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AN ANALYTIC FAMILY
OF UNIFORMLY BOUNDED REPRESENTATIONS

OF A FREE PRODUCT OF DISCRETE GROUPS

J A N U S Z W Y S O C Z A N S K I

We construct for each \z\ < 1 a uniformly bounded representation
πz of a free product group. The correspondence z •-> π z is proved
to be analytic. The representations are irreducible if the free product
factors are infinite groups. On free groups they have as coefficients
block radial functions—gives thus a new series of representations.
They can be made unitary iff z e ( - ^ = j , 1).

This paper is devoted to the construction of a family {πz : \z\ <
1} of uniformly bounded representations of a free product of infi-
nite groups. The construction is based on the ideas of Pytlik and
Szwarc, who considered free groups on countably many generators.
We have investigated a family of block radial functions discovered by
W. Mlotkowski. The functions were defined as follows: for \z\ < 1,

Each of these functions turns out to be a matrix coefficient of one of
our representations {Az : \z\ < 1}, namely:

where ξ is the common cyclic vector. The constructed representations
will be shown to be irreducible, except when z = 0 or z = - ^ry >
which independently follows from Szwarc's general theorem on the
family {φz : \z\ < 1} (see [Sz.2] Theorem). In the two exceptional
cases z = 0 and z = -j^γ we identify the representations with the
regular and the quasi-regular representation, respectively.

Next we consider the problem of whether some of the representa-
tions {Az} can be made unitary. For this purpose we introduce a
family of operators {Vz : z e Ω} where Ω = {\z\ < 1}\(—1, — ;#=τ]
and intertwine each representation by a proper Vz. In this way we
get (Theorem 11) an analytic family of uniformly bounded represen-
tations {πz : z G Ω} which are unitary if and only if z e {-JJ^J , 1) -
All the representations are irreducible if the free product factors are
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infinite. As a corollary we get the result of Mlotkowski which char-
acterizes those of his functions which are positive definite. For real
z that belong to the segment (~ ]^T > 1) the corresponding represen-
tation πz is unitary and for other z from B> = { z e C : | z | < l }
πz is uniformly bounded and cannot be unitarized (by the result of
Mlotkowski).

One way of dealing with free products of groups in the context
of representations was presented by Iozzi and Picardello ([I-P]) and
came from the theory of Figa-Talamanca and Picardello ([F-P.l], [F-
P.2]). It used the fact that the space of radial functions on the group
G = * ^ ! ZJ^ is an abelian algebra. Another approach was found by
Pytlik and Szwarc (in [P-S]). By considering a special operation on
free groups they constructed an analytic family of uniformly bounded
representations. Later Bozejko gave a general construction of a regular
free product of representations ([B.2]). This allowed him to treat both
lengths (ordinary and block one) on free groups as special cases.

The operation of cutting the last letter from a word in a free group
{x\ xn »-+ X\ *n- i ) , introduced in [P-S], may be thought of
as the translation of a vertex of the tree of the group towards the vertex
representing the group identity. This remark inspired us to look in a
similar manner at free products. They act by automorphisms on the
trees defined by J-P. Serre in [S]. Our idea was to consider the square
of the translation "towards the identity" on these trees. In this way we
got an operation which preserved the subsets XQ = {elements of the
group} and X\ = {right cosets with respect to free product factors} of
the set of vertices. In this paper we are dealing with its "restriction"
to Xx.

Most important for us is the case of the free group F# on N free
generators. This group is a free product of N copies of the group
Z of integers. The block length on F# differs essentially from the
ordinary length related to free generators. Therefore our family of
uniformly bounded representations of the free group F# seems to be
new in comparison to those known so far (see [F-P l], [M-Z] and [P-
S]). Actually, an open problem is to prove that our representations are
not equivalent to those associated with the ordinary length on F # .

1. Preliminary notation. Our group G is a free product of a family
{Gi : i e 1} of groups. Here and subsequently we will assume that
J = { l , . . . , iV}, 2 < N < oo, and that each group Gi is countably
infinite. The tree Γ(<?) of G defined by Serre (see [S]) consists of the
set X of vertices and the set E(G) of edges. The set X is a disjoint
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union of two subsets: Xo = G = {jgeβis}—the set of elements of
G, X\ = {gGf : / G /, g G G}—the set of cosets with respect to the
subgroups Gi. The set of edges of Γ(G) consists of pairs (g, gGi)
and (gGi, g). In the sequel, P stands for the square of the translation
towards the point e = γo, restricted to X\. This means that P is
defined on the linear span of X\ by P(Gt) = 0 for / = 1, 2, . . . , N
and if g G G\{e} is of the form (called the standard form of g):
g = g\ gn where gk e Gik\{e} for n > 1 and iιφi2φ -φ in ,
then P(gGi) = (gx g2 gn-\)Gin for i φ in. The action of G
on Xx will be denoted by L: L(g)(hGi) = (gh)Gt for g, h G G,
/ G {1, 2, . . . , N}. This action is easily seen to be an isometry of
Γ(G) with respect to the natural distance on the tree.

2. The unboundedness of the operator P. Set %? = h(X\) For
every g G G the operator L(g) extends to a unitary operator on ^ .
The operation P does not extend to a bounded operator on %f. In
spite of this it plays the key role in our construction.

For fixed z G C and a function / G %? with finite support one
may write the formal series Σ)?Lo zk Pkf. Here we understand that
P acts as a linear operator on the linear span of X\, denoted by
^(X\). In the sequel, this space will be identified with the subspace
of finitely supported functions. Let us observe that the series has only
finitely many nonzero terms. This follows from the fact that for every
y e l i there exists r G N such that Prγ = 0. Therefore the operator
(7-zP) is invertible on 3?(X\) and ( / - z P ) ~ 1 / = Σt^zk-Pkf for
all / G 3£(X\). For fixed g G G we will compare the actions of P
and L(g)PL(g~ι) on J^(X\). Assume that g has the representation
g = g\ ' gi gn in standard form and write: &(e) = {Gt : / =
1 , 2 , . . . , # } ,

&(g) = {gθ' g\' g2 gmG\ G X\ : 0 < m < n, g0 = e, iφim}.

Then we have the following

LEMMA 1. For every γeX\\&(g) we have Pγ = L(g)PL(g~ι)γ.

The proof is easily seen on the picture of the tree and we omit it
here.

3. The uniformly bounded representations Az . For z G C and g G
G define Az(g) = (I - zP)~ιL(g)(I - zP) which, at the least, may be
considered as a linear operator on the vector space ^(X\) spanned
by X\. Using the expansion of (7 - zP)" 1 on 3?(X\) one gets for

r ~ ^^" the following expression for Az(g)f'.
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LEMMA 2. For every z e C , g eG, f e 3£(X\) we have
oo

A2(g)f = L{g)f + Σ zk+ιPk[P - L(g)PL(g-1)] o L(g)f.
k=0

For \z\ < 1 the mapping G 3 g ^ Az(g) turns out to be a uni-
formly bounded representation of the group G in the Hubert space

THEOREM 3. For z e B> = {z e C : \z\ < 1}, Az extends to a
uniformly bounded representation of G on ^f — h(X\) and for every
geG

\\Az{g)\\<l+2y/N=Ί
\-\z\

Proof. For g = e the assertion of the theorem is trivial, because
Az(e) = /. Fix g e G\{e} and consider the space %Tg = h{&(g)) c
βf. By Lemmas 1 and 2 the operator Az(g)L(g~ι) acts as / on a
dense subspace of an orthogonal complement of %fg. So it may be
extended onto the whole subspace %?£- and ||^4z(<gr)L(gr~1)|χ±|| = 1.

Therefore we only need to look at the action of Az(g)L(g~ι) on %fg .
Suppose that / ' = L(g)f e ^ and / = Σ L ^ / W -7- The
space £?g is finite dimensional so we may apply Az(g) to / (in fact
/ G ttiXi)). Write ym = £0 g\ ^G/ m + 1 for 0 < m < n - 1
(where go = 0 Then we get the following formulas for / ' e β^g :

L(g)VL(g~ι)f(γm)

since g\ gmGi — g\ gm-\Gi . From them it follows that
m m

IIP/ΊI2 < (N- 1) II/ΊI2 and similarly ||L(g)PL(^-i)/Ί|2 < (N - 1)
II/ΊI2. Observe that for k > 2, \\Pkf\\ < | |P/ | | whenever fe&g.
To see this assume that g = g\ • g% gn is the representation of
g of the standard form. We will denote by ^{g) the set

gm-\Gi :0<m<n, go =
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For every k > 1 and / £ %?g, s u p p ^ / ) c 9~{g) because for each
γ G &(g), Py G ̂ ( ^ ) . If we put γm = go ft gmGim^ (go = £)
for 0 < m < ̂  - 1 then

^_i for m = 1, 2, . . . , w,
= r

rm ' 0 form = 0.

This means that P acts as a shift on SΠ^g). Similarly, one can see
that

and for L(g)fGJTg, supp(L(g)PL(g-ι)f) cf(g). Therefore P
and L(g)PL(g~ι) have norms equal 1 on h{^{g)). Consequently,
for \\g\\ = n>\ and f e L(g-i)jrg, supp([P-L(g)PL(g-ι)]L(g)f)
C f(g). Thus

\\Az(g)f\\<\\L(g)f\\
OO

o [P - L(g)PL(g-1)] o

= ii/ii
This is the desired conclusion. D

4. Some matrix coefficients of Az. Let us adopt the following no-
tation. Here and subsequently £o stands for the vector G\-\ \-Gχ
and ξ = -4= ξo. Our next lemma exhibits a relation between φz and

LEMMA 4. For every g eG we have φz{g) = (^z(<?)ί, ξ) -

Proof. First we compute Az(g)ζ0. For this purpose we put g —
g\ gn , Λ > 1 (the standard form), and γm = g0 ft feG,M+1.
Then

OO OO

= yΛ + Σ z ^ 1 ^ 1 ^ - X;
fc=0 A:=0

k=0



378 JANUSZ WYSOCZANSKI

and, for j φ in,

(Observe that L(g)PL(g'ι)gGi = 0 for j = 1, 2, . . . , TV.) In this
way we obtain

oo

Λ*(S)& = 53 gGi + [1 + z(7V - 1)] 53 z*P* y ι l .
#/„ *=o

Hence

(Az(g)ζ0, £0> = [1 + z(ΛT - 1)] z " - 1 {Giχ, £0> = 1 + Z ( f ~ 1 } z» .

Therefore, for g φ e,

Obviously ^4Z(^) = / and {Az(e)ξ9 ξ) = 1 = p z (e) . This proves the
lemma. α

5. The cyclic vector ξ for all Az^ z Φ ^ ^ . We will denote by
3Z the transformation from G into 3P(X\) defined by the following
formulas: Z{e) = £o and 2{g) = Σtφi gGi if g is of the standard
form and ||g|| = n > 1. This transformation extends to a bounded
operator from h{G) into βf which is injective.

REMARK. In our notation g stands for an element of G as well as
for the characteristic function of {g} .

LEMMA 5. The vector ξ is cyclic for Az if and only if

* ( | | < 1 )

Proof. Let g = go g\ gn be in the standard form and assume
n > 1 and put ~g = go- g\ gn-\ Then we have formulas

Az(g)ξ0 = Z{g) + [1 + z(N - 1)] ] Γ zkFkγn and

i + z(ΛΓ - 1)]
z

Subtraction of these formulas yields:

- z A2(g)]ξ0=3r{g) - z 2ί(g) + [1 + z(JV- 1)] γn .
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Suppose that we have / e %? such that for every g e G(AZ(g)ξo , / )
= 0. Then Az(e)ξ0 = ξo implies

£/(<?,•) = 0 and Σ

and in the general case

Combining these we get Σi^ f{g\Gϊ) = -[1 + z(N - 1)] f{Giχ). In
the same way one gets £ l W /(αG,-) = -[1 + z(JV- 1)] f{Giχ) for all
aeGf . Since / G / hence

Σ

This means that ΣaeG. I1 + z ( ^ ~ ι)\2 • I/C^ί,)!2 < +°° However,
it was assumed that each group G, was infinite so f(Gj) must be
zero. Since i\ has been chosen arbitrary, we obtain /((?,) = 0 for
all i € {1, 2 , . . . , N}. Assuming /(gG, ) = 0 holds for all g e G
with ||g|| < n - 1 we will prove it for ||#|| = n. Take # € G (of the
standard form), ||^|| = n. Then, for every a e (?,- and ί # /«,

j) = z-Σf(gGj)-[l+z(N-l)]-f(gGi)

and by the assumption

Therefore Σjφi f(gaGj) = -[l + z(N- l)] f(gGΪ). In the same man-
ner as previously (by taking a sum over all a e G) one gets f(gGj) = 0
which completes the proof. D

REMARK. If one of the groups G, (for example Gι) is finite then,
for i φ 1, ΣjtiAgGj) = 0=> f{gGx) = -Σjμ.iAgGj) = 0
because each summand is equal zero. Thus the sufficient condition on
the <?,• 's is that all but one be infinite.

6. The irreducibility of Az. The representations Az turn out to be
irreducible if all the groups G\,... ,Gχ are infinite.
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THEOREM 8. For all z of modulus less than 1 except z = 0 and
z = -j^z\ the representations Az are irreducible meaning that there
exists no nontrivial closed subspace of βf invariant for the action of
Az.

Proof. We are now going to prove that the operator Sz (constant
multiple of the projection onto the cyclic vector ξ) defined as Szf =
z - N -[I + z(N - 1)] (/, ξ) -ξ belongs to the von Neumann algebra
^CV{AZ) of each representation Az. To do that we will produce a
sequence Sn of operators in Έ/I^{AZ) which converge strongly to this
projection. The assumption that each group Gz is infinite is necessary.

Before that we will make some remarks about the consequences of
finding such a sequence. Therefore suppose for a moment that Sn is
given with Snf —> cz{f, ξ)ξ = Sf for all / G βf. If some nontrivial
subspace %?\ of β? were invariant under the action of Az we would
choose a nonzero vector / in it. Then for all n G N, Snf would
belong to the subspace and consequently so would Szf. However,
this means that (/, ξ)ξ G %f[ which implies that ξ G %[ if and only
if (/, ξ ) ^ O o r equivalents Σ/Ii / ( Φ ) φ 0. Hence if we show that
it is possible to find such / we will have ξ G %{ which is possible
only if %f\ = β?. Thus we are reduced to proving the following:

L E M M A 9 . There exists fe<%[ such t h a t ( f , ξ ) φ θ .

Proof. Let us take any nonzero function h in %\ and choose gGz

in supp(/z) such that g has the shortest length. We will assume that
S = g\''' gn is in the standard form and that in = 1, if g φ e. For
each x e G w e will write hx for h\^^ (so h = J2xeGhx). There
are two possible cases: (1) (h,^(g)) = c φ 0 (2) (h,^(g)) = 0.
Let us consider the first case. All is trivial if g = e. If not, we have
Az(g-ι)h = Az(g-ι)hg + L(g-ι)(Σx^ghx) because hx £ ^ - . if
x e supp(Λ), xφ g. Hence (Az(g-χ)h, £0) = (Az{g~ι)hg , ̂ 0 ) . Let
us compute

N N

A z ( g - ι ) h g = ΣhteGΛ'A*te-ι)gGi = ΣKgGi) Gi -zcGx.
i=2 i=2

From this we get {Az{g~x)h, ξ0) = c{\ - z) φ 0 if c φ 0. Thus for
c ^ O we put f = Az(g-ι)he%Ί.

Now let us consider the second case: c = (h, 3?(g)) = 0. Since
hg φ 0, there exists / G {2, . . . , TV} such that Λ(^GZ ) ^ 0. To
simplify the notation we put i = 2.
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PROPOSITION. For every nonzero constant y eC there exists

b G G2\{e} such that ^ h(gbGj) φ y.

Proof of the proposition. Suppose, contrary to proposition's claim,
that for every b e G2\{e} we have Σj:£2h(gbGj) = y. Then for
every b e G2\{e} there exists j = j{b) such that \h(gbGj)\ >
\y\/(N - 1) for otherwise \Σ,jφ2h(8bGj)\ < M τ h i s w o u l d i mP!y
that Σjφ2 \h(gbGj)\2 > (\y\/(N - I))2 > 0 for all b e G2 . However,
summing up of both sides of the last inequality gives

b jφl b

which contradicts the assumption A E / . Thus the assertion of the
proposition is true. D

Let us take y = h{gG2) and b e G2 as in the proposition and
nsider Az(b~ιg~ι)(hg + hgb). We have:

A2(b-ιg-ι)hgb = Σh{gbGj)Gj - zcG2 where c =

and
TV

Az(b~ιg-ι)hg = h(gG2) (G2 - zG2) +
i=3

because Σf=3h(gGi) = -h(gG2). Therefore (putting R = h-
one gets:

(Az(b-ιg-ι)h, ξ0) = (Az(b-ιg-ι)(hb + hgb + R), £o>

Hence taking / = Az(b~ιg-ι)h we get / e %[ and (/, ξ)φθ. This
finishes the proof of Lemma 9. D

Now we are going to present a sequence Sn , with the desired prop-
erty. Let us write each group Gi\{e} as a sequence {a}, aj, ...} and
define Sn as follows:

k=\ [ i=l i=l jφi

By a direct computation one can see that US,,(£(/,•)|| —»• 0 and SnGt —>•

z[\ + z(N - 1)] ξ0 = zN[l + z{N - 1)] •lfit,ξ) ξ. This ends the
proof of irreducibility of Az. D
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8. The problem of unitarization of the representations Az . Let us
consider the family {Vz : \z\ < 1} of operators on %f defined by the
formulas: VzGt = Gt + β(z) ξ0, VzgG{ = gGt + δ(z) • Z{g) where
i = l ,2, . . . ,JV, g e ( ? \ M , a n d

δ ^ = -JΓΓΪ + Λ^= 1 Y 1 + z(N - 1) '

Here we have taken the analytic branch of the square root in the
domain Ω = {z e C: \z\ < 1}\(—1, JJZJ]. The finite dimensional
Hubert space with an orthonormal basis {gGt : / φ in} will be de-
noted by Jt{g) (g is thought to be of the standard form and of
length n > 1 Jf(e) has the set {Gz : / = 1, 2, . . . , N} as its basis).

LEMMA 10. For every z e Ω, Vz is bounded and invertible on %?.
Both Vz and its inverse leave each subspace Jt(g) invariant.

Proof. The invariance condition is an immediate consequence of
the definition of Vz. Furthermore Vzξo = [1 + β(z)N]ξo and, for
g φ e, Vz%{g) = [1 + δ(z)(N - \)\2Γ{g). We define V~ι by setting

rr-\Γ Γ β(Z) μ
V G = z G ξ o

and

It is evident that V~ι is an inverse of Vz . It remains to prove that
both are bounded. We need only to estimate their norms on each
JK(g) separately (in fact, on Jt{e) and Jί{g) for some g e G).

Let us state the following general remark.
Assume that an operator V acts on an m-dimensional Hubert space

fj with an orthonormal basis e\, . . . , em in such a way that, for every
/ G {1, . . . , m}, Veϊf = ex + x Y!f=\ βj . Then for any vector / e ft
of the form / = Σ%ι fU)' *i we have Vf = Σ^i l/C/) + ex] ^
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where c = ΣJLi fU) > a n c* therefore

( m - l ) |x|2) m | | / | | 2 .

Hence

Using this remark one can get

IN , „„_,„ . 5N
< —

this finishes the proof of Lemma 10. D

The purpose of this section is to change (when possible) the repre-
sentations Az in such a way that we get a unitary family. This will
be done by intertwining Az with Vz .

THEOREM 11. Let πz be defined for z e Ω by setting πz(g) =
Vz~

ιAz(g)Vz for every g e G. Then {πz : z e Ω} forms an analytic
family of uniformly bounded representations of the group G on the
Hubert space %f. Moreover.

(i) πz is unitary if and only if z e ( - o > 1)

llπ (e)\\ < 15N2 (l + hίEΞMίEΞ
|i-z|

(iii) πz(<gp) - V~ιL(g)Vz is a finite rank operator.
(iv) If all the groups G\t i — 1,2, ... , N, are infinite then no

representation πz has a nontrivial closed invariant subspace.

REMARK. We should stress that the formulation of the theorem is
almost the same as that of Pytlik and Szwarc (see [P-S], Theorem 1)
in the case of the free groups. All our constructions and results follow
their ideas. However, our results apply to bigger class of groups and
in the case of free groups our representations seem to differ in kind
from all the other known.

As a simple consequence of the theorem we get a result of
Mlotkowski (see [M.I] Theorem 1).
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COROLLARY. The functions

are positive definite on G if z e ( - 7 ^ , 1).

Proof. It has been proved that the functions are coefficients of
the representations Az. Using formulas Vzξ0 = [1 + β(z)N]ξ0 and
Vz~

ιξ0 = [1 + β(z)N]~ι ξ0 we see at once that they are coefficients of
πz as well and φz(g) = (πz(g)ξ, ξ). Hence, by (i) of Theorem 11,
the corollary follows. •

Proof of Theorem 11. We need only to prove (i). One gets (ii) by
a simple estimation \\πz(g)\\ < \\Vz-

ι\\ \\Az(g)\\ | | F Z | | . Also (iii)
immediately follows from the fact that Az(g)L(g~ι) is equal to the
identity on the orthogonal complement of ^ and the space V~x%fg

is finite dimensional. The irreducibility of πz follows at once from
Theorem 9.

Proof of'(i). It suffices to show that for z e (-57=7,1) all the op-
erators πz(a) for a e [Jiei^l (here G* = Gi\{e}) are unitary. This
will be done by showing that for such z all Rz{ά) = πz(a)L(a~ι) =
V~ιAz(a)VzL(a~ι) are unitary.

Let us fix a e Gi\{e} and for simplicity assume / = 1. Then

%ί = k({G\ 9...,GN9aG2,..., aGn}) and we have

LEMMA 12. For every z e Ω the operator Rz{a) preserves %fa and
its orthogonal complement ^a

L.

Proof, (a) Rz(a): %?a —• %a\ it suffices to write the following se-
quence:

</Ca —y </t -1 —>• <^a~
ι — y S^a —^ ^a

This sequence follows immediately from the definition of Vz and the
fact that the action of Az(a) on %fa-\ may be described by

Az(a)Gχ = Gx, Az{a)Gi = aGi + z-Gι, Az{a)aΓxGi = Gi-zGι,

(b) Rz(a): ^ J - —• %fa

L write the following sequence

L(a~ι) ™j_ V ± Ax(a)=L(a) ± V~ι

• ^ r * sir >
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which may be justified as follows: L(ά) is unitary so it maps β?^ into

3?^. For the same reason L(a~ι) maps fl?^ into %?±x. Moreover,

by Lemma 8.1 on the space %fhx we have Az{a) — L{a). D

LEMMA 13. For every g e G\{e,a}, VzL(a~ι)gGi = L{a~l)VzgGi
which means that Vz~

ιL(a)VzL(a~ι) = / on J^1.

Proof. Under the above assumption L(a~ι)gGt = a~ιgGi. Hence
VzL(a-ι)gGi = a~ιgGi + β(z). 3T{a'ιg) = L(a-ι)VzgGi. α

COROLLARY. Rz(a) = I on the subspace ^a

L.

Proof. Rz(a)\^± = VfιL(a)V2L(a"ι)\^± = I\#± by the above
a a a

lemma.

Continuation of the proof of Theorem 11. In virtue of the above
we need only to consider Rz{a) on %fa. The unitary condition
Rz(a)Rz(a)* — Rz{z)*Rz(a) = / on that subspace is equivalent to
Az{a)WzAz{a)* = Wz, where Wτ = VZV*. Let us write this as
[Az(a)L{a-ι)][L(a)WzL(a-ι)][L(a)Az{a)*] = Wz and for simplicity
of notation put W = Wz, B = Bz(a) = Az{a)L(a~ι), W = Wz{a) =
L(a)W2L(a~ι) on %ίa. Then we have the following formulas:

(I) BGi = Gι, BGi = Gi-z Gι, BaGt = aGt + z-Gx.
N N

(II) B*GX = Gι - z • 2 Gi+ z • ^
ι=2 ί=2

(HI) WGi = Gi + r-ξ0 for / > 1,

WaGi = aGi + s 3Γ(a) for i > 2.

(IV)

where r = r{z) = β + ~β + | ) S | 2 ^ , 5 = j(z) = (5 + δ + \δ\2(N - 1) are
functions of z. We need only to check the condition BWB* = W
on the orthonormal basis {G\,... , Gn, aGi,... , aG^} of %Ό, • This
will provide us with necessary and sufficient conditions for unitarity.
For 1 > 2 BWB*Gi = G( + s-ζo-[s + z + zs(n - l)]Gι. Comparing
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this with formula (III) we get the necessary conditions on z : (i) s +
z + zs(N - 1) = 0 and (ii) r = s. By definition 1 + s (N - 1) =
|1 + z(N - I ) ! " 1 . Hence s G R and s — x+~^_χ^ or equivalently
z = ^ 7 ^ , ^ which means that also z e l . Moreover, from (i) we
get l+S'(N-l) = (l + z(N-l))-{ thus \l + z(N-l)\ = l + z(N-l).
This forces 1 + z(N— 1) to be positive which implies that z > —jpr[
Thus the necessary condition for Az(a) to be unitary is -7^7 < z <
1. Now one can prove r — s for such z . Similarly, for / > 2,
BWB*aGi = aGi + [r + z + zr(N- 1)] Gx + r - ^ ( α ) . This, compared
to (III), gives the same conditions on z . By virtue of the former case,
BWB*aGi — WaGi for / > 2. By a straightforward computation
one shows that BWB*G\ = WG\ for all z from the interval under
consideration.

In this manner we have proved that on the space ^ the equality
BWB* = W (equivalent to Rz{a)Rz{a)* = 1 = Rz{a)*Rz{a)) holds
if and only if z e ( - ^ Z T > 1) This finishes the proof of Theorem 11.

Final remarks. In all that has been done in this paper we studied
groups with discrete topology. Our assumption was that the groups
G were free products G = tfLx Gz of N groups of the same infinite
cardinality. Geometrical properties of such groups are essential in
our investigations—they act on semi-homogeneous trees (called also
Bruhat-Tits trees by Ol'shanskii [O]). The construction of such trees
related to free products of groups was presented by Serre in his book
[S].

Our representations all act on the same Hilbert space and are ir-
reducible if all the free product factors are infinite. We believe that
this does not happen when the factors are finite (as in the case of free
groups studied by Szwarc in [Sz.l]). Actually, the construction can be
done even if the free product factors are of different cardinality, so
that the associated tree is no longer semi-homogenous. However the
number N of the free product factors has to be finite.

As in [P-S] one can show that if z, s e Ω and z / 5 , z+s+j^j Φ 0
then the representations π z and πs are non-equivalent. We do not
know whether z + s + -^y = 0 implies the equivalence πz « πs.

It is worthwhile to see the "picture" of the family of the represen-
tations πz (or Az for |z| < 1) as a function of z :

regular quasi-regular trivial(?)

λ I \ L \ I

0 1
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One can recognize two representations Az for z = 0 and z = - 7 ^ - :
AQ = L (quasi-regular representation) and for u = -jfz\Auo% = %oλ
where % = j^γ J2", so 4̂W is similar to the regular representation λ
of the group G. Looking at Mlotkowski's function φz for z = 1 one
sees that ψ\ = 1 is a constant function, which is a matrix coefficient
of the trivial representation of the group. However it seems to us that
the construction cannot work for z = 1.

The author wishes to thank Professor Marsk Bozejko for suggesting
the problems and many stimulating conversations. The author appre-
ciates also Professor Pytlik's reading the manuscript and pointing out
some necessary improvements.
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