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ON SINGULAR PERTURBATIONS
OF SECOND ORDER CAUCHY PROBLEMS

Kraus-J. ENGEL

We give an explicit formula for the solution of complete second or-
der Cauchy problems in Banach spaces. Using this formula we derive
an estimate for the growth of the solution in terms of an associated
scalar ODE. Finally these results are applied to singular perturba-
tions of second order Cauchy problems.

1. Introduction. We are concerned with the second order Cauchy
problem
(ACP;) euy(t) + 2Bu(t) = Aue(t), t>0,

u:(0) =uge D(4), u,(0)=u; €D(A)
in a Banach space E where A is the generator of a strongly continuous
cosine family (C4(¢)) commuting with the bounded operator B €
Z(E). It is well known that for ¢ > 0 (ACP,) is well-posed, i.e., it
admits a unique solution which depends continuously on the initial
conditions uy and u; .

This paper is organized as follows. We first give (in case ¢ = 1)
an explicit representation of the solution u(-) of (ACP;) in terms of
C4(t) and B. Then we use this formula to derive an estimate for the
growth of u(t). In fact, we associate with (ACP;) a scalar ODE and
show that its solution dominates ||x(¢)||. Finally these results are used
to show convergence of u.(-) as ¢ | O to the unique solution of

(ACPy) 2Bug(t) = Aug(t), >0,
uo(0) = uo
provided that the spectral bound of —B is less than zero. Moreover,

from the proof of this result we conclude that under the above as-
sumptions 4B~! generates an analytic semigroup.

2. The explicit formula. In order to state the main result of this
section we need the following definitions. For a bounded operator
Q € Z(E) we define the modified Bessel function of order zero by

! _ oo (%)2n
0(Q) = Z (n!)z .

n=0
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Moreover, for two functions F and G defined on ]R+ we denote by
F xG the convolution of F and G, i.e., FxG(t): fo F(s)G(t—s)ds.
Using this notation we can show the following result. All integrals are
understood in the strong operator topology.

THEOREM 1. Let A be the generator of a strongly continuous cosine
Jamily (C4(t)) which commutes with B € Z(E). Then the unique
solution of the well-posed second order Cauchy problem

(1) u"(t) + 2Bu'(t) = Au(t), t>0,
u(0) =uge D(A), u'(0)=u; € D(A)

is given by
u(t) =My p(t)uo + N4, p(t)u,
Here

Ny B(t) = _ZB'SA+32( )’
My g(t):=e""B (Cq(t)+B-S,, g:(t) + B> C4 xS, (1)),

where

SA+BZ(t) = /Ot Io(2B/s(t—s)) - C4(25s — t)ds

Proof.! By [10, Thm. 6] (or see [6, Chap. 2.7 & 2.8]) (1) is well-
posed. First we show that (S, p:(?)) is the sine family generated by
A + B?. For this it suffices to verify that the Laplace transform

F(S,, p)A) = /0 Te .S, p(t)dt

satisfies the equality

(2) Z(S,.5)(A) =R(A2, A+ B*) =Y B™R(?, A)"*!
0

for A sufficiently large. Indeed,

00 t n _o\n
(SA+32)(A)=/ e—lt/o ZBZ";—!U n!s) L Cy(2s — ) dsdt

—232"/ ~“/ 7 ’"s - Cy(2s — t) ds dt

and (2) follows from the convolution theorem for the Laplace trans-
form and the following lemma.

'For similar arguments see [1, Thm. 1].
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LemMma 2. If ST"D(t) denotes the (n + 1)-fold convolution of the
sine family (S4(t)) generated by A, then

t on [ — n
/O‘;__'( n!S) .Cy(2s —t)ds = n+1)().

Proof of Lemma 2. The case n = 0 is trivial. The general case is
obtained by induction from the following computation.

(n)255 (1) = n2((n - 1)1)? /l S () - S4(t — u) du

o)

/ n=l(y — )" Cy(2s — u)ds Su(t — u) du
2
- // =1y — s)" (S (2 — 25) + S(t + 25 — 2u)) ds du

n /0 ./o s Hu—s)"1.S(t—2s)dsdu

=n2/0ts”‘1 -SA(t—ZS)/St(u—s)”*lduds

= n/ots”‘l(t—s)” -S4(t—2s)ds

= %/Otn(s”"l(t — )" —s"(t—5)"1) . S4(t - 25)ds

= %[s”(t —8)" -S4t —28)825 + /Ots"(z —8)"- Cy(t—2s)ds

t
= / s"(t—-8)"-Cy(2s —t)ds.
0
This completes the proof of Lemma 2. O
We proceed with the proof of Theorem 1 and show that
C, p(t):=Cu(t)+ B> CyxS,, p(0)

is the cosine family generated by A + B%. Again it is sufficient to
verify that the Laplace transform of C, () satisfies

Z(C,, p2)(A) =AR(A*, A+ B?)

for A sufficiently large. In fact, by the convolution theorem and the
resolvent equation we have

Z(Cy p2)(A) =AR(A*, A)+ B2AR(A*, A)R(A*, A+ B?)
= AR(A*, A+ B?).
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Let x, y € D(A), then the above results imply
(S p2(0)X)" = (A+ B*)(S,, g2()x) =0,
SA+BZ(O)x = O: (SA_{.BZ(')x)I(O) =X,
(Chrp()" = (44 B> (Cy p2()y) =0,
CA+BZ(O).V =Y, (CA+BZ(').V)’(O) =0
for all > 0. Using this one easily verifies (or see [10, Proof of Thm.
6]) that for Ny p(t):=e 8.8, p(t) and M, g(t):=e™B-C,, p(2)
we have
(N4,B(1)x)" +2B(N4, p(t)x)" — A(N4,p(t)x) =0,
N©x=0, (N()x)Y(0)=x,
(M, 5(1)y)" +2B(My,5(1)y) — A(Ma,5(1)y) = 0,
MOy =y, (M()y)()=-By
for all ¢t > 0. Hence the solution of (1) is given by
My (O)ug + Na, (t)uy + Ny p(t)Bug = My p(t)ug + Na, p(D)ur,
where My p(t) =e B (Cy(t)+B- S, p2(t) + B> Cy xS, p2(2)). O
3. Asymptotics. In this section we estimate the growth of the so-
lution of (1) in terms of an associated scalar ODE (see (3) below).
For this purpose we first have to find an estimate for the growth of
l1o(¢Q)|| for a bounded operator Q € .#(FE) and all ¢ > 0. By defini-
tion of the Bessel function it is clear that ||Io(zQ)| < Ip(?]|Q]|) which
turns out to be a very rough result. The following lemma relates the
Bessel function to the exponential function for which very sharp es-

timates exist. In fact it is well known (see, e.g., [9, A-II1.1]) that for
Q € Z(E) the spectral bound

s(Q) :=sup{Reil:Ae€a(Q)}
and the growth bound
o(Q) ;= inf{w € R: there exists M,
such that ||e’?|| < M,, - e'® for t > 0}

coincide. Combining these results will give a significant improvement
of the above estimate.

LEMMA 3. Let Q€ Z(E). Then

n

Io(Q) = -2‘; / 00 c0ss g

hat' /4
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Proof. As in the scalar case (see [14, Chap. II, 2.21]) the lemma can
be proved by expanding €2 into a Taylor series and using the fact
that for all n € N

n
/ (coss)?™lds =0,

-7

n 1-3---. ( n-— 1)
2n _
/_n(coss) ds =2n T o
The formula then follows without difficulty. O

Before we can state the main result of this section we need some
further notations. For a € R, we denote by

t) :=cosh(y/at) and s,(2) := 1% cy(?)

the cosine and the sine family, respectively, generated by «. Then by
[13, Thm. 2.5] (or see [3, Chap. II.5]) there exist constants M4 > 1,
w > 0 such that

ICa(O| < My -cpp(t) forallf>0.
Moreover, for b < —s(—B) there is a constant Mp > 1 such that
le=B|| < Mp-e* forallt>0.
Now consider the scalar ODE
(3) v"(t) + 2|b|V'(¢) = Vou(t), v(0)=1vg, v'(0)=v.
By Theorem 1 the solution of (3) is given by
v(t) = my, p(H)Vo + Ny p(1)V1
where
(4) ng p(t):=e".s, .(r) and
Mgy p(1) 1= e Pl (Co(t) + |B] - 5,2 () + 1B - coo % 5, 2(2)) -
The following result relates the growth of the solution of (1) to the
solution of (3).

THEOREM 4. Let |le™'B|| < Mp-e7 " and ||C4(t)|| < My - co(t) for
all t > 0. Then for the solution families (N4 p(t)) and (M, p(t)) of
(1) the following estimates hold.

(a) If b # 0, then

IN4 5(1)]| < MyMp - e'P1=0)n,, (1),

Iy oty max 1 181 1B20Y s

M4, 5(2)|| < M Mpmax B e S C My (1),
where n,, ,(t) and m,, ,(t) are defined as in (4).
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) If b=0, then
INA, ()| £ M4 Mp - 50(2),

12
134,501 < M - (col) + 18] 50(0) + |87 S50
Proof. (a) By Theorem 1 and Lemma 3 we obtain

t
Ny g(t)=e '8 / I(2B/S(=3)) - Ca(25 — 1) ds
0
= / L / " eBOVSEI0s0)-D gy €, (25 — 1) ds.
0 2z -

Hence

t n
IN4 5(1)]] < MyMg / % / PV 00s~1) gy ¢ (25 — 1) ds
0 -
= MAMB . et(|b|"b)nw’b(t) ,

where we used the fact that 2,/s(¢ — s) cos(r) —¢ < 0 for all s €[0, ¢]
and r € [-7n, ]. Using similar arguments we obtain

1My 5(0)]| < MMy - e (cwm ; '—%lbl Spep(0)
B2
+%b—|—2"_lbl2 "l * Sw+b2(t))

B B2
e 1, 121 1Y
e (o (t) + |B] - 5,42 (1) + [BI? - o % 5, 42(0))
2
= M 4Mp max { 1, |_||lb;_|” , ——”IIZP” } - e!UP=Bm , o (2).

(b) If b = 0 we conclude from Lemma 3 that ||Iy(sB)|| < Mp;
hence

N4, 8Dl < MyMp - 5,(t) and
1My, 5(1)]| < MgMp - (coo(t) + |BI| - Seo(2) + |B?|| - Cor * So(2))

2
= MMy (colt) +IBI 500 +182] - 530(0) .

From Theorem 4 we easily derive the following result.
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COROLLARY 5. Let ||e™B|| < Mp-e~"* where b > 0 and ||C4(1)|| <
My - c,(t) forall t > 0. Then the following estimates for the solution
Jfamilies (M, g(t)) and (N4 p(t)) of (1) hold.

MaMp b orb)

IN4, ()]l < NP ,
M4, 5(2)|| < M4Mpmax {1, ”—]ZJ’ ”154} pl(—b+Vo+b?)

4. Singular perturbations. There is a substantial literature on sin-
gular perturbation problems involving strongly continuous semigroups
or cosine families. For details we refer to [3, 4, 5] and the references
therein.

Here we consider singular perturbation problems of the type

(ACP,) euy () + 2Bug(t) = Aue(t), t>0,

us(0) = up € D(A), u,(0)=u; € D(A),
where it is assumed that A generates a strongly continuous cosine
family on some Banach space E. While in various papers (e.g. [4, 7,
12]) convergence of the solution u.(-) to the solution uy(-) of

2Buy(t) = Aug(t), t>0, up(0) = u

is shown only for 2B =1d or B=5b > 0 and A4 the square of a group
generator we extend these results to the following situation.

THEOREM 6. Let A be the generator of a strongly continuous cosine
family (C4(t)) on E and B € Z(FE) a bounded operator which com-
mutes with (C4(t)) and satisfies s(—B) < 0. Then the unique solution
of the second order Cauchy problem (ACP;) converges as ¢ | 0 to the
unique solution of the well-posed first order Cauchy problem

(ACPy) 2Buy(t) = Aug(t), t>0, ug(0) =uy.
Moreover, if ug € D(A?), —b € (s(-B), 0) and
le™| < Mp-e™ and [[Co(0)]| < My - colt)

forall t >0, then

o) ~ (0] < - 24518

e (||A0uo|| MMy

2
max {1, 2L L2, gl + o)

where wo =%, Ag:=3AB7!.
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Proof. As shown in Theorem 1 the Cauchy problem (ACP;) is well
posed. We proceed in several steps. First we show that the solution
family (Ng(t)) of (ACP,;) converges to zero as ¢ | 0. Here and in
the sequel we use the simplified notation

(t).

If —b € (s(—B), 0), then there exists Mp > 1 such that |e~ 8| <

Mp - e forall t>0. Let ||[Cy(2)|| < My -cy(t) for ¢t > 0; then by
Corollary 5

PR

Ne(t):= N4 5(t) and Mg(t):=M

L)
N
® |

o |,

MAMB tl—b bZ
5 N (t <8'—'€E( tVeot )
(5) INOl < 2 522 v

Since —b < 0 an easy calculation shows that

(6) %(—b+\/£w+b2)$%::wo for all ¢ > 0.

Hence (5) implies

(7) N:(D <e- MaMs 10, foralle> 0.
2b

In the next step we show that Ag := %AB‘1 generates a strongly con-
tinuous semigroup (My(¢)) which turns out to be the limit of (M;(?))
as ¢ | 0. As above we obtain from Corollary 5 and (6) the estimate

2
(8) |Me()|| < MyMp max{l , H-Ibﬂ, ”%ﬂ} el .

Put C = MyMpmax{1, Il IZIl 1y Then by (7), (8)
9 [IN:(D)| <&-C-e®’ and [[Me(1)]| < C-e™".
Therefore the Laplace transforms

Qe(4) = Z(Ne(-))(4) and  Re(4) := Z(M())(4)

exist for all A with Rel > w( and satisfy the estimates

e-C
(10) Q@IS gy=pe 2nd

|| Re foralle >0, Reld > wy.

C
Al < Rei— g
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By [8, (9), (11)] we have for ReA > wy and ¢ >0
(11) Q:(A) =¢-(eA>+2AB— A)~! and
Re(A) = (eA+2B)(eA*? +2AB — A)~!.
Now from (10), (11) it follows that for fixed 1, Re A > wq, the family
P,(A) := (eA> + 2AB — A)7!
is bounded for ¢ > 0. Moreover, the resolvent equation applied to
P.(A) = R(eA?, A — 2AB) implies that (P;(4)),>o is a Cauchy net for
¢ | 0 and the limit is readily identified as (2AB — 4)~!. Again by the
resolvent equation it follows that R.(41) converges as ¢ | 0 to
2B(2AB — A)"' =R(A, 1AB") := R(4, 4p),

where the convergence is uniform for A in compact subsets of H :=
{AeC:Rel> wy}.

In order to show that Ay = %AB‘1 generates a strongly continuous
semigroup (My(¢)) it suffices to show the Hille-Yosida estimates
ar C-n
—_— <
dl”R( ~ (Red — )l
First observe that R.(-) (see [8, §3]) and R(-, 4p) are analyticin H .
Since R(-) converges as ¢ | 0 to R(-, Ap) uniformly on compact
subsets of H the Weierstrall convergence theorem implies that

dr dr

(13) WRg(-)adinR(',Ao) fore —» 0

uniformly on compact subsets of H. Let M, ,(¢) := (—1)"t"M,(t).
Then for Red > wg and n € Ny
dn

(12) A, Ag) forall A€ Hand n e Ny.

T Re(2) = Z(My n())(2)
and we conclude from (9) that

dr C-n!

Z,TnRs('l)‘ = Red—wo)™1°

Combining this with (13) yields the desired estimate (12). This shows
that 4p = %AB‘1 generates a strongly continuous semigroup (My(?)) .
Hence the Cauchy problem (ACPy) is well posed.

In the last step we show that M,(t) converges to My(z) uniformly
for ¢ in bounded subsets of R, . In order to estimate AMy(t) — M;(¢)
we need the identity
(14 (Mo(0) - M) = Mox (M. = 2B N.) (0101

= My * Nj(t)Aof forall f € D(Ay) = D(A).
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To verify (14) note that the Laplace transform of My(-) gives the
resolvent R(-, Ap). Using this, (11), the convolution and the unique-
ness theorem for the Laplace transform we obtain (14). Integrating
by parts the right hand side of (14) yields

(Mo(t) — M, (1)) f
= Ny(t)Aof + My * Ny (t)A3f for all f € D(43) = D(4?).

Hence for f € D(A4%) we deduce from (7), (8)
(15)  [[(Mo(2) — Me()) S|

M M,

<o MM y)a00)
M 4 Mpg)? B B?

v P g fo, 20 L2 g o311
MM,

<o 220 mo(t) (o1 + MM

1Bl 118%]
.max{l,T,—bz— t”A(z)f” s

where m(t) := e®’ = e%’. To estimate ug(f) — u(t) note that
uo(t) = Mo(t)uo,  ue(t) = M(t)uo + Ne(t)u; .

Accordingly, from (7), (15) we obtain for all initial values uy € D(42),
u; € D(A)

MsM
luo(2) — (D)l < &+ =557

fw@%M+MMb

B B?
-max{l , ”—bu , ”b—zll} t[lA%uoH =+ Hulll) .

Since the operator families (My(?) — Mc(t))e>0 and (Ng(t))eso are
uniformly bounded for ¢ in bounded subsets of R, we finally con-
clude that wu((¢) — u.(¢) converges to zero as ¢ | O uniformly for ¢ in
bounded intervals for all initial values ug, u; € D(A4). O

Using Theorem 6 it is also possible to obtain results on the conver-
gence of the derivatives of u.(-). In fact, if in (ACP;) it is assumed
that uy € D(4?%), then v,(-) := u.(-) is twice differentiable and solves
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the Cauchy problem
evy (1) + 2Bvj(t) = Av(t), t>0,
ve(0) = uy, vy0)= é(Auo —2Buy).

On the other hand the solution uy(-) of (ACPy) is twice differentiable
as well and vo(-) := ug(-) is the solution of

2Bv{(t) = Avg(t), t>0, wp(0)= %AB“uO.
Hence, by Theorem 1, Theorem 6
1 1
Vo(t) — ve (1) = Mo(t)iAB"uo = Me(t)uy + —No(t)(Auo — 2Buy).

In particular, for $4B~'uy = u; we obtain the following result.

COROLLARY 7. Let the assumptions of Theorem 6 hold. In addition
assume that $AB~'ug = u,. Then the derivatives u,(-) converge uni-
formly on bounded intervals of Ry to uy(-) as ¢ | 0. Moreover, if
u, € D(A?), then
M Mg

2b

et (quulu T MyM;

1Bl 1B
.maX{l, T, 7 t”A(%ulu s

log(8) — vz (Dl < &

where wq:= %, Ag:=34B7!.

From the proof of Theorem 6 we also obtain the following result
on multiplicative perturbation.

COROLLARY 8. Let A be the generator of a strongly continuous co-
sine family (C4(t)) on E and B € ¥ (E) a bounded operator which
commutes with (C4(t)) and satisfies s(—B) < 0. Then AB~! gener-
ates an analytic semigroup.

Proof. We only have to show that the semigroup generated by A4 :=
-;-AB‘1 is analytic. To this end observe that there exists a = a+ib €
C, |a| =1, a, b > 0 such that the assumptions of Theorem 6 still
hold if we replace B by aB and aB, respectively. Hence we conclude
that a4y and @A, are generators and the assertion follows from the
next result. a
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LEMMA 8. Let aAy and @Ay be generators of strongly continuous
semigroups on E, where a =a+ibeC, |a|=1 and a,b > 0. Then
Ao generates an analytic semigroup.

Proof. We may assume that w(adp), w(ady) < 0; otherwise con-
sider 4y — w instead of 4y where @ is chosen such that w(ad)),
w(aAdy) < wa. Now it is clear that (a + @)4y, hence A4, generates a
bounded semigroup and by [11, Chap. 2, Thm. 5.2] it suffices to show
that there exists a constant C > 0 such that forall ¢ >0, t#0

. C
|IR(o + it, Ag)|| < Eh
We consider two cases. First assume 7 > 0. Since @Ay is a generator
the Hille-Yosida theorem yields a constant C such that

IR(a + it, Ag)ll = |@R(@(0 + i), qdo)]

_<_—C—§£ forall 7 > 0.
ac+bt ~ bt

For 7 < 0 we obtain a similar estimate using the fact that a4, is a
generator on E. O
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