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RATIONAL STRUCTURES ON 3-MANIFOLDS

SELMAN AKBULUT AND HENRY KING

In this paper we prove a conjecture of Nash for 3-manifolds. That
is, we show that any two 3-manifolds are rationally equivalent. This
means that by operations of topologically blowing up along smooth
submanifolds (i.e. points and curves in this case) we can make any
two 3-manifolds diffeomorphic to each other.

In [Na] Nash conjectured that any two, closed, smooth connected
manifolds of the same dimension can be made diffeomorphic after
topologically blowing them up along submanifolds.1 In [T] a coun-
terexample to this conjecture was announced, but the proof is unfor-
tunately not correct. This conjecture is clearly true for 2-manifolds,
since blowing up a surface at a point has the affect of connected sum-
ming with an RP 2 . In the case of 3-manifolds we had reduced this
conjecture to a problem about' Z2-framed link calculus" in S3 as re-
ported in [Al]. This problem recently has been solved by Nakanishi
[N]. Here we present the proofs of these results by showing how [N]
along with our results which were announced in [Al] proves the Nash
conjecture for 3-manifolds. We would like to thank R. Benedetti for
bringing [N] to our attention. We first need to recall the definition of
topological blow-up:

1. Blowing up. Let N c M be closed smooth manifolds with k =
dim(Λf) - dim(iV). Let π: E -» N be the normal R*-bundle, and
ft: E -• N be the associated <9(/:)-bundle. O(k) acts on
[1:0 : : 0] as follows: If A e O(k), and [JC0: : xk] €
[ 1 : : 0 ] , t h e n A [ x 0 : : xk] = [xQ: y x : - : y k ] , w h e r e ( y u . . . ,
yk) = A(x\, . . . , Xk). In particular O(k) acts on RP^"1. Let

-[1:O : O ] - * £ ' ^JV and RP*"1 -+ E" ^ N

be the associated bundles, i.e.

E' = E x0(k) (R¥k - [1: • : 0]) and E" = E xO{k)

ιHeτe we state the topological version of his conjecture since the algebraic version does not
hold.
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We have the natural inclusions E" c Er. The map:

τ: RP* - [1: 0: : 0] -> R* - 0 defined by

commutes with the 0(Λ:)-action and hence induces a diffeomor-
phism a:

E' - E" -

4
N -

y E -E0

I-
N

where EQ = 0-section of E = N.

DEFINITION. The blow up of M along N is the smooth manifold
obtained by glueing M-N and E1 with the map α (after identifying
E with a tubular neighborhood of N), and it is denoted by

There is the natural projection map: π: B(M, TV) —• M given by:

K\M-N = inclusion, and πl^" = π".

Hence τ is a diffeomorphism over M-N, and is the bundle map π"
over iV.

B(M,N)

II

FIGURE 1
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In particular if N C M has a trivial normal bundle then

B(M, N) = (M-Nx int(Bk)) Ud (N x RP£)

where RPQ = RP^ - int(-S^) is the punctured projective space. For
example, if p e M , then B(M9p) = M#RΨk, where fc = dim(M),
and more generally B{M x Q,p x Q) = {M#RΨk) x Q, where Q is
any smooth manifold. When N and M are nonsingular algebraic
sets then B(M, N) has a natural algebraic structure.

DEFINITION. We say two closed manifolds Mm and Qm are bira-
tionally equivalent, and denote it by M ~ ζ? > if there are sequences
of blow ups along closed submanifolds:

M 4- Mi <- Af2 < ^

so that Affc « β r , i.e., they are diffeomorphic.
Birational equivalence is in fact an equivalence relation (a fact

which is not used in this paper). This is because any two different
blowups of M admit a common blowup. We are now ready to state
the conjecture of Nash [Na] in our context:

Conjecture. Any two closed smooth manifolds of the same dimen-
sion are birationally equivalent.

To understand this problem we need to see how 3-mani-
folds transform under blowing up operations:

2. Framed link pictures of blow-up. Recall that any closed 3-mani-
fold M3 bounds a 4-manifold W4. Furthermore we can take^ W
to be B4 with 2-handles attached if M is oriented, and 2?3 x Sι

(the twisted i?3-bundle over Sι) with 2-handles attached if M is
unoriented. So, M can be represented by a framed link in either S3

or in S2 x Sι. S2 x Sι is the boundary of B3 x Sι, which is B4 with
one handle attached. By using the notation of [A2], B3 x Sι can be
represented by a pair of 3-balls, which is the attaching set, S° x B3,
of the 1-handle Bι x B3.

FIGURE 2
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0

FIGURE 3

If we imagine coordinate axes in the centers of these balls then
the 1-handle identifies the boundaries of these two balls by the map
(x, y, z) *-> (x, -y, -z). So, in general M is represented by a
framed link, along with possibly a pair of balls. In case the balls
are present (i.e. in S2 x Sι) the link could go over the 1-handle. For
example RP2 x Sι is given by Fig. 3 [A2].

We now want to see how the blowing up operation changes a framed
link picture of a 3-manifold M3. Since blowing up codimension 1
submanifolds does not change the manifold, we only have to consider
blowing up M3 along points and knots.

Blowing up a point p e M. Clearly B(M, p) = M#RP 3 . Hence
the framed link of M changes by introducing a disjoint unknotted
circle with ±2 framing.

Blowing up a knot y c M.

Case 1. M = S2 x Sι, y = p x Sι, p e S2.
Fig. 4 is the framed link picture of M. Then B(M, γ) = RP2 x Sι

is given by Fig. 5. The dotted circle δ in the figure is not part of the
framed link; it is a picture of the image of a parallel copy of the loop
γ by the diffeomorphism (πl)" 1 : M - γ -• B(M, γ) - n~x{γ).

Case 2. M = S3, and γ is the unknot.

Fig. 6 is the picture of γ c M. Since the 0-framed handle a is

attached to a parallel copy of γ9 by Case 1 Fig. 7 gives B(M, γ).

Fig. 7 and Fig. 8 both describe S2xSι.

Case 3. M = S2 x Sι, γ = p x S 1 , /? € Sι.

In this case £ ( M , y) = RP2 x Sι, i.e. it is the twisted RP2-bundle
over Sι. So it must be the product bundle RP2 x Sι, which is Fig^
10. Fig. 9 gives the picture of y c M , Again by inspection we see
that the dotted circle δ in Fig. 10 is the image of a parallel copy of
γ by the diffeomorphism (πl)" 1 : M - γ -> 2?(M, y) - n~ι(y). By
rotating one of the attaching balls of the 1-handle we can make Fig.
10 diffeomorphic to Fig. 11.
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Case 4. γ c M has a trivial normal bundle.
By adding a cancelling pair of 2-handles as in Fig. 12 we can draw a

picture of an arbitrary knot γ which looks unknotted. In this picture
the box represents the complicated part of the knot γ. Then by Case
1, Fig. 13 represents B(M, y).

Case 5. γ c M has a nontrivial normal bundle.
This means that γ has to go through an orientation reversing 1-

handle an odd number of times. By adding a cancelling pair of 2-
handles as in Fig. 14, and by sliding over them we can assure that
γ goes over the 1-handle only once. By sliding one of the attaching
balls of the 1-handle along γ, we can always assume that γ is in the
standard form as in Fig. 15. Now by Case 3, Fig. 16 gives B(M, γ).

3. Z2-framed link calculus. Framed links are useful tools in de-
ciding whether two 3-manifolds are diffeomorphic. The main result
of [K] says that any two framed links in S 3 represent the same 3-
manifold if and only if one is obtained from the other by a sequence
of "handle-sliding" operations, and introducing or erasing an unknot-
ted circle with ±1 framing. These are known as "Kirby moves", and
the equivalence class of framed links under these moves is called the
"Kirby calculus". One can easily extend this calculus to framed links
in S2 x Sι and get a similar result for nonorientable 3-manifolds.
Here we introduce the following equivalence relation to this calculus,
which in a way specializes it to Z2 .

DEFINITION. We say that any two framed links are Z2-equivalent,
if one can be obtained from the other by a sequence of Kirby moves,
twisting across any strand ±2-times, changing any framing by ±2,
and introducing or erasing an unknot with ±2 framing.

The obvious question is that what kind of equivalence relation
among 3-manifolds does Z2-equivalence of framed links induce? The
following says that Z2-equivalence implies the birational equivalence.

PROPOSITION 1. Any Zi-equivalent framed links represent bίration-
ally equivalent 3-manifolds.

Proof. Clearly introducing an unknot with ±2 framing corresponds
to blowing up a point. Hence it suffices to show that twisting any
strand of the framed link ±2-times preserves birational equivalence.
We must show that the manifolds M\, and Mi of Fig. 17 are bi-
rationally equivalent. This can be seen by blowing up both M\,
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/ = 1, 2, along the loops y\, i = 1, 2, respectively, cancelling the
resulting 2-handles, and twisting as indicated in Fig. 18

COROLLARY 2. Any unorientable 3-manifold is birationally equiva-
lent to an orientable 3-manifold.

Proof. First of all by introducing a cancelling pair of 2-handles as
in Fig. 14 and sliding components of the framed link over one of
them (a in the picture), we can assume that every component of the
framed link which goes over the 1-handle goes exactly twice. It suffices
to show that by blowing up and down operations we can modify the
framed link so that no component of the link goes over the 1-handle.
Because then Case 2 would imply that the manifold is obtained by
blowing up an oriented manifold along an unknot in a chart. Suppose
a component θ of the link goes over the 1-handle as in Fig. 19. The
box in the figure represents the complicated part of the framed link.
We first attach a cancelling pair of 2-handles as in Fig. 20. By swinging
over one of the balls of the 1-handle, we can put the unknotted circle
with 0-framing inside the box. Hence we can simplify Fig. 20 as Fig.
21. By the obvious handle slide we get Fig. 22. By blowing up the
orientation reversing core circle of the 1-handle we get Fig. 23 (recall
Case 5). A handle slide gives Fig. 24. By Proposition 1, Fig. 25
is birationally equivalent to Fig. 24, and a blowing down operation
turns Fig. 25 into Fig. 26 (again as Case 5). Hence we freed θ from
the 1-handle without introducing new framed knots going through the
handle, i.e. we reduced the number of components of the framed link
going through the 1-handle. Repeated application of this procedure
gives the result.

4 Nakanishi's theorem and conclusion. We first need the following
definition:

DEFINITION. Let K = {Kx, . . . , Kn} and, L = {L\, . . . , Ln} be

links in S3. We say that K and L are 2-homologous if the link-
ing numbers satisfy the relation \k(Ki, Kj) = lk(L/, Lj) mod (2), for
every 1 < / < j < n. We call K and L 2-equivalent if one is ob-
tained from the other by a sequence of operations of twisting across
any strand ±2 times.

The following theorem of Nakanishi [N] says that these two con-
cepts are equivalent.
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THEOREM 3 {Nakanishϊ). Any two links of the same number of com-
ponents in S3 are 2-equivalent if and only if they are 2-homologous.

This theorem follows from the amazing observation of [N] that the
two strands of Fig. 27 are 2-equivalent, as shown in Fig. 28. For
example, right away this shows that any knot is 2-equivalent to the
unknot. More generally, this trick with [MN] gives the result.

COROLLARY 4. Any framed link in S3 is Zι equivalent to the empty
link.

Proof. By Theorem 3 any framed link is 2-equivalent to a framed
link K which consists of unknotted components with 1 or 0 framing,
and pairwise components of K link each other geometrically 1 or 0
times. Then, clearly by blowing down 1 framed circles (in the sense of
the Kirby calculus), surgering unkotted components with 0 framing,
and using Theorem 3, we can reduce the framed link to a link L which
consists of a disjoint union of unknots with 0 framings. Clearly L is
Z2-equivalent to the empty link.

THEOREM 5. Any Wo closed 3-manifolds are birationally equivalent.

Proof. It suffices to show that any closed 3-manifold M is bira-
tionally equivalent to S3. By Corollary 2 it suffices to assume that M
is orientable, so M can be represented by a framed link in S3, then
Corollary 4 with Proposition 1 gives the result.

We would like to conclude this paper with the following remark:
If φ: U —> R3 is a chart, with coordinates φ = (φ\9 <P2> Ψ3)9 then
blowing up M produces new charts from U whose transition func-
tions are monomials in ψι, i = 1, 2, 3 with integer coefficients (they
can be negative). The Nash conjecture says that M is birationally
equivalent to S3, so this means that by extending the transition func-
tions of the charts of M by monomials we can make them equivalent
to monomials. The implication of this in the context of geometric
structures on 3-manifolds is yet to be understood.
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FIGURE 18
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twist a and c +2 times

twist b -2 times

twist d +2 times

FIGURE 28
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