώ)Cj(ω),

C'j(ω)Pj(ω) = Pj(ώ)C'j(ω), j = ±1.

To points of {e} and {m} there correspond generalized eigen-
functions Σs(x,ξ), Σ's(x,ξ) satisfying A(D)Σs(x,ξ) = s(ζ)Σs(x,ξ),
A*(D)Σ's(x,ξ) = s(ξ)Σ's(x,ξ), S = E,M, s = e,m, e(ξ) = εq\ξ\, m =
-p\ξ\/ε, and the boundary conditions (1.4), (1.4') given by

(1.9)
ΣE(x,ζ) = (2πΓιμβE\ξ\-7/2exp[ix'ξ + i

ΣM(x,ξ) = (2π)~ιεβM\ξ\-y2

), -μ-χ\ξ\2),

Σ'M(x,ξ) = (2π)~ι

= <(ξ2e(ξ), -ξιe(ξ), 0, -a-χζxe(ζ), -a'1

'(ξ) = '(ξ2e(ξ),-ξιe(ξ),0,a-χξιe(ξU-lξ2e(ξ),-μ-1\ξn

βE = (iql2acε)χl2, βM = (-ipa/2)1?2, Im( ) 1 / 2 > 0,

τm(ξ) = ap\ξ\, τe(ξ) = -a~λμcq\ζ\, lmτm,e(ξ) > 0.
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Denoting by 3£n, n — 2, 3, the space of functions f,ge L2{Rn, C6)
with the inner product {f,g).wn — (f,Eg), the functions Ψ 7 , Ψy, Σ^,
Σ's, S = E, M, j = ±1, define bounded operators from %? to Xn

obtained by affixing the appropriate subscript and eventual prime to

(1.10) Ψ / M = ί lxV(x,η)Ef{x)dx,

Σf(ξ)= f ΊΣ(x,ξ)Ef(x)dx.

Their adjoints are

(1.11) xTg(x)= I Ψ(x,η)Eg(η)dη,
JR*

Γh(x)= ί Σ(x,ξ)Eh(ξ)dξ.
JR2

The operators Πy = Ψ*Ψ^? Us = ΣJΣ^? j = ± 1 , S = E,M, and
their adjoints are bounded projections in %? which are "orthogonal"
in the sense that 0 = Π7 Π7-/ = Π^Π^ = ΠsΠj = UEΠM = UMUS,
j] Φ / = 0, ±1, S = E, M. Here ΠQ is the orthogonal projection onto
the null space of Λ, Jf{A) — ̂ f (Λ*), defined by (see formula (A.9), p.
174 of [2])

f
JR

where Φ^, n = 2,3, is the Fourier transform

Φnf(η) = (2π)-n'2 ί exp(-ixη)f(x)dx

with inverse Φ*/(x) = Φnf(— JC), χ+ is the characteristic function of
the half space i?+, Po(ξ, p) is given in (1.3), and

1
0 <d(ξ)d(ξ)\'
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The semigroups S(ί) = exp(-iAt), S*{t) = exp(zΛ*ί) generated by Λ,
Λ* have the representations

(1.14) S(t)f = Π o / + Ψ\ exp(-ic| |ί)ΨΊ/ + Ψ-i exp(ic|

+ ΣEtxp{-ie{-)t)Σ'Ef+Σ*Mtxp{-im{ )t)Σ'Mf,

S*(t)f=nof+(Ψ'ιyeχp(ic\ |/)Ψi/+ (ΨL,Γexp(-/c| |ί)Ψ-i/

+ {ΣE)*exp{ΐe{-)t)ΣEf + {Σ'Mγtxp{iM{-)t)ΣMf

which for ί = 0 are the Parseval identities for Λ, Λ*. The last two
terms on the right in (1.14) do not occur in the selfadjoint case a = 0.

Suppose now that R(s) is a smooth, matrix-valued function on the
unit sphere S2 3 s, ω, x — \x\ω € R+, y € R\, r > 0, and ψ(r,y,s)
is a smooth function. The principle of stationary phase in the form
we require in the next section (see, e.g., [4], [9]) states that as \x\ —>
oo, uniformly with respect to r in bounded intervals of R+ and y in
compact sets

(1.15) / eκp(irxs)ψ(r,y,s)R(s)dS

= (2π) Σ {exρ(0>|x| - ijπ/2)ψ{r,y,jω)
j=±l

RO'ω^rxl-1} + q(rx),

Daq(x) = O(|Λ:Γ2) and smooth.

For R2 3 x' — \x'\γ, y = (cosφx,ύnφx), and s = (cosφ, sinφ) € Sι

the corresponding statement is

(1.16) / exp(irx's)ψ(r,y,s)R(s)dφ
Js>

x J ^ {exp(i7r|*'| - ijπ/4)ψ(r,y,jγ)R(jγ)} + q(rx')
j=±ί

Daq{x') = O(\x'\-3/2) and smooth.

2. The limiting-absorption principle and asymptotics. It follows di-
rectly from (1.10)-(1.12), (1.14) that for ζ $ σ(Λ), fe C$°(Rl,C6)

(2.1) v(x,ζ)= -ζ-ιΠof(x)+ Σ ΨytW-CΓ'Ψ /W
y=±i

+ ΣE[e( ) - ζΓιΣ'Ef(x) + Σ*M[m{ ) - ζΓιΣ'Mf(x)

vι (x; ζ) + vE{x; ζ) + vM{x; C),
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(2.1') v'(x;O= -Γ
7=±1

(Σ'E)*[e(-) -~ζ]-ιΣEf(x)

are solutions of

(2.2)

(2.2')

[A(D)

[Λ(D)

- ζlMx;

- ~ζl]v'{x

0
O

= f(χ),

= fix),

Bυ(x',0;ξ) =

B'v'(x',0;ξ)

0,

= 0.

We now take ζ = v±iε,v j^0,ε e. (0, εo] (with BQ SO small that v - /go
is not in σ(Λ) in the case —ie) and pass to the limit ε —> 0 to obtain
solutions V±(ΛT,V) = U(Λ:;I/ ± IΌ), υ'±(υ;v) = υ'(x;ί/ ± /O) of

(2.3) [A(D)-uI]υ(x)=f(x), x e R3

+,

(2.3') [A(D)-vI]v'(x) = f(x), xeR3

+, B'v'(x', 0) = 0.

This forms the content of the limiting-absorption principle. We then
determine the asymptotic behavior as |;c| —> oo of each component of
the solutions v±,v'±. This provides the means of specifying uniqueness
classes for them.

1. vo{x;v ± ιΌ) = -u-ιUof(x). We consider / € C0°°(i?3,C6)
extended by zero to R3. From (1.12)

(2.4) Πof(x) =

R(x)= ί exp(ix'ξ-\ξ\x3)\ξ\-ιPZ(ξ,-i\ξ\)φ(ξ)dξ,
JR2R2

po
φ(ξ)= /

Jo

The first term of TIQ/(X) is a singular integral operator, so (cf. [6], [7])

(2.5) (2πΓ3/2Φ*3P0Φ3/W = O(I*Γ 3), \x\ - oo.

For X3 = 0 we obtain by integration by parts

(2.6) |xΊ2l^(^0)|

Since R(x) is a harmonic function, (2.6) implies that it can be repre-
sented in i?3 by Poisson's formula, but this does not give an estimate
which is uniform in ω?> = X3/\x\. Proceeding directly from (1.12),
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(1.13), (2.4), we have for the zth column of R, JC3 > 0, supp/(x) c
K x [α, b], 0 < a < b < oo, K c R2 bounded, i = 1,..., 6,

/•oo

< c(/)x3

2 /

/
Ja

- b)2] < c(f) < oo.
Now

JR2'^
2

= f [(-Aζ)exp(ix'ξ-\ξ\x3))\ξ\-ιPZ(ζ,-i\ξ\)φ(ξ)dξ
JR2

{exp(ix'ξ-\ξ\x3)ξk\ξ\-2

k=\

χPζ(ξ,-i\ξ\)}φ(ξ)dξ

-xj ^p(ixfζ-\ζ\x3)\ξ\-2P^-i\ξ\)Φ(ξ)dξ
J R2

+ x3

2R(x)

k=\

From (2.7) |r5(x)| < c(/) < oo. Integration by parts in r\(x) gives
\r\(x)\ < c(f) < oo. Just as in (2.7)

rb roo

\r4(x)\<c(f)x3 / exp[-\ξ\(x3+y3)]\ξ\d\ξ\dy3
Ja JO

= c(f)[x3/(a + x3) - x3/(b + x3)] < c(f) < oo.
Finally,

x?Z(ξ,-i\ξ\)φ(ξ)dζ-2x2R(x)

-2

x?Z(ξ,-i\ξ\)(ξ,-i\ξ\)φ(ξ)dξ
2

1-2

x dζk?Z(ξ, -i\ξ\)φ(ξ) dξ - 2x2R(x).
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The last term has already been estimated in (2.7); the estimate for the
first four terms is essentially the same as for r4(x) above. Thus, from
(2.7), (2.7') we have \x\2R(x) < c(f) < oo. From (2.5) and similar
estimates for Dβvϋ we thus have

(2.8) V\X\2\DPV0(X; V ± iθ)| < c(f) < oo,

\x\ -+ oo, x3> 0, \β\ > 0.

2. vx{x;v± iO). Suppose first that v > 0. From (1.6), (1.8), (1.10)

(2.9) Ψ\f(η) = χΨ(pψη), fx{η) =
C\ (η)fι (η) = -/i (ή), ή = (ξ, -p)

Hence, from (1.11), (2.1), (2.9)

(2.10)

= (2π)-3/2 ί
JR

= {2πγl2 f exp(ixη)ηβ[c\η\-ζΓιMη)dη.

Suppose now that v e (vo - δ, UQ + δ), UQ - δ > 0, and let ψ e CQ°(R)

with supp ψ C {r: \CT — VQ\ < 4δ} c (0,oo), ψ{r) = 1 for \cr-vo\ < 3δ.
Define χ e C0°°(i?3/{0}) by χ(η) = χ(rs) - ψ(r), s € S2. Then for
ζ = u±iε with ε e (0,ε0] from (2.10)

(2.11) Di}v,{x;ζ) = {2π)-V2 ί exp(ixη)ηβ[c\η\ - ζ]'1 χ(η)Ά(η)dη

+ (2πΓ3/2 / exp(ixη)ηt[c\η\-ζΓι

JRi

= I{x;ζ) + J(x;ζ).

From (2.9), (2.11)

J(x; ζ) = Φ\P,Φ3g(x) - Φ\PX C,

Φig(η) = ηplc\η\ - ζ\~ι[i -

Φ3g(η) = ηβ[c\η\ - ζ]~ι[l -
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Since P\ (//) and P\ {tf)C\ (ή) are homogeneous of degree zero, J(x; ζ)
is thus the sum of two singular integral operators. Since g and g are
smooth and rapidly decreasing, it now follows easily (cf., e.g., [6], p.
50) that for any μ > 0 uniformly with respect to v e [v0 - δ,vo + S],
εe(0,ε 0 ]

(2.12) | / ( X ; I / ± Ϊ Ό ) | <

From (2.9), (2.11) with s = η/\η\

(2.13) I(x;ζ) = (2π)-i ί ί txp{ixη)ηβχ{η)[c\η\ - ζ]~ιPx{s)

x[exp{-iyη) - Cι(s)exp(-iyή)]f{y)dydη

χ(η)ηβ[c\η\-ζΓlPι(s)[
l R1

x {exp[i{x -y)η]- C{ (s) exp[i(x - y)ή]}f{y) dη dy

= (2π)"3 / D(x,y;ζ)f(y)dy,
JI

roo r

D(x9y\v±iε)= / [cr - {v ±iε)γιr2+βψ{r)dr I Pλ{s)sβ

Jo Js2

x{exp[*>(x - y)s] - C\(s)exρ[/r(x - y)s]} dS.

Replacing the interval |cr - VQ\ < 2δ by a semicircle of radius 2δ < 8Q
in the lower {y + iε) or upper {y - iέ) half plane and extending ψ
to this half disk by 1, it follows from (2.14) that I{x\v ± iO) exists
and is continuous in (JC, v), v e [v$ -δ, u0 + δ(η)]. Hence, from (2.12)
Dβv\ (x; v± iε) exists and is continuous on R^_ x [Z/Q—δ, v§+δ\ x [0, βol

We now use (1.15) to obtain the asymptotic behavior of I(x; v ± /O)
as \x\ -> ex). We set

(2.14) tj = tj(x9y)=j\x\-jωy9 tj = tj(x9y) = j\x\- jώy,

Qj(ω) = /

Qj(ω) =

j = ±l9 ω = x/\x\9
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then from (1.15), (2.13)

,_± 1

 Qj(CO)Jo cr-(v±iε)

- Qj(ω) ί
Joo cr-(u± iε)

Jor0 cr-{y± iε) '
q{x) = 0( |x | - 2 ) .

From Lemma 6.2 of [5] it follows that uniformly with respect to v e

roo

(2.16) / [cr - {y ± iε)]r2^βlψ(r)q(rx) dr =
Jo

/c G (0,1) arbitrarily close to 1.

It thus remains to evaluate
rooroo

(2.17) I±{tj,v,ε)= / [r-(v±iε)Γi]ψ(r)exp(irtJ/c)dr,
Jo

and /±(/y, i7, s). In the usual manner (cf. [5, 7]) we observe that

l/[r - (1/ ± ie)] = ±(2τr)1/2Φ,χ±( ) exp[i(u ± ιe) ](r),

where /±(ί) are the characteristic functions of the half lines R±, and
for a function &(x) = g(x +1) we have Φ\gt{r) = exp(/rί)Φig(r). By
the Parseval equality for the Fourier transform we thus have from
(2.17)

roo

/ ^ / .i/.fi) = ±/(2π)'/2 / exp(ϊ>ί, ΛOΦiX±( )exp[/(i> ± /β).](r)
J - O O

/*OO

/ Φx{χ±{.)txv[i{u±iε)\}ttlc{r)Φ\Φxφ{r)dr
J ~oo

ro

= ±i(2π)1'2 /
/»o

= ±/(2π)'/2 /

OO

»oo
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so that

(2.18) I+(tj,u,ε)

= i{2π)x'2 fJ C

J — oo

Γ{tj,v,ε)
/•oo

= -i{2π)λl2 / exp[i(v - iε)(tj/c - τ)]Φ\φ(τ) dτ
Jtj/C

from which it follows that I±(tj(x,y), u, ε), I±(ϊj(x,y), v, ε) are bound-
ed and continuous for x, y e i?+, v e [u0 - S, UQ + δ], ε € [0, εo] Now
for \x\ large and y in compact sets from (2.15) jtj(x,y), jtj(x,y) > 0,
j = ±1. Since φ{r) = c~2-^rι+^ψ(r/c), where ψ(r/c) = 1 for
\r - ι/01 < 3<ϊ, from (2.15), (2.19) we have

(2.19)

= /(2π)c-2-'/?l exp[iV(|x| - ωy)/c]vϊ+M

where the order relation is uniform with respect to v G [VQ - δ, UQ+δ],
ε € [0, £Q], and y in compact sets. Similarly,

(2.20)
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Hence, from (2.14), (2.15), (2.17), (2.19), (2.20)

(2.21)+ D(x,y;u + iO)

/(|x| - ωy)/c]

- Ci(ώ) exp[iu(\x\ - ώy)/c]}

D{x,y;u-iO)

= (2π)2c-2- |/?l|jcΓ'Pi(-ω)i/I+l/?l{exp[iV(-|x| + ωy)/c]

- Cι(-ώ)exp[ii/(-\x\ +

+ O(\x\-ι~κ),

and thus from (2.11), (2.13), (2.21)

(2.21)- Dβvι(x;u±i0)

= (2π)-'|Λ:Γ1P1(±ω)z/1+l/?l exp(±iu\x\/c)

x [θ(±ω;u) - Cι(±ώ)θ(±ώ;u)] + OflxΓ1"*),

= 2v1+Mg±(x;v)P±ι{ω)[θ(±ω;v) - C^(ω)θ(±ώ;i/)]

+ O(\x\-ι-κ),

g±{x;v) = (4π|Λ:|)~1 exp(±ii/|jf|/c),

θ(ω v) - c~2~\β\ωβ I exp(-iωuy/c)f(y)dy,
JRΪ

v>0,xe(0,l),\β\>0>

We note that the first term on the right in (2.21) satisfies both bound-
ary conditions (1.4) and (1.4') (see (1.7)). The O(\x\~ι~κ) term thus
also satisfies the boundary condition (1.4). For positive times
t exp(-iut)vι(x; v + iO) modulo O(\x\~ι~κ) is an outgoing hemispher-
ical wave (*3 > 0), while exp{-ivt)v\ (x; v - zΌ) is an incoming hemi-
spherical wave.

For v < 0 we see as in (2.12) that from (2.11), (2.10) for μ > 0

(2.22) D')vι(χ ,v±i0) = O(\x\-3+μ)

uniformly with respect to v e [v0 - δ, UQ + δ], ε € [0, 8Q].
3. υ-ι(x;u±iθ). Suppose first that v < 0. From (1.6), (1.8), (1.10)

(2.23) Ψ'^f(η) = X±f-i(η),

=-f-ι(ή),
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Hence, from (1.11), (2.23)

Dβv_{(x;v± iε) = D^_ι[λ-ι\η\ - {y ± iε)ΓλxV'

= - Z>*F_,[φ| - (M T iε)]-ιΨ'_J(x)

= -(2π)-3'2 J[c\η\-{\u\ψie)Γι

x [exp(ixη)ηβ - exp(ixή)ήβC-1(η)]χ±(p)f-ι(η)dη

exp(ixη)ηβ[c\η\-(\u\τiε)ΓιU(η)dη.ί
We can thus use the results of part 2 to conclude from (2.21) that

for v < 0.

(2.24) Dpυ-ι(x;u±i0)

= - (2π)-1 |xΓ1 |ί/|1+l/?lp_i(ψω)exp(^>|x|)

x [θ(ψω; \u\) - C_x{^ώ)θ{τω |i/|)] + 0{\x\-ι~κ)

+ O(\x\-ι-«),

where we have used the fact that C_i(ώ) = C\{ω) (see (1.7)). We
again observe that the first term on the right satisfies both bound-
ary conditions (1.4), (1.4'). The O(\x\~ι~κ) term satisfies the bound-
ary condition (1.4). For positive times (and negative frequencies)
exp(—ivt)υ-\(x; v + iO) modulo O(\x\~ι~κ) is an outgoing hemispher-
ical wave, while exp(—iut)v-ι(x', v — iO) is an incoming hemispherical
wave.

For v > 0, just as in (2.22),

(2.25) Dβv_x{x;v ±iθ) = O{\x\

4. υ'^x i/ψiO). From (1.6), (1.8), (1.10)

f[(n) = Pι(η)[Φ3f(η) ~ C[(ή)Φ3f(ή)],

C[(η)Ji(η) =-Ji
Hence, from (1.11), (2.1')

iε) = D^iΨ^lλ^η) - (y

= (2πΓV2 [ [c\η\ - (v Ψ iε)Γι

x [exp(ixη)ηβ - cxp(ixή)ήβC[(η)]χ1:(p)f'ι(η)dη

= (2π)"3/2 / [c\η\ -(uψ iε)]'1 txp{ixη)ηβ f[{η)dη,
JRi
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whence as in part 2 we find for v > 0

(2.26)

x[θ(ψω;v)-C[(ψώ)θ(τώ;u)]

+ O(\x\'ι-K)

+ 0{\x\-χ~κ).

Thus, modulo O(\x\~{~κ) exp(iut)υ[ (x; u - iO) for positive t is an out-
going hemispherical wave, while exp(iut)v[(x;u + zΌ) is an incoming
wave. The first term on the right satisfies both boundary conditions
(1.4), (1.4'), and the O(\x\~ι~κ) term thus satisifies the boundary con-
dition (1.4').

Just as in (2.22), for v < 0

(2.27) D^v[(x;uψ iO) =

5. υi^x i/ψiO) . From (1.6), (1.8), (1.10)

Hence, from (1.11), (2.1') for v < 0.

Πλ^iη) - {v

{_xγ[\η\ (M ±

so that as in part 4

(2.28) DPυ'_χ(x\vψ iO) = 2vγ+^{-ψ\p

x[θ(ψω;v)-C[(±ω)θ(τώ;is)]

+ 0{\x\~ι-κ).

For v > 0, just as in (2.22),

(2.29) Dβv'_λ{x;v ψ iO) = O ( | J C Γ 3 + " ) .

6a. υs(x;u ± iO), υ's(x;u ± iO), S = E,M. The case ax > 0.
These components are all estimated in the same way. We consider,
for example, VE{X\V ± iO). From (1.9)—(1.11), since e(ξ) is in the
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lower half plane and 0 Φ v G R9 we can immediately write

υE(x;u± IΌ) = Σ*E[e(.) - (u ± iO)ΓιΣ'Ef(x)

= iμq(caεΓι(2πΓι [ exp[ix'ξ + τe(ξ)x3]\ξ\~3

JR2

X
/o

- I/]"1 dξE / exp[iτe(ξ)y,]Φif(ξ,y3) dy3.
Jo

Setting h\ξ\ = Im τe(ξ) (see (1.9)) and noting that inf^ \e(ξ) -v\>δ>

0, we have just as in (2.7)

\xlvE{x;v±i0)\
rb roo

<c{yJ)x\dU \ exp[-A|ί|(x3+y3)]^l^3
Ja JO

< C(f) < oo.
We can thus estimate v(x\ v ± iO) in exactly the same way as R(x) in
part 1. Estimating D^v(x; v ± /0) in a similar way, we thus have

(2.30) \x\2\DPvs(x;v ± /Ό)| < c(u,f) < oo?

\v ± ιΌ)| < c(i/,/) < oo, S = E,M, \β\ > 0,

| x | —• oo, X3 > 0.

6b+. The case a - iai, a^ > 0. In this case p = J(μ/ε + a\)~x

q = aiP > 0, and e(ξ) = c |̂< |̂ lies on the positive semiaxis, while
m(ξ) = -p\ξ\/e lies on the negative semiaxis (this follows from (1.5),
(1.9), and the condition that Im τe^m > 0). This situation is responsible
for the fact that the surface waves decay only like |x|~1 / 2 along the
boundary {xτ> = 0}. We first consider the case ζ — v ± ie9 v > 0,
e G (0, 8Q]\ we choose δ > 0 so that u0 - 5δ > 0, v G (ẑ o — ̂  0̂ + ̂ )
Let ^ G C§°(Λ), supp ψ = {\e(r) -1/0| < 4(5} = {|c^r - i/0| < 4^} c
(0,oo), ^(r) = 1 for |c«r - i/0| < 3ί, and let χ G C0°°(i?2 \ {0}),

ι

(2.31) ^ ^ ( x C) = DfiΣ*E[e{ ) - ζ]'ιΣEf(x)

= DPΣ*E[e(')-CΓlX(')ZEΆ

+ DPΣ*E[e( )-ζΓι[l-χ(-)]ΣEf(x)

Since for ξ e supp(l - /) we have \e(ξ) — ζ\ > 3J, just as in 6a,
JE(x; v ± /0) exists, is continuous on i?^. x [z/0 - <5o?

 v + δ] x [0, βo

(2.32) |x|2|/i?(jc; 1/ ± ιΌ)| < c(i/, / ) < 00, x 3 > 0, |JC| -• 00.
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With h = μcg/a2, β = β'β3, and ce = (2π)-2μq(ih)H(a2cε)~ι

(2.33) IE(x;ζ)
r r

= c I dδ I dvtr'expf/jc'ίf — h\δlx^)lίl~ β3^(δY
6 JR2 JRl

x [e(ξ) - ζ]~ιχ(ξ) exp(-iy'ξ - hy3)Ef(y)

= ce ί D(x,y;ζ)Ef(y)dy,
JR3

where with ξ = rs = r(cosφξ, si
roo

D(x,y;ζ)= / dricqr - ζ)~
Jo

x / {sβ'g(s)Ίg{s)exp[irs(x'-y')]}dφ.

Since ψ{r) = 1 for \cqr - v$\ < 2δ, replacing this interval by a
semicircle in the lower (ζ = v + it) or upper (ζ = v - iε) half plane
and extending ψ to the half disk by one, it follows that IE(X', V ± iO)
exists and is continuous on R^_ x[v$-δ, ^o+^] Hence, DβvE{x\u±iε)
exists and is continuous on R\ x [v$ - δ, u0 + δ] x [0, εo]

We now estimate D(x9y;u ± iε) for large \x'\ and fixed x3 G i?+.
With x1 — |x'|y, γ = (cosφx,sinφx) from (1.16)

{exp(/r|jc;|yj) exp(-irsyf)sβ'^(s)Ί^(s) dφ}

= {2π)γl2\rx'\-χl2 Σ exρ[/y>(|x'| - γy') - ijπ/4]

-q(rx'),q(x>)

and hence
roo

(2.35) D{x,y ζ)= / dr{cqr - ζ)-χψ(
Jo

y3)]

x

x J ^ exp[0>(|x'| - γy')
j=±\

D2(x,y;ζ),
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where

roo
= / dr{cqr - ζ)~ιψ(r)r2+^ exp[-hr{x3+y3)]q{rx').

Jo

Repeating essentially the proof of Lemma 6.2 of [5], we have

(2.36) \D2(x,y;v±iε)\ < c(uo,δ,f)exp(-a'x3)(l + x3)\x'\-ι~κ',

\x'\ >R,x3> 0,κ' e (0,1/2) arbitrarily close to 1/2,

a' = μ{vQ - 4δ)/a2 > 0

uniformly with respect to v e [̂ o - S, vQ + δ], ε €. [0, εol
From (2.35)

(2.37) Dx{x,y;ζ)

= (2π)1/2|y|-'/2 ^
j=±\

roo

x / dr{cqr-ζ)-ι

Jo
x exp[ijr(\x'\ - γy')]

j=±l

roo

xi,yy,ζ)= I dr{r - ζ)-ιφ(r,x3,y3)Qxp(irtj),
Jo

= u±iε, tj=j(\x'\-γy')/cq, j = ±\,

= λ(r) exρ[-μr(x3 + y3)/a2],

supp λ(r) c [̂ o - 4δ, VQ + 4δ].

Hence,

(2.38) I+{tj,x3,y3;v,ε)

= i{2πγl2 ί' exp[ι(i/ + ie)(tj - τ)]Φ\φ(τ,x3,y3) dτ,
J —OO

Γ{tj,x3,y3;v,ε)
roo

= -i{2π)χl2 I exp[i(u - ie)(tj - τ)]Φ\φ(τ,x3,y3)dτ,
Jh
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from which it follows that /±(ίy,X3,j3;^,g) are bounded and con-
tinuous for x3, y3 G R+, v G [î o - ^o, i/o + δ], ε €. [O,εo] With
a = i/o - 5δ > 0, r - a > 0 for r € supp Λ

(2.39) Φ^(τ,x3,Λ) =(2πΓm J eirτλ(r)exp[-hr(x3 + y3)/cq]dr

= Qxp[-μa(x3 + y3)/a2Mτ,x3,y3),

π(τ,x3,y) = (2π)~^2 j eιrτλ(r) exp[-^(r - ά)(x3 + y3)/a2]dr.

It follows readily on integrating by parts that t2|π(τ,X3,y3)| < C{VQ).

Hence, from (2.38), (2.39)

| ^ ( x ' , y ) | < c±(^o)l^'r 1, IJC'I - oo, a = i/0 - 5δ > 0.

Hence, from (2.37)

Dl(x,y,u±i0)

= ± i{2

μ(p0 - 5<J)/a2,

X3 > 0, |x ' | —*• 00,

and from this and (2.35), (2.36) we have

(2.41) D(x,y;v±iO)

=c±(i/)|x'Γ1/2exp[±/i/(|y| - γy')/cq -

x (±γγ'^(±γγ^(±γ) + P±(x,y,u,β).

c^u) = ± i{2πγl2{cq)-\vIcqγ'2+W exp(=F(iπ/4)),

\P±(x,y;iy,β)\<φ0,β,f)exp(-ax3)\x'\-1-κ\

\x'\ large, x3 > 0, β = μ(ι/0 - 5δ) > 0,

K' G (0,1/2) arbitrarily close to 1/2.
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Thus, from (2.31), (2.32), (2.33), (2.41)

(2.42) DβυE(x;u±i0)

=4(v,β)exp(±w\x'\/cq - μux3/a2)\x'\-1/2^(±y)

x Ίg'(±γ)θE(±γ, v) + R±(χ, u,β, u> 0, a2 > 0,

θE(±γ, u) =(γ)β' / exp(τivγy'/cq - μvy3/a2)Ef(y) dy,

\RE{x,v,β)\ < c

c%{v,β) = ±i{2π

x exp{ψiπ/4),

a = μ(v0 - 5δ)/a2 > 0, K' e (0,1/2) arbitrarily close to 1/2,

x' = \x'\γ,X3 > 0, \x'\ large,

uniformly with respect to v € |>o - S, vQ + δ], VQ - 5δ > 0, δ = δ(vo).

REMARK 1. Writing vE{x;v± zΌ) = vE(x; v ± iO) + R^(x; v), we see
that exp(-iut)vE(x; v — iO) for t > 0 and each XT, > 0 is an outgoing
cylindrical wave, while exp(-ivt)vE(x;v — iO) is an incoming cylin-
drical wave. Each decays like Ix'l"1/2 for JC3 = 0. The leading term
υE(x; v ± iO) satisfies the boundary condition (1.4) and hence so also
does i?|(;c;z/). Further, [Λ(Z>) - ul]v(x;u ± iO) = 0 modulo a term
decaying like exp(-//^x3/a2)l^'r3/2> and hence [Λ(D) - uI]vE(x; v ±
iO) e%" as it must, since [Λ(D) - uI]υE(x; v ± iO) = Σ*EΣEf e 8? (see
(2.31)). We observe also that with A{D) of (0.1) for γeS1

(2.43) Ί&(±7)A(γ, 0)?(±γ) = ±2cq/μ.

From (1.9)—(1.11) we have

(2.44) DβvM(x;ζ) = DβΣ*M[m( ) - ζΓιΣMf(x)

= cm f ί {eχp(ix'ξ-a2P\ξ\x3)(ξγ'\ξ\-3+Kj?(ξ)
JRi JR2

x Ί^(ξ)[m(ξ) - C]-1 exp(-iξy' - a2p\ξ\x3)Ef(y) dξ dy,

m(ξ) = -p\ξ\/ε, cm = (2π)~2pa2ε(ipa2)
βi, ζ = v ± iε.

Since p > 0 for a2 > 0, in the case v > 0 we have \m(ξ) - ζ\ > const >
0, and, as in 6a, DβV\f{x\ v ± iO) exists and is continuous on R\ x
[ι/0 - δ, i/0 + δ] x [0, ε0], and for \x\ large

(2.45) |jt|2|i)*v(;c;i/ ± iΌ)| < c{v,f) < 00, v > 0, a2 > 0.
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In the case v < 0, \e(ζ) - ζ\ > const > 0, so the same argument
applies to D^vE(x;ζ), and for large \x\

(2.46) \x\2DβvE{x; v ± /0)| < c{y, /) < oo, v < 0, α 2 > 0.

As for D0VM(X; ζ), ζ = v±iε, v < 0, we proceed from (2.43) exactly
as above in (2.31)-2.42) and conclude that D^VM(X\ V ± iε) exists and
is continuous on R^ x [UQ - δ, UQ + δ] x [0, εo]> and for x' = \x'\γ, \x'\
large, v e [̂ 0 - <*> ^o + ̂ ] c (-oo, 0), |z/0| - 5δ > 0

(2.47)

= C^(Ϊ/, /?)|y|~'/2

X F ^ ( T y ) 0 M ( T ? ; i/) + R^(χ; v), v < 0, a2 > 0,

^ ( ^ y ; ^) = / exp(±zVεy///> + a2εuy3)Ef(y) dy.
JR\

\B$(x\v)\

< c(v,f,β)exp(-bxi)(\+x3)\x'\-ι-κ>, K' e (0,1/2),

b = a2ε0(\u\ - 5δ) > 0,

c± = ±i(2πr^2a2ε
2(ε\p\/p)3/2+m(ia2p)^ exp(±/π/4).

REMARK 2. The full analogue of Remark 1 holds for % ( x ; v ± /0),
< 0. In particular,

(2.48)

Further, from (1.14) with t = 0 and S = {0,±l,E,M}

jes

where the Πy are mutually orthogonal orthoprojectors in Sf [2, 3].
Thus, writing VR(X; V ± /O) = Vo(x; v) + vλ(x; v ± /0) + υ_i(JC; ί/ + /0)
for the "Raumwelle" and Vs(x; i/ ± /0) = vE(x; v ± /0) + VM{X\ V ± /O)
for the surface wave, we see in all cases from (2.2) that

%>3[A(D)-vI]vR(x;v±i0)=
;"=o,±i

is orthogonal to

a? 3 [A(D) - vl]υs{x; v ± ίθ) = ΠE/(x)
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6b . The case a = ia2, aι < 0. In this case p = -y/(μ/ε + a2) < 0
and q = -a2p < 0, so m(ξ) = -p\ξ\/ε e [0, oo), e(ξ) = cq\ζ\ e (-oo, 0]
(this follows from (1.5), (1.9) and the condition I m τ e , w > 0); the
roles of the TE- and TM-waves are thus reversed. Mutatis mutandis,
however, the arguments are exactly the same as in 6b+, so we shall
simply state the results.

For v > 0 DPVM,E{X\V ± iε) exist and are continuous on R\ x
Oo -δ,vo + δ]x [0, £oL uo - 5<5 > 0. For large \x'\ and Xj > 0

(2.49) DβυM(x;u±i0)

= d%(v,β)\x'\-ιί2ex.p(±wε\x'\/\p\ - \a2\εux3)jf(±γ)

x ~tJt{±y)θM{±r, v) + RM(X'> V)> U > °' a2 < °>

\V)= I exp(τwεγy'/\p\-\a2\εuy3)Ef(y)dy,

cM{v,β) = ±i(2
b = \a2\ε(v0 - 5δ) > 0, /c'e(0,l/2).

(2.50) \x\2\DβvE(x; v ± ιΌ)| < c(u0, f) < oo, v > 0, α2 < 0.

For v < QDPVM,E{X',V ± iε) exist and are continuous on R\ x
[tΌ - δ, VQ + δ] x [0, εo]> kol - 5<5 > 0. For large |ΛΓ'| and each x$ > 0

(2.51)

= 2|(i/, β) cxp(±w\x'\/c\q\ + μux3/\a2\)\x'\-l/2

x ϊ?(τγyg(Tγ)θE(τγ, β) + R%{χ, v, β),

v < 0, a2 < 0,

ex.p(ψiι/γy>/c\q\+μι/y3/\a2\)Ef(y)dy

,β) < c{vo,β,f)<txp{-ax3){\+x3)\x'\-χ-κ',
a = μ{\v0\-5δ)/\a2\>0, K'e (0,1/2).

/
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(2.52) \x\2\D^vM{x\ v db /0)| < φ/ 0 , β,f)<oo, v < 0, a2 < 0.

The results of this section can now be summarized as follows.

THEOREM 2.1. For any 0 Φ v e R and f e Cff(Rl) there exist
smooth solutions v±{x\v) = v(x\v ± iO), v±(x\v) — v\x\v ± /O) of
(2.3), (2.3'). For a = 0 αwrf α = ax + /α2, αi > 0, a2 φ 0, they have the
asymptotic behavior as \x\ —• oo zπ i?^.

(2.53) I;(JC;I/±/O)

;i/) - C±i(ώ)0(±ώ;i/)]

(2.54) V;(JC;

where

(2.56)

θ(ω; v) = c~2 / exp(-wωy/c)f(y) dy9

= x/\x\, ώ = (ωf,-ω3),

K G (0,1) is arbitrarily close to 1, /±i αr^ ^/v^n in (1.3), ^n<i C±i, C ^

are given in (1.7). Modulo O(\x\~~ι~κ) for positive t

outgoing hemispherical waves, while

-wήv-(x; v), exp(wt)vf

+(x; v)

are incoming hemispherical waves. The order relations are uniform
with respect to x$ > 0. For a = ia2f a2 φ 0, v±(x\ v) — vR{x\ v ± iO) +
vs(x\v ± iO) where vR(x\v ± /O) Λα.s ίΛβ asymptotic behavior (2.53).
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For x 3 > 0, \x'\ large, and v > 0

(2.57)
vs(x\v±i0)

s, S = e, E for a2 > 0, s, S = m, M for a2 < 0, e = cq > 0,

m = -p/ε > 0, τe= μcq/a2, τm = a2/p,

λs = const > 0 , /cΈ (0,1/2),

while for v < 0

(2.58) v 5 (*; i/±/0)

s,S = m, M, ybr α 2 > 0? s> ̂  = e, E for a2 < 0.

\R^(x;u)\ < constexp(-U5X3)(l + x^)\xι\~ι~κ\

λs = const > 09κ'e(091/2).

The exact values of the smooth, scalar functions of γ e Sι, 0, θ and
of the constants A, 1 can be read from (2.42), (2.47), (2.49), (2.51).
The function (Λ - vl)vs G ̂  is orthogonal in JΓ to (Λ — i / / ) ^ G
J^. For i/,ί > 0 modulo O{\x\-χ-κ>) exp(-wt)vs(x;v + iθ) is an
outgoing cylindrical wave, while Qxp(-wt)vs{x; v - iO) is an incoming
cylindrical wave.

3. The uniqueness theorem and the principle of limiting amplitude.
In this section we prove uniqueness of solutions of (2.3), (2.3') in
particular radiation classes which contain the solutions constructed in
§2. We then show via the principle of limiting amplitude that the
unique solutions of §2 are the physically interesting solutions.

We define

(3.1) &± = {w± e Cι(Rl;Cβ): Bw±(x9',0) = 0,

w±(x) = |x|~1

β smooth on *S2 for each u}.

The class έ%± is defined in the same way with B replaced by B1. For
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v > 0 we define the classes of functions £%^ S = E, M, as follows:
w± e R^ iff

(3.2) (l)w±e Cι{Rl, C6), and w± = w£ + wi,BWfs = 0 on

{*3 = 0};

(2) w£ e &± and for x3 > 0, \x'\ large

\Rf(x;v)\ < const\x'\-ι-κ'h(x3), h e L2(R+),κf e (0,1/2);

(3) (Λ - vl)w£ e a? is orthogonal to (Λ - i//)v| e ^

(4) for each 0 < R < oo

lim^oo j j ^ i ^ έ / x ' ^ v K ^ L ^ t Kx L) ^ 0,

and ΊS(±γ)A(γ,0)S(±γ) = const φ 0, y e 5 1 .

For ι/ < 0 the class « ^ ω is defined in the same way except that in (2)
'| -> Ti\x'\ and S(±γ) -

REMARK. Condition (4) for vs(x\ v ± zΌ), S — E,M, in the present
case is automatically satisfied, since

Ίυs(x', L;u± i0)A3vs(x', L;v± /O) = 0

for any L > 0 (this follows from (2.31) and the ensuing argument,
since ~*S(ξ)A3S(ξ) = 0,5 = E,M). In more general situations, how-
ever, (e.g., elasticity) (4) is satisfied but not trivially as here. The
second part of condition (4) is satisfied because of (2.43), (2.48). Oth-
erwise, the fact that the v(x;v ± iO) constructed in §2 belong to 3l±
or ^ £ follows from Theorem 2.1.

THEOREM 3.1. Suppose w±, w'± are solutions of"(2.3), (2.3') with
f e C^{R\,C6) and 0 Φ v e i?. In the nonselfadjoint case w+ is
unique in M+ andwL is unique in &- [these are the outgoing solutions).
In the self adjoint case a = 0 w± are unique in 3l±. In the self adjoint
case a = ioti, a2 φ 0, w± are unique in

COROLLARY. If a = 0 or a = ia2f ot2 Φ 0, the solutions υ±(x;u)
of (23) constructed in §2 are unique in 3ί± or ^ respectively. In the
case a\ > 0 v+(x\ v) is unique in &+, and v'_(x\ v) is unique in 3Z'_.
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Proof of Theorem 3.1. We first consider the cases a = 0 or a =
a\ + ioii, a\ > 0. Thus, suppose w, w' e Cί(R3, C6) and for v Φ 0
(Λ - vl)w = 0, (Λ - vl)w' = 0 in i?^s Bw{x', 0) = 0, tf'w'C*', 0) = 0.
Integration by parts in the intersection of i?+ with a ball of radius R
then gives for u = w, w'

= i ί Tu(x',0)A3u{x',0)dx'
J\x'\<R

-if Ίu{x)A{ω)u{x)dSR(x)
jRin{\x\=R}

where AT, is the coefficient matrix of D3 in (0.1) and ω = JC/|JC|. Since
Bw(x',0) = 0, B'w'(x',0) = 0 and A3u = t(u5,-u4,0,-u2,Uι,0), we
thus have

(3.3) f τw(x)A(ω)w{x)dSR(x)
jRίn{\x\=R}

= -2aι ί [\w4(x', 0)|2 + \w5(x', 0|2] < 0
J\x'\<R

(3.3') / Ίw'(x)A(ω)w'{x)dSR(x)
JRln{\x\=R}

J\x'\
= 2α,

'\χ'\<R

If now w = w± € Sί±, w' = w'±e M'±, then from (3.1), (3.3), (3.3')
and the fact that A(ω)P±ι(ω) = ±P±ι(ω), we have

(3.4) ±f Ί[P±ι(ω)β(ω,v;w±)]P±ι(ω)β(ω,v;w±)dS + O(R~K)
Js2

= -2a{ f [\w4(x',0)\2 + \w5(x',0)\2]dx' < 0,
J\x'\<R

(3.4')

± ί Ί[P±ι(co)β(ω,v;w'±)]P±ι(ω)β(ω,v;w'±)dS + O(R~K)
Js2

= 2α, / [\w'4(x',0)\2 + \w'5(x',0)\2]dx' > 0.
J\x'\<R

Letting R —• oo, it follows from (3.4) in the self adjoint case a = 0
that w;± = O(\x\~ι~κ), whence, since K > 1/2, w± E. Sf and is thus
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an eigenfunction. Now zero is the only eigenvalue and v Φ 0, so that
w± = 0. The assertions for w+ and w'_ in the nonselfadjoint case
follow in the same way.

We now suppose that w± e 31% and (A—vI)w±(x) = 0 in i ? | , v φ 0,
w± = w£ + w | . Condition (3) of (3.2) implies that (Λ - vl)w£ = 0
and (Λ - vl)w^(x) = 0 individually. It follows just as above that
Wξ e a?. Now let Cj( = {x e R^: \x'\ <R,0<x3< L}. Then, since

$.{x\ 0) = 0 implies Ίw^{x', 0)A3w£(x'9 0) = 0, we have for γeS1

0 = (wl [A - ul]wξ)ck - ([Λ - ul]wl ws

±)CL

-if Jwi(x\L)A3wϊ(x',L)
J\x'\<R

- i t ί Ίwϊ(x)A(γ,0)wi(x)dx'dx3.
Jθ J\x'\=R

Letting L —• oo and using condition (4) of (3.2), it follows that

roo r

0= / twi(x)A(γy0)wi(x)dxf dx3.

Jo J\x'\=R

Now from condition (2) of (3.2) we have

r roo

(3.5) 0= exp(-2τxφ)\θs(x;u)\2tS(±γ)
Js* Jo

xA{γ,0)S{±γ,0)dx3

roo r _

+ / dx3 exp[{τi\x'\-τsx3)fs]θ(γ;u) {S(±γ)
JO J\x'\=Rroo r

/ dx3 exp[(±/|x;| - τsx3)/s] 'R^x; v)θs(γ; v)
Jθ J\x'\=R

xA(γ,0)S(±γ)Rι/2dφ

Γ dχi ί ΊRS(X'> »)A(y> 0)RUx; V)R dφ.
Jθ J\x'\=R

From (3.2) and Cauchy's inequality the second and third terms are

bounded by constR~ι/2~κ'\h\^R^. The last term is bounded by const

R~ι~2κ'\h\ί2(R)+ Thus, letting R —• oo in (3.5) and integrating on x3,
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we have

0 = / \θs(γ;u)\2ΊS(±γ)A(γ90)S(±γ)dφ.

From the second part of condition (4) it now follows that θs{y\ v) = 0
for a.e. γ e Sι. Since R^(x u) e 3?, we thus find that also w$ e 3*.
Hence, w± = w± + w | e J^, so, as above, w = 0. This completes the
proof of Theorem 3.1.

Because of the simple structure of the spectrum, in §2 we were
able to construct solutions of (2.3), (2.3') from both sides of the real
axis even in the nonselfadjoint case. Our uniqueness proof, however,
works only for solutions obtained from the side of the real axis in
the resolvent set. There is some obscure justice in this: the outgoing
solutions w+9 w'_ are the physically interesting solutions, since time-
harmonic incoming solutions are obtained via limiting amplitude by
going backward in time which is impossible in the nonself adjoint case.
We proceed to demonstrate all this.

Let u(x,t), u'3(x,t) be the solutions in a? of problems (0.2), (0.3)
with / G C^{R\, C6) with W(JC,0) = 0, w'(x,0) = 0. Then by Duha-
meFs principle we have

(3.6) u(x, ή = i ί [S(t - τ)f](x) exp(-zVτ) dτ,
Jo

(3.60 u'(x, t)= -i f [S*(t - τ)f](x) exp(zVτ) dτ.
Jo

By a change of variables we have from (1.14)

(3.7) e\p(iut)u(x9t) = i exp(wτ)[S(t)f](x)dτ
Jo

= i f exp(ιi/τ)[Πo/(x) + Ψ? exp(-ic| \τ)Ψ\f(x)
Jo

+ Ψl1exp(/φ|τ)Ψ'_1/(x)

+ Σ*Ecxp(-ie(.)τ)Σ'Ef(x)

+ Σ*Mexp{-im{.)τ)Σ'Mf(x)]dτ

9t) + W-.\(x9t) + WE(X t)
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(3.70 exp(-ivt)u'(x,t) = -/ f exp(-ivτ)[S*(τ)f](x)dτ
Jo

(ΨΊ)*exp(/c| \τ)Ψxf(x)

+ (Ψ/_1)*exp(-/c| |τ)Ψ_1/(x)

+ (Σ'E)*(ie( )τ)ΣEf(x)

+ (Σ'Myexp(im(.)τ)ΣMf(x)]dτ
= lϋgC*, t) + wi (*, O + ^ - I (*> t) + W'E(X> 0 + ^ M C * * O

It is clear that the limit as t —> +oo of Wo(x,/) does not exist unless

Πo/(-*) = 0 which we henceforth assume. As in (2.9), (2.10) with

integration by parts

- c2τ2Ψ\ exp(-/c| |τ)ΨΊ/(jc)

x[exv(ixt])fx(η)\η\2]d\n\

has finite modulus, so there exists iy > 0)

(3.8) lira Wi(x,t)
<->00

/•oo

= i / exp(zVτ)ΨΪ exp(-/c| |τ)Ψ/

1/(x) dτ
Jo

ro

= i(2π)-^2 /
Jo

ro

= /(2π)~3/2lim / exp(-ετ)^fτ / exp[/τ(i/ —
β o y J

xexp(ixη)f{(η)dη

= (2π)-3/2lim f exp(ixη)[c\η\ - [y + ι β ) Γ 7 i ( ^ ) ^

= v\{x\v + iO)

of part 2, §2. Continuing in this manner, we see that there exists the
limit as t —> 4-oc of exp(ivt)u(x,t) = v(x;v + iO) where v(x;ι^ + zΌ)
is the solution of Theorem 2.1.

In exactly the same way as in (3.6) there exists

lim -/ / [exp(-/ι/τ)(Ψ/,)*exp(/c| • \τ)Ψιf]{x)dτ
^°° Jo

= υ[(x;v-iθ)
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of part 4, §2, and, continuing in this manner, we conclude from (3.7')
that there exists the limit as t —• oo of exp(-ivt)u'(x, t) which is equal
to v'{x\v - /O), the solution of Theorem 2.1.

Further, in the self adjoint cases

lim w\(x9t)
t-+-oo

= -i(2π)-y2 f° ί exp[iτ(v-c\η\)]exp(ixη)Λ(η)dηdτ

= lim / [c\η\ - (1/ - ie)]~l txp{ixη)fx{η)dη
ε O J

of part 2, §2, and in this way from (3.7) we see that there exists the
limit as t —• -oo of exp(ivt)u(x, t) which is equal to v(x\ v - zΌ) where
the latter is the solution of Theorem 2.1. We summarize these results
as follows.

THEOREM 3.2. Let f e Cξf(Rl, C6) be in the complement of the null
space of A, and let u(x, t), u'(x, t) be the solutions in %? of'(0.2), (0.3)
with u(x9 0) = 0, u'(x9 0) = 0. Then in the selfadjoint case

lim exp(ivt)u(x,t) = υ(x;v ± iO)
t—+±oo

where v(x; v ± iO) are the solutions of '(2.3) considered in Theorem 2.1.
In the nonselfadjoint cases

lim exp(wt)u(x, t) = v(x\ v + /0),
t—>oo

lim txp(-ivt)u'ίx,t) = v\x\v - /0),
t—>oo

where the right sides are the outgoing solutions of '(2.3), (2.3)' of The-
orem 2.1.

Concluding remarks. In the applied literature it is often assumed
that the source is a time-harmonic point source, e.g., an oscillating
dipole. The spatial part of the response is then sought as a solution of
the Helmholtz equation (a Hertz potential), and a prescription is given
for constructing the electric and magnetic fields from this potential.
What this really amounts to is a specialization of the Green function
for the original problem for Maxwell's equations. In the present case
the Green functions can be read off from the material above (as the
kernel of &± in the expression v± = &±f)9 but a simple expression
(without transforms) is obtained only in the case a = 0, i.e., the case
of the classical boundary condition. It seems worthwhile to present
this expression.



344 J. R. SCHULENBERGER

For Maxwell's equations in all of R3 the outgoing (+) and incom-
ing (-) Green functions for the time dependence exp(-i'W) are (ε =
μ=l)

G±{x,y,v)=(vI + A{Dx) + ^[d*ld* ^ ^ g±(x - y u),

where g±(x; v) are the functions of (2.32), the matrix [d <g><9],y = djdj,
and on functions / = '(f\f2) e C0°°(i?3, C6) in 2'

rot* g±(x - \v)(f) = g±(x - .;i/)(rot/ f),

dx®dxg±{x - -;u)(f) = g±(x - ;v){d®df), i = 1,2.

It is straightforward to verify that

'va\ _ ( v1 g+{x -y\v)a + d ® dg+(x -y\v)a
+ v >s, jy Q j y -wrotg+(x-y;u)a

is the usual response to an electric dipole at the point y € R3 with
direction a € R3.

For 7?+ and the classical boundary condition (a = 0) the Green
functions are

,y\v) = G±(x,y;u) -R±(x,y;u),

R±(x,y,v)

y = {y',

where Q is the matrix of (1.7).
We leave to the reader as an interesting exercise the verification that

&±(x9 *; v){f) has the asymptotic behavior (2.53) and that the response
with the classical boundary condition to the electric dipole above is
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