
PACIFIC JOURNAL OF MATHEMATICS

Vol. 146, No. 1, 1990

POINCARE COBORDISM
EXACT SEQUENCES AND CHARACTERISATION

HIMADRI KUMAR MUKERJEE

Exact sequences connecting oriented and unoriented cobordism
groups of Poincare duality spaces, analogous to Rohlin's and Wall's
exact sequences in differential and piecewise linear categories, are
established and characterisation of elements of Poincare cobordism
groups (both oriented and unoriented) in terms of spherical charac-
teristic numbers and index are given.

Introduction (Notations and Main results). By a Poincare duality
space we will mean a finite complex satisfying Poincare duality with lo-
cal coefficients in the sense of [27]. Corresponding to each P. D. space
Xn of dimension n, there is a fc-spherical fibration v\ (A: > n, i.e.,
vx is a stable fibration) unique up to fibre homotopy equivalence, and
a commutative diagram:

E{vχ) > E(γBG)

X —£-> BG,

where JBG
 :

 E(JBG) —• BG is the stable universal unoriented spherical
fibration and / is the classifying map of vx. Let γgsc '- E(YBSG) -*
BSG be the stable universal oriented spherical fibration (BSG is ob-
tained from BG by killing the first Stiefel-Whitney class). If vx can
be classified by YBSG then we call X an oriented P.D. space. We now
define various Poincare cobordism groups. Suppose ηk: E(η) -> B is
a fc-spherical fibration. We define T(Sn+k, T(ηk)) to be the set of
cobordism classes of triples (Xn, / , b), where Xw is a P.D. space
and / , b are base and total space maps, respectively, in the following
diagram

i ί
X — f - ^ B.

85



86 HIMADRI KUMAR MUKERJEE

T(η) denotes the Thorn space of fibration η (see [2, 10]). We define
Ω£ D to be T(Sn+k, T{yBSG)) = T{Sn+k, MSG) and Λ^ D to be
T(Sn+k, Γ(yB G)) = T(Sn+k, ¥ G ) . (We are using here the standard
notations MSG, Λ/G for the Thorn spaces of 755(7, JBG respec-
tively.) For brevity we shall denote elements of Ω P D or Nf Ό- by
[X] keeping / , b implicit, unless otherwise needed.

Define N% Όm to be the cobordism classes of pairs (Mn , a), where
Mn is a P. D. space and a is a lift of the first Stiefel-Whitney class,
W\(M)9 of M to an integral class; that is, the following diagram is
commutative (up to homotopy):

There are natural maps,

(i) Ω£ D —> Λ^ D , which is induced by the natural projection
π : BSG -+ BG

(ii) N*Ό' - ^ QP-Pj , which will be constructed in §5, see (5.4),

(5.5), (5.6).

We are now in a position to state our main theorems:

THEOREM (A). The sequence

Ω P . D . Λ Ω£ D -U N*'Ό-

is exact for all n > 0, where 2 denotes the homomorphism obtained
by taking the disjoint union of two copies of an element of Ω£ D .

THEOREM (B). The long sequence

_^ o p D JL o p D J ^ ΛΓP D JL+ o p D Ju

is exact for all n>\.

Before stating the next results let us introduce some terms. Ele-
ments of H*(BG; Λ) are called universal spherical Λ-characteristic
classes. The normal spherical Λ-characteristic classes of a P. D. space
X will be the Λ-characteristic classes of uχ as induced by vx —> γBG.
Characteristic numbers of X are defined as usual.



POINCARE COBORDISM EXACT SEQUENCES AND CHARACTERISATION 87

THEOREM (C). An element [X] e NξΌ- is zero if and only if the
Z/2-normal spherical characteristic numbers of X vanish.

THEOREM (D). An element [X] e Ω^ D is zero if and only if

(i) n^O (mod 4) and all z/2 as well as integral normal spherical
characteristic numbers of X are zero.

(ii) n = 0 (mod 4) and all 1/2 as well as integral normal spherical
characteristic numbers and index of X are zero.

In the category of Poincare duality spaces, P. D., Theorem (A) rep-
resents an analogue of Rohlin's Theorem [18] and Theorem (B) rep-
resents an analogue of Wall's theorem [25] giving exact sequences of
cobordism groups of differentiate and piecewise linear manifolds.
Theorems (C) and (D) characterize Poincare cobordism classes by
means of characteristic numbers and index analogous to the theorem
of Thom-Milnor-Wall in the category DIFF of differential manifolds
(see e.g. [23, 24]).

The main obstacle in the transition from DIFF to P. D. is the ab-
sence of transversality principle in the latter category. Levitt's exact se-
quence [12] measures with sufficient precision this failure of transver-
sality principle in P. D.. So our main task is to examine Levitt's
sequence closely while considering Poincare cobordism groups of di-
mension n > 3. For n = 1, 2 direct arguments using classification
of Poincare duality spaces of dimensions 1, 2 of [26, 9] give us the
required results.

The paper is arranged as follows: In § 1 we prove Theorem (A) for
n = 1,2. In §2 we recall Levitt's exact sequence and prove a funda-
mental lemma (2.3). In §3 we prove Theorem (A) for n ψ 3 (mod4),
n > 3. In §4 we prove Theorem (A) for n = 3 (mod 4). Section 5 is
devoted to the proof of the existence of the map d: N* D —• ΏζP{.
In §6 we prove Theorem (B). Theorems (C) and (D) are proved in §7.
The results of this paper were announced in [14, 15].

I am indebted to the referee for his invaluable comments and sug-
gestions, especially in selecting a suitable definition of JVPD .

1. Proof of Theorem (A) for n = 1, 2. We first recall the following
classification theorems for low dimensional P. D. spaces:

(I.I) THEOREM (Wall) [26]. An one-dimensional P.D. space is a
homotopy circle.
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(1.2) THEOREM (Eckmann & others) [9]. A two-dimensional P. D.
space is homotopy equivalent to a closed surface of genus > 0.

With reference to the above theorems we can proceed to prove The-
orem (A) for n = 1, 2. The same kind of proof can be given for both
n = 1 and 2. We instead prefer to give different kinds of proofs for
n = 1 and for n = 2.

n = 1. Let [(X1, / , b)] be an element of Ω^ D . If h: Sι -> X1

is a Wall homotopy equivalence, then the pair (D2 U^ X1, X1) is ho-
motopy equivalent to (D2, Sι), and hence is a P. D. pair. Moreover,
since π\(BSG) = 0, we have that

foh:Sι ->Xι -+BSG

is null homotopic. Hence /o/j extends to a map f:D2-+ BSG. Let
g = / u / : D 2 U / 2 I 1 —> i?SG, and b be the map of normal spherical
fibre space covering g_. Then (X 1 , f,b) becomes the boundary of
((D2 uhX

ι,Xι),g,b). This shows that [{X1, / , b)) = 0 in ΩfD .
Hence Ω\Ό- = 0. So Theorem (A) is trivially true for n = 1.

/i = 2. Let [(X2, / , 6)] G ΩP D . Let h: X2 -+ il/2 be an Eck-
mann et al. homotopy equivalence, where Λf2 is some closed surface
of genus > 0. This means that we have the following homotopy com-
mutative diagram:

X -^—> BSG

M > BSO,
g

where g classifies the stable normal bundle of M and i is the natural
inclusion. Since M is the boundary of an orientable 3-manifold TV3

(note that Ω^ i f f = 0), we have the following commutative diagram:

incl. V

N > BSO
g'

Now considering M as the mapping cylinder of h (up to homotopy)
we have a homotopy inclusion X —• iV, and if b represents the map of
normal spherical fibrations covering iog1 then we have that (X, / , b)
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is the boundary of ((N, X), iogf, b). Hence [(X,f,b)] = 0. Thus
ΩP D = 0. This proves Theorem (A) for n = 2.

2. The Levitt exact sequence and a fundamental lemma. As we have
mentioned in the introduction the transversality principle played an
important role in the proof of existence of Rohlin's and Wall's exact
sequences. This principle does not hold in P. D. and Levitt, Jones,
Quinn [12], [11], [17] measures this failure with sufficient precision in
the form of an exact sequence. With reference to a spherical fibration
η(E(η) —> B) this sequence can be written as:

(2.1) -> Ln(m(B)9w) - T(Sn+k , Tin10)) - π k

where Li(π\(B), w) are the surgery obstruction groups of Wall [27],
w : %\ (B) —• z/2 being the homomorphism which sends an element x
in U\{B) nontrivially if η\Sι is nontrivial for Sι —• B representing
x.

This sequence is natural with respect to the morphisms

E(η) -±-+ E{rf)

B —£-> 5 '
This means that the following diagram is commutative:

• Ln(πι(B),w) • T(Sn+k, T(η)) • πn+k(T(η)) •

(2.2) U(«). Ing) \nb).
ψ 4- 4-

(see e.g. [2]).
We specialize to the case when

ί
*1 = 7BSG and η' = γBG> B = BSG,

B' = BG, T(η) = MSG, T{rf) = MG.

g = π:BSG->BG, T(g) = r.

The proof of Theorem (A) for n > 3 will be based on an exam-
ination of (2.2) in the case when (2.3) holds and on the following
fundamental lemma:

(2.4) LEMMA. The sequence

π*(MSG) - ^ π*(MSG)

is exact at the middle term.



90 HIMADRI KUMAR MUKERJEE

Proof. Since π*(MG) is a Z/2-module (see [4]) the image of 2 is
contained in the kernel of T(b)*. Conversely, suppose x e πn{MSG)
satisfies T(b)*{x) = 0. We have to show that x is divisible by 2. It
is known from [4, 16] that MSG is homotopy equivalent to a wedge
of Eilenberg-Mac Lane spectra, and the π*(MSG) are finite abelian
groups whose 2 torsion parts are isomorphic to the homotopy groups
of products of Eilenberg-Mac Lane spaces of type (Z/2r<, /ι, ). That is,
there is an isomorphism (with reference to the homotopy equivalence,
say / , mentioned above):

1 ® /*: πn(MSG)2 - ^ πn( X

where πn(MSG)2 stands for πn(MSG) localized at 2. Now, if x
belongs to the odd torsion part of π*(MSG) then T(b)*(x) = 0 and
also x is divisible by 2. So we need only to show that 1 ® f*(x) is
divisible by 2 (where x is such that T(b)*(x) = 0). For this it is
enough to show that for each /, 1 ® fi*(x) is divisible by 2, where
1 ® fi* is the homomorphism

1 ®fi*\ πn(MSG)2 -* πn(K(Z/2r., /!,-)),

(clearly x φ 0 if and only if /? = rti for some Z's).

Let, for k > n, # ( 0 £ Hni+k(MSG(k): z/2r/) be the generator of
the submodule isomorphic to Hn>+k(K(Z/2r>, n/ + fc) Z/2rι), where z
is the fundamental cohomology class of K(Z/2r<, rt + k). Since T(b)*
is onto in cohomology with z/2 coefficients, there exists an element
y E Hni+k(MG\ Z/2) such that Γ(6)*(>;) = >^(i) mod2.

Let y — g*(Ί) where

is a map classifying y and 7 is the fundamental class of K(Z/2, Πi
If π: A:(Z/2r

ί, m + k)^ K(Z/2, n/ + fe) is the map such that π*(ϊ) =
/ mod 2 then we have the following homotopy commutative diagram:
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This gives rise to a commutative diagram:

πn+k(MSG(k))2 - 1 2 ^ z/2'.

πn+k(MG{k))2

From the diagram (2.5) it follows that if T(b)*(x) = 0 then 1
is divisible by 2. This finishes the proof of the lemma.

3. Proof of Theorem (A) for n φ 3 (mod 4), n > 3. Diagram (2.2)
in the case of (2.3) becomes:

(3.1)

T{b)mU*)*

where

Z if/ι = 0 (mod 4),

(3.2) Lπ(0) = { Z/2 if n = 2 (mod4),

0 if n is odd.

r / ^ 4X f Z/2, n even,

We consider the following three cases:
I. n = (mod4), n > 3. Then (3.1) and (3.2) give

πn(MG) > 0

If x e ΩP D satisfies r(jc) = 0 then P(x) is divisible by 2. So there
exists a z e ΩP D such that 2P(z) = P(x), that is, 2 Z - X G Ker P =
ImL«(0) c Ω P D . By [3, Theorem 1.2] lmLn(0) is generated by the
Milnor manifold which is Poincare cobordant to S(CP2)k ,ifn = 4k
(CP2 stands for complex projective space of dimension 2). Hence x
is divisible by 2. This proves Theorem (A) for n = 0 (mod 4).
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II. n = 1 (mod 4), n > 3. In this case (3.1) and (3.2) give

0 > Ω £ D — P — > πn(MSG) —?—> Z >

0 > Λ# D — ^ ππ(AfG) - ^ - > z / 2 >

Since π*(MSG) is torsion πn(MSG) -2-> z is the zero map.

So P : Ω P D —+ πn(MSG), n = 1 (mod 4), is an isomorphism.

Theorem (A) now follows from Lemma (2.4).
III. n = 2 (mod 4), n > 3. In this case (3.1) and (3.2) give:

Z/2 • ΩP D — ^ πn(MSG) > C

I I' ϊm-
> 0

By a result of [2], π^^AfSGr) - ^ ^ + 2 ( 0 ) = Z/2 is surjective.

So by exactness P is an isomorphism. Hence again Theorem (A)

follows from Lemma (2.4) for n = 2 (mod 4).
Thus we have proved Theorem (A) for n φ 3 (mod 4).

4. Proof of Theorem (A) for n = 3 (mod 4). We first prove the
following proposition essentially due to Browder and Brumfiel [3]

(4.1) PROPOSITION. The short exact sequence

0 - ΩSg.3 - ^ π4k+3(MSG) -^ z/2 - 0

w sp/zί e cαc/ ybr α// integers k > 0.

Proof. We first show that π^MSG) — Z/2. For this consider the
homotopy exact sequence of the pair (MSG, Af 5Ό). Using the fact
that πi(MSO) = 0 for i = 1, 2, 3 and πx{MSG) = 0 we get that
π2{MSG) = π2(MSG, MSO). From the relative Hurewicz theorem
we have π2(MSG, MSO) = H2(MSG, MSO; Z). Using the Thorn
isomorphism we get that H2(MSG, MSO; Z) £ H2(BSG, BSO; Z).

Again from the relative Hurewicz theorem we have

H2(BSG, BSO; Z) ^ π2(BSG, BSO).
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Now, comparing the homotopy exact sequence of the pair (BSG, BSO)
and that of the fibration

G/O -+ BSO -> BSG

we get π2(BSG, BSO) ^ nx{G/O) = 0 (see [22]). A similar procedure
will give us that π3(MSG) = z/2.

We have thus proved (4.1) for k = 0. We claim that the truth of
(4.1) for k = 0 implies truth of (4.1) for all k > 0. For, note that the
Whitney join of spherical fibrations gives rise to a map μ : MSG Λ
MSG -+ MSG and in particular to a map μ : MSG Λ MSO -+ MSG.

Using the product formula for the transversality obstruction σ:
π*(MSG) —• Z/2, as given in [7], we get the following commutative
diagram:

[CP2k] x π3{MSG) °έσ 0 x Z/2 > 0

A
—^-^ Z/2 • 0

for all A: > 0, where we have identified the cobordism class of CP2k

in Ω^ f f with its image in π4k(MSO) under the Thom-Pontrjagin
isomorphism, and μ* is the restriction of the composite:

π4k(MSO) x π3(MSG) -+ π4k+3(MSO A MSG) -

Now the top horizontal map of the above commutative diagram is
split by the case for k = 0, and hence the lower horizontal map
σ: π4k+${MSG) —> Z/2 is also split. This completes the proof of
Proposition (4.1).

Proof of Theorem (A) for n = 3 (mod 4). Using (3.1) and (3.2) we
have:

0 > Ω£ D > πn(MSG)

0 > N* Ό- > πn(MG)

Let x G Ω£ D satisfy r(x) = 0. By Lemma (2.4) P(x) is divisible
by 2, so there exists y' e πn(MSG) such that P(x) = 2 / . If / G
Im P then by the injectivity of P, x = 2y for some y G Ω^ D .
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If / ^ ImP then σ{y') = 1, and by (4.1) there is an element z e
πn(MSG)-ImP of order 2; hence σ(z+yf) = σ(z)+σ(y') = 1 + 1 = 0 .
So z+y' elmP (by exactness), and hence there exists y e Ω^D such
that P{y) = z+y'. Now P(2y) = 2(z + / ) = 2z + 2/ = 2/ = P(JC)
and hence by injectivity of P, x = 2y. This proves Theorem (A) for
n = 3 (mod 4), and the proof of Theorem (A) is complete.

5. Existence of a homomorphism d: N*mOm —• Ω^ Pj .

From the definition of the cobordism groups N%Ό we have a
Pontrjagin-Thom homomorphism

P : N*Ό -+ πn+k{MSG(k - 1) Λ RP 2 ) , k » /ι

[21, pp. 148, 172], which fit into the following Levitt's exact sequence

(5.1) -> LΛ(1 x Z~) - Λ^P D Λ πn+k(MSG(k - 1) Λ

where
' Z/2 for /i = 0 (mod 4),

_ 0 for n = 1 (mod 4),
«( X z ) = < z/2 {θΐnΞΞ2 (mod4),

Z/2 for^ = 3 (mod 4).

See Wall [27] Brumfiel-Morgan [7].

(5.2) PROPOSITION. P: N^Ό- -+ πn+k{MSG(k - 1) Λ RP2) is an
injection "in.

Proof. For n = 1 (mod 4) Pn is trivially injective.
For « Ξ O , 2 (mod 4) obstruction to transversality homomorphisms

σ: πn+ι+k(MSG(k - 1) ARP2) -> z/2

are given by cohomology classes 3£ and -5s7 of Brumfiel-Morgan [7]
and σ is nonzero by [10, Prop. 5.2].

For n = 3 (mod 4) we note that

σ: π4n+k(MSG(k - 1) ΛRP2) -> Z/2

is given by the composite

σ = σ o d : π4n+k(MSG(k - 1) Λ RP2)
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(see Brumfiel-Morgan [7, p. 33]) and that σ is nonzero (refer to §4).
Also from the exact sequence

- πAn+k(MSG(k - 1) ΛRP2) Λ π4n_x+k_x{MSG{k - 1)) - ^

one gets that d is onto for 4n - 1 = 3 (as n^(MSG) = Z/2) and
hence σ: π4+k(MSG(k - 1) ΛRP2) -> Z/2 is onto.

To prove that, Vrc > 1, σ : π4n+k(MSG(k - 1) Λ RP2) -> Z/2 is
onto one takeίf products of a preimage of 1 under σ in
π4+k(MSG(k - 1) Λ RP2) with the homotopy class represented by
[C/>2(/!-i)] ? a s w a s ^onQ i n g4 D

To define d: JV* D -> Ω ^ look at the diagram:

(5.3)
2)πn+k{MSG(k-l)ΛRP2)

Let JC e N*Ό-. Look at 9 o P(x). For (n - 1) φ 0, 3 (mod 4),
P is an isomorphism, so 3 a unique y e ΏζP{ s.t. P(y) = d o P(χ).
Define

(5.4) d(x) = y.

For ( « - 1 ) Ξ 3 (mod 4), we have a splitting

s: nn_x+k_

see §4. So define

(5.5) d(x)=s(doP(χ)).

For (n - 1) = 0 (mod4) lower horizontal sequence of (5.3) has the
form

0 • Z —ί—> Z®F —P—+ Z / 8 Θ F > 0

Ωξ Pi πn_x+k_x{MSG{k-\))

where F is a torsion group (see Browder-Brumfiel [3]) where /(I) =
([8(CP 2 ) 7 ], 0 ) , 4/ = n - 1 Z summand of Z φ f is generated by
[(CP2)1].
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Now d o P(χ) G Z/8 Θ F. Take the projection π2 o a o P(χ) of
d o P(χ) onto i 7 . Since P/F: F -^ F is identity we get a unique
element y G Ω ^ such that P(y) = π2dP(x). Define

(5.6) d(x)=y.

(Justification of projecting d o P(χ) onto F: NFO- being a torsion
group no homomorphism from N?Ό- —• Ω P D can take an element x
into the free part of Ω P D nontrivially.)

This completes the definition of

d : N™•-> Ω ^ V « > 3 .

For « = 1, 2 one can define a homomorphism using low dimensional
classification of P.D. spaces (see [26, 9]).

6. Proof of Theorem (B) This involves proving exactness of the
following three sequences:

(i) ΩJ D Λ ΩP-D- -u JVΪ D ,

(ii) JVP D. ^ QPf>. Λ ΩPf> ,

(iii) ΩP D -U JVP-D ^ Ωjf> .

Exactness of (i). This follows from Theorem A, the fact that
πn+k(MSG(k - 1) Λ RP2) is a Z/2-module, and that

P: N*'Ό- -+ πn+k{MSG{k - 1) Λ RP2) is injective.

Exactness of (ii). 2 o 5 = 0 follows from the definition of d , the
fact that d(x) is a torsion element of Ωζ'P{, and the fact that

πn+k(MSG(k - l)ARP2) Λ πn^+k^{MSG{k - 1))

is exact.
Now let x G Ω£?i such that 2(JC) = 0.
Let X"" 1 be an oriented P.D. space representing x. That is

x = [(X, / , 6)]. Then there exists ( ( 7 , 0 Γ ) , £ , c), (Γ, 97) an
oriented P. D. pair with an orientation preserving homotopy equiva-
lence of d Y with 2X. Let Z be a P. D. space obtained by identify-
ing the two copies of X in Y so as to give a triple ( Z , g, c), where
£ , c are obtained from g, c respectively by this identification. Let
us define a continuous metric p on Y so that the distance of the
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two copies of I in F , say X\, Xι is > 1 (since Y is a finite CW-
complex it can be embedded in Euclidean space of sufficiently high
(dimension). Let us define a map λf: Y —> [0, 1] by

p(y,Xi) i

1/2 otherwise

as in [24].
Let λ1 induce λ : Z -»S 1 on identifying Λfi, JΓ2 and 0 , 1 . Then

A-1(0) = J T C Z . Since 7 - ^ > 5SG x [0, 1] is homotopic to

g: Y —> ^iSG, (# x Λ/)*(y θ ε°) is fibre homotopy equivalent to i/y.

For Z - i ^ * 55C? x Sι therefore we have that (g x λ)*(γ θ γι) is

fibre homotopy equivalent to vz . So wx(Z) = W\{vz) comes from
an integral class. Therefore,

Now, since Z/2-spherical characteristic numbers of X are deter-
mined by that of Z (by a simple calculation similar to [Lemma 2,
Wall [24]), and integral-spherical characteristic numbers as well as in-
dex of X is zero (x being a torsion element), hence ( Z , g x A, c x 1)
determines (x9 f9 b) up to oriented cobordism by Theorem (D). So
x e l m d .

Exactness of (iii). 9 o r = 0, because we can take d(r(x)) repre-
sented by the empty manifold. Now let x e N%Ό' such that d(x) = 0.
Then by definition of d , 9 o P(x) = ? o 9 ( x ) = 0 (refer to diagram
(5.3)). So, from exactness of

- ^ πn+k_x{MSG{k - 1)) Λ πn+k{MSG(k - 1) ΛRP2)

3>; G πn+k_x{MSG{h - 1)) such that r(j/) = P{x). Now P : Ω£ D -•
πn+ι_ι(MSG(k - 1)) is onto for « ^ 3 (mod4). So for these « 3 z e
Ωjj D such that P(z) = y, and hence r(z) = x (using the commuta-
tive diagram

Ω P . D . _?_>

injective
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For n = 3 (mod 4) we appeal again to [7, p. 33] to get that σ{y) =
a o r(y) = σ(P(x)) = 0 from (5.1).

So y is in the image of P so 3z e Ω^ D with P(z) = y. So
r(z) = x as earlier.

7. Characterization of elements of Poincare cobordism groups. In
this section we shall prove Theorem (C) and Theorem (D). For this
we shall first prove the following propositions.

(7.1) PROPOSITION. A Poincare transversal element

aeπn+k(MG(k))

corresponding to an element [X] e N% Ό- is zero if and only if all
Z/2-normal spherical characteristic numbers of X are zero,

(7.2) PROPOSITION. A Poincare transversal element

aeπn+k(MSG(k))

corresponding to an element [X] e Ω£ D is zero if and only if all Z/2
as well as integral normal spherical characteristic numbers of X are
zero.

Proof of Propositions (7.1) and (7.2). Note first that since MG
and MSG are of the same homotopy type as wedges of Eilenberg-
Mac Lane spectra [4], [16], the Hurewicz homomorphisms

/**: πn+k(MG(k)) - Hn+k(MG(k) z/2) and

K: πn+k(MSG(k)) -+ Hn+k{MSG(k) Z)

are injective for all n and k. This shows that every nonzero
element a in πn+k(MSG(k)) (respectively in πn+k{MG{k))) is
detected by an element of Hn+k(MSG(k); Z) (respectively of
Hn+k(MG(k);Z/2)). This means that if a = [ / ] , / : Sn+k -+
MSG(k) (or / : Sn+k -+ MG{k)), then there exists an element X e
Hn+k{MSG(k);Z) (respectively X e Hn+k{MG(k); z/2)) such
that f*(X) φ 0 in Hn+k(Sn+k Z) (respectively in Hn+k{Sn+k Z/2)).

Now, suppose a G πn+k(MSG(k)) (respectively a e πn+k(MG(k)))
is Poincare transversal in the sense of [2]. Then a = [/] is in the
image of the Pontrjagin homomorphism P: Ω^ D —• πn+k(MSG(k))
(respectively P: N™- -+ πn+k(MG{k))).
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Let a =
Let vγ be the Spival normal fibre space over 7 , E{yΎ) the total

space and E{yγ) the mapping cylinder of the projection E(vγ) -> Y.
Then we have the following commutative diagram:

H»+k(E(vγ), E{vγ) Z) ^ — H»+k(E(γ), £ (y) Z)

Φ * I Φ*

//" ( 7 , Z) <-?— i/w (BSG(k) Z)

[respectively:

H»+k(E(ιsγ), £(i/ y) z/2) <-^— H»+k(E(γ) £(y) Z/2)

i/"(y, Z/2) ^ — Hn(BSG(k);Z/2)],

where Φ* stands for the Thorn isomorphism, Έ(γ), E(γ) have the
same meaning as E{yγ), £(i/y) respectively, and 6 is the map in-
duced from 6. We also have the fact that / = b o col. where col.
is the natural collapsing map col.: Sn+k —• Γ(z/y) = E(vγ)/E(vγ).

Now, since α = 0 if and only if /* = 0. Hence from the above
commutative diagram it follows that a = 0 if and only if the com-
posite Φ* o g* is zero, since the homomorphism (co\.)n+k is an iso-
morphism by definition of Spivak normal fibre space. Since Φ* is
an isomorphism we have that a = 0 if and only if g* is zero. This
shows that a = 0 if and only if all normal spherical Λ-characteristic
numbers of Y are zero.

Λ = Z / 2 a n d z if [ (7, g9 b)] e

Completion of proofs of Theorem (C) and Theorem (D). We have
seen that the Thom-Pontrjagin map P: N%-Ό- —• πn^jc(MG(k))
is injective for all n, and the corresponding map P Ω£ D —>
πn+k{MSG{k)) is injective for all ft ^ 0 (mod4) and for n = 0
(mod 4), KerP is generated by the class of 8(CP 2)"/ 4. Since the
index of the intersection pairing of (CP2)"/4 denoted /((CP2)"/4)
is equal to 1, hence /(8(CP2)*/4) = 8.
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Using these observations and Propositions (7.1), (7.2) the Theorems
(C) and (D) follow. D
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