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ON SINGULAR PERTURBATIONS
OF SECOND ORDER CAUCHY PROBLEMS

KLAUS-J. ENGEL

We give an explicit formula for the solution of complete second or-
der Cauchy problems in Banach spaces. Using this formula we derive
an estimate for the growth of the solution in terms of an associated
scalar ODE. Finally these results are applied to singular perturba-
tions of second order Cauchy problems.

1. Introduction. We are concerned with the second order Cauchy
problem

(ACP ε) εu'ί(t) + 2Bu'ε(t) = Aue(t), ί > 0,

Mβ(0) = u0 e D(A), u'£(0) = u{e D(A)

in a Banach space E where A is the generator of a strongly continuous
cosine family (CA(ή) commuting with the bounded operator B e
2f{E). It is well known that for e > 0 (ACPε) is well-posed, i.e., it
admits a unique solution which depends continuously on the initial
conditions UQ and U\.

This paper is organized as follows. We first give (in case ε = 1)
an explicit representation of the solution u(-) of (ACPi) in terms of
C^(ί) and B . Then we use this formula to derive an estimate for the
growth of u{t). In fact, we associate with (ACPi) a scalar ODE and
show that its solution dominates ||w(ί)ll Finally these results are used
to show convergence of uε( ) as e I 0 to the unique solution of

(ACPo) 2 B u ' 0 ( t ) = A u o ( t ) , ί > 0 ,

«o(O) = u0

provided that the spectral bound of -B is less than zero. Moreover,
from the proof of this result we conclude that under the above as-
sumptions AB~~ι generates an analytic semigroup.

2. The explicit formula. In order to state the main result of this
section we need the following definitions. For a bounded operator
Q G S?(E) we define the modified Bessel function of order zero by

Λ = 0
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Moreover, for two functions F and G defined on R+ we denote by
F * G the convolution of F and G, i.e., F*G(t) := fQF(s)G(t-s)ds.
Using this notation we can show the following result. All integrals are
understood in the strong operator topology.

THEOREM 1. Let A be the generator of a strongly continuous cosine
family (CA(t)) which commutes with B e Jϊ?(E). Then the unique
solution of the well-posed second order Cauchy problem

(1) u"{t) + 2Bu'{t) = Au{t), f > 0 ,

i/(0) = uoe D{A), w'(0) = ux e D(A)

is given by

Here

:= e~tBMΛ%B{t) := e~tB (C^ίί) + B ^ ^ ^ ( 0 + B2 -

:= ft

Jo

Proof1 By [10, Thm. 6] (or see [6, Chap. 2.7 & 2.8]) (1) is well-
posed. First we show that (SA+Bi(t)) is the sine family generated by
A + B2 . For this it suffices to verify that the Laplace transform

JO
e-λt-SA+Bl(t)dt

satisfies the equality

(2) &(SA+ύ*)(λ) = R(λ2 ,

for λ sufficiently large. Indeed,

poo pt

J?(SA+β2)(λ) = yo e-»Jo

ΓΓ
Jo

e~λt

and (2) follows from the convolution theorem for the Laplace trans-
form and the following lemma.

'For similar arguments see [1, Thm. 1].
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LEMMA 2. // SA

(n+ι\t) denotes the (n + l)-fold convolution of the
sine family (SA(ή) generated by A, then

Proof of Lemma 2. The case n = 0 is trivial. The general case is
obtained by induction from the following computation.

(n\)2sf+ι\t) = n2((n - I)!)2 ['S?(u) SA(t - u) du
Jo

= n2 ί Γsn-\u-s)n-λ CA{2s-u)dsSA{t-u)du
Jo Jo

= \ I Γs
n
-\u-s)

n
-
χ
{S

A
{t-2s) + S

A
{t + 2s

* Jo Jo

= n
2
 [ Γ s

n
~
ι
{u-s)

n
-
χ
 -S

A
{t-2s)dsdu

Jo Jo

= n
2
 f s

n
~
ι
 S

A
{t - 2s) ί (u - s)"-

1
 duds

Jθ Js

= n ί sn-\t-s)n SA{t-2s)ds
Jo

= \ f n{sn-\t - s)n - sn{t - s)n~l) SA(t - 2s) ds
l Jo

= \[sn{t - s)n . SA(t - 2s)YsZ
t

0 + f sn{t - s)n CA(t - 2s)
z Jo

= / sn(t-s)n CA{2s-t)ds.
Jo

This completes the proof of Lemma 2. D

We proceed with the proof of Theorem 1 and show that

CA+B2(t) := CA(t) + B2CA*SA+B2(t)

is the cosine family generated by A + B2. Again it is sufficient to
verify that the Laplace transform of CA+Bi{-) satisfies

ds

for λ sufficiently large. In fact, by the convolution theorem and the
resolvent equation we have

= λR(λ2, A) + B2λR(λ2, A)R(λ2 ,A + B2)

= λR(λ2 ,A
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Let x, y E D(A), then the above results imply

(SA+B2(t)x)" - (A + * 2)(S<+ i ? 2(i)x) = 0,

= o,

for all t > 0. Using this one easily verifies (or see [10, Proof of Thm.
6]) that for NA,B(t) := e-'B SA+#(t) and M ^ ( ί ) := *-<* CΛ+#{t)
we have

f + 2B(NA,B(t)x)' - A{NΛiB{t)x) = 0,

, (7V(.)xy(0)=x,

r + 2B{MA)B(t)yY - A(MAiB(t)y) = 0,

for all t > 0. Hence the solution of (1) is given by

MAiB(t)u$ + NAyB(t)uχ + NAyB(t)Bu0 = MAyB(t)u0 + N,

where MA,B(t) = e~tB (CA(t) + B SA+Bi(t) + B2 CA* SA+Bi(t)). D

3. Asymptotics. In this section we estimate the growth of the so-
lution of (1) in terms of an associated scalar ODE (see (3) below).
For this purpose we first have to find an estimate for the growth of
IIΛ)(*β)ll for a bounded operator Qe^(E) and all ί > 0 . By defini-
tion of the Bessel function it is clear that | |/o(ίβ)|| < Jo(ί||β||) which
turns out to be a very rough result. The following lemma relates the
Bessel function to the exponential function for which very sharp es-
timates exist. In fact it is well known (see, e.g., [9, A-III.l]) that for
Q G ̂ f(E) the spectral bound

s(Q) := sup{ReA : λ e σ(Q)}

and the growth bound

ω(β) := inf{ω e E : there exists Mω

such that \\etQ\\ < Mω etω for t > 0}

coincide. Combining these results will give a significant improvement
of the above estimate.

LEMMA 3. Let Q e 3>{E). Then

Io(Q) = ̂ z Γ eQcossds.
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Proof. As in the scalar case (see [14, Chap. II, 2.21]) the lemma can
be proved by expanding e®coss into a Taylor series and using the fact
that for all neN

-π

1-3 (2/1-1)
(cos s)2n ds = 2π-

2-4 2/i' —π

The formula then follows without difficulty. D

Before we can state the main result of this section we need some
further notations. For α G l + we denote by

ca(ή := cosh(y/at) and sa(t) := 1 * ca(t)

the cosine and the sine family, respectively, generated by a. Then by
[13, Thm. 2.5] (or see [3, Chap. Π.5]) there exist constants MA > 1,
ω > 0 such that

\\CA(t)\\ < MA cω(t) fo ra l l ί>0 .

Moreover, for b < -s(-B) there is a constant MB > 1 such that

\\e-tB\\ <MB-e~tb fo raUί>0.

Now consider the scalar ODE

(3) v"{t) + 2\b\v'{t) = y/δυ(t), v(0) = vo, υ'(0) = v{.

By Theorem 1 the solution of (3) is given by

where

(4) nω>b(t):=e-^ sω+b2(t) and

mω,b{t) := e-W • {cω{t) + \b\ sω+e(t) + \b\2 • cω *

The following result relates the growth of the solution of (1) to the
solution of (3).

THEOREM 4. Let \\e~tB\\ < MB e'tb and \\CA(t)\\ < MΛ cω{t) for
all t>0. Then for the solution families (NAiB(ή) and (MAiB(t)) of
(1) the following estimates hold.

(a)//MO, then

where nω^b(t) and mω^b(t) are defined as in (4).
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(b) Ifb = O, then

\\NA,B(t)\\<MAMB sω(t),

\\MA,B(t)\\ < MAMB • (cω{t) + \\B\\ sω{t) + \\B2\\ • y S

Proof, (a) By Theorem 1 and Lemma 3 we obtain

CA(2s - t)ds

= [' _L f*
Jo 2π J_π

Hence

f ^ Γ b ( 2 V ^ ^ ) { ) ) _ t)dsB f ^- Γ
JO Li1 J-π

where we used the fact that 2,Js(t -s)cos(r) -1 < 0 for all s e [ 0 ,
and r e [—π, π ] . Using similar arguments we obtain

\\MΛ,B(ί)\\ < MΛMB • e-tb (cω{t) + ^\b\ sω+b>{t)

e~tb{cω{t) + \b\ • sω+bi(t) + \b\2 • cω

(b) If b = 0 we conclude from Lemma 3 that ||/o(siί)|| < MB;
hence

\\NA,B(t)\\<MAMB-sω(t) and

< MAMB • (cω(t) + \\B\\ • sω(t) + \\B2\\ • cω * sω(t))

= MAMB • (cω{t) + \\B\\ • sω(t) + ||2?2|| jS

From Theorem 4 we easily derive the following result.
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COROLLARY 5. Let \\e~tB\\ < MB e~tb where b>0 and \\CA(ί)\\ <
MA cω{t) for all t > 0. Then the following estimates for the solution
families (MA>B(ή) and {NA,B(ή) of{\) hold.

IIΛ^OH < J ^ £ * V(-»+vw,

4. Singular perturbations. There is a substantial literature on sin-
gular perturbation problems involving strongly continuous semigroups
or cosine families. For details we refer to [3, 4, 5] and the references
therein.

Here we consider singular perturbation problems of the type

(ACP£) eu"{t) + 2Bu'e(t) = Aue(t), / > 0,

uε(0) = uoe D(A), uf

£(0) = ux e D(A),

where it is assumed that A generates a strongly continuous cosine
family on some Banach space E. While in various papers (e.g. [4, 7,
12]) convergence of the solution wδ( ) to the solution MO( ) of

2Bu'0(t) = Auo(t), t>0, uo(O) = uo

is shown only for 2B = Id or B — b > 0 and A the square of a group
generator we extend these results to the following situation.

THEOREM 6. Let A be the generator of a strongly continuous cosine
family (CA(ή) on E and B e <2f{E) a bounded operator which com-
mutes with (CA(t)) and satisfies s(-B) < 0 . Then the unique solution
of the second order Cauchy problem (ACPε) converges as e [ 0 to the
unique solution of the well-posed first order Cauchy problem

(ACPQ) 2Bu'Q(t) = Auo(t), t>0, uo(O) = uO

Moreover, if u0 e D(A2), -b e (s{-B), 0) and

\\e-tB\\<MB e-tb and \\CA{t)\\ < MA cω{t)

for all t>0, then

MΛMB\\uo{t)-uε{t)\\<ε
2b

eωo<(\\Aouo\\+MAMB

where ω0 := j%, Ao := \AB -1
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Proof. As shown in Theorem 1 the Cauchy problem (ACPε) is well
posed. We proceed in several steps. First we show that the solution
family (Nε(t)) of (ACP£) converges to zero as ε | 0. Here and in
the sequel we use the simplified notation

Nε(ή : = Nά s(t) a n d Mε{t) := Mά s(ή .
ε ' ε ε ' ε

If -b e (s(-B), 0), then there exists MB > 1 such that | |e~ ί β | | <
MB • e~tb for all t > 0 . Let \\CA{t)\\ < MA • cω(t) for / > 0 then by
Corollary 5

(5) ε e .
2vεω + b2

Since —b < 0 an easy calculation shows that

(6) -(-b + Vεω + b2)<^- := ω0 forallβ>0.
o Z*U

Hence (5) implies

(7) ||JVε(OII < e ^ ^ etωo for all ε > 0.

In the next step we show that AQ := \AB~X generates a strongly con-
tinuous semigroup (Mo(ή) which turns out to be the limit of (Mε(ή)
as ε i 0. As above we obtain from Corollary 5 and (6) the estimate

(8)

Put C := MAMB max{l, ψ , ψ , ^} . Then by (7), (8)

(9) \\Ne(t)\\ < e - C - eωo< and \\Mε(t)\\ < C eωo(.

Therefore the Laplace transforms

Qε(λ):=&(Nε(.))(λ) and Rε(λ) :=&(Me

exist for all λ with ReΛ, > ωo and satisfy the estimates

<10> l a W l ί j ^ and

< — - j ^ for all ε > 0, Reλ > ω 0
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By [8, (9), (11)] we have for Rcλ > ω0 and ε > 0

(11) Qε(λ) = ε - (ελ2 + 2λB - A)~ι and

Rε(λ) = (ελ + 2B)(ελ2 + 2λB - A)~ι.

Now from (10), (11) it follows that for fixed λ, Reλ > ω0 , the family

Pε(λ) := (ελ2 + 2λB - A)~ι

is bounded for ε > 0. Moreover, the resolvent equation applied to
pε(λ) = R(ελ2, A - 2λB) implies that (Pε(λ))ε>0 is a Cauchy net for
ε I 0 and the limit is readily identified as (2λB — A)~ι. Again by the
resolvent equation it follows that Rε(λ) converges as ε | 0 to

2B(2λB -A)~ι =R(λ, \AB~X) :=R(λ,A0),

where the convergence is uniform for λ in compact subsets of H :=
{λeC:Reλ> ωQ}.

In order to show that A$ = jAB~ι generates a strongly continuous
semigroup (Mo(ή) it suffices to show the Hille-Yosida estimates

(12)

First observe that Rε( ) (see [8, §3]) and R( , AQ) are analytic in H.
Since RB( ) converges as ε j 0 to R( , AQ) uniformly on compact
subsets of H the Weierstraβ convergence theorem implies that

(13) Jj! *L
uniformly on compact subsets of H. Let Mettl(t) := (-l)ntnMε(t).
Then for Re A > &>o and n e N o

and we conclude from (9) that

dn „ ,, C /i!

Combining this with (13) yields the desired estimate (12). This shows
that AQ = \AB~X generates a strongly continuous semigroup (M0(ή).
Hence the Cauchy problem (ACPo) is well posed.

In the last step we show that Mε(t) converges to M0(t) uniformly
for t in bounded subsets of R+ . In order to estimate M0(t) - Mε(t)
we need the identity

(14) (M0(t) - Mε(t))f = Mo * (M£ - h Nε^j (t)Aof

= Mo^N/

ε(t)Aof for έΆ f e D(A0) = D(A).
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To verify (14) note that the Laplace transform of Afo( ) gives the
resolvent R( , AQ) . Using this, (11), the convolution and the unique-
ness theorem for the Laplace transform we obtain (14). Integrating
by parts the right hand side of (14) yields

(M0(t) - Mε(t))f

= Ne(t)Aof + Mo * Nε{t)Alf for all / e D{Al) = D(A2).

Hence for f e D(A2) we deduce from (7), (8)

(15)

(MAMB)
2

ε - - — ^ T Γ Γ - ^ max {>• ,

< ε - ^ wo(O (Mo/11 + MAMB

where mo(O := eω^ = e^1. To estimate Uo(t) - uε(t) note that

«o(O = M)(ί)Mo, uε{t) = Mε(t)u0 + Nβ(t)uι.

Accordingly, from (7), (15) we obtain for all initial values UQ G D(A2),

max

Since the operator families (Mo(ί) - Mε(t))ε>o and (Nε(t))ε>o are
uniformly bounded for t in bounded subsets of R+ we finally con-
clude that Uo(t) - uε{t) converges to zero as ε [ 0 uniformly for t in
bounded intervals for all initial values u0, u\ e D(A). D

Using Theorem 6 it is also possible to obtain results on the conver-
gence of the derivatives of uε( ) . In fact, if in (ACPε) it is assumed
that UQ E D(A2), then ve( ) := u'ε{-) is twice diίferentiable and solves
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the Cauchy problem

ev'J(t) + 2Bv'e(ή=Ave(t), t>0,

ve(0) = uι, υ'e(0) = -(Au0-2Buι).
C

On the other hand the solution wo( ) of (ACP0) is twice diίferentiable
as well and VQ(-) := u'0( ) is the solution of

2Bv'Q(t) = Avo(t), ί > 0, vo(O) = ^AB~lu0.

Hence, by Theorem 1, Theorem 6

vo(t) - Ve(ή = Mo(t)l-AB'ιUo - Me(t)uι + -Nε(ή(Au0 - 2Bux).

In particular, for \AB~1UQ — u\ we obtain the following result.

COROLLARY 7. Let the assumptions of Theorem 6 hold. In addition
assume that \AB~~ιu$ = u\. Then the derivatives u'ε( ) converge uni-
formly on bounded intervals of R+ to uf

0( ) as e | 0. Moreover, if
u\ eD(A2), then

where ω0 := jfe, A o := \AB~X.

From the proof of Theorem 6 we also obtain the following result
on multiplicative perturbation.

COROLLARY 8. Let A be the generator of a strongly continuous co-
sine family (C^(/)) on E and B eJϊf(E) a bounded operator which
commutes with (C^(^)) and satisfies s(—B) < 0. Then AB~ι gener-
ates an analytic semigroup.

Proof. We only have to show that the semigroup generated by AQ :=
\AB~X is analytic. To this end observe that there exists a = a + ib e
C, \a\ = 1, a, b > 0 such that the assumptions of Theorem 6 still
hold if we replace B by aB and aB, respectively. Hence we conclude
that aAo and aA0 are generators and the assertion follows from the
next result. D
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LEMMA 8. Let aAo and aA0 be generators of strongly continuous
semigroups on E, where α = a + ib E C , |α| = 1 and a, b > 0. Then
AQ generates an analytic semigroup.

Proof. We may assume that ω(aAo), ω(aAo) < 0 otherwise con-
sider Ao — ω instead of Ao where ω is chosen such that ω(aAo),
ω(aAo) < ωa. Now it is clear that (a + a)Ao, hence AQ generates a
bounded semigroup and by [11, Chap. 2, Thm. 5.2] it suffices to show
that there exists a constant C > 0 such that for all σ > 0, τ Φ 0

We consider two cases. First assume τ > 0. Since UAQ is a generator
the Hille-Yosida theorem yields a constant C such that

\\R(σ + iτ, Ao)\\ = \\aR(a(σ + iτ), aA0)\\
C C

< r- < T- for all τ > 0.
ao + bτ bτ

For τ < 0 we obtain a similar estimate using the fact that aAo is a
generator on E. D
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