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COMPACT CONTRACTIBLE n-MANIFOLDS HAVE
ARC SPINES (n > 5)

FREDRIC D. ANCEL AND CRAIG R. GUILBAULT

The following two theorems were motivated by ques-
tions about the existence of disjoint spines in compact
contractible manifolds.

THEOREM 1. Every compact contractible n-manifold (n > 5) is
the union of two n-balls along a contractible (n — 1)-dimensional
submanifold of their boundaries.

A compactum X is a spine of a compact manifold M if M
is homeomorphic to the mapping cylinder of a map from
oM to X.

THEOREM 2. Every compact contractible n-manifold (n > 5) has
a wild arc spine.

Also a new proof is given that for n > 6, every homology
(n - 1)-sphere bounds a compact contractible n-manifold.
The implications of arc spines for compact contractible
manifolds of dimensions 3 and 4 are discussed in §5. The
questions about the existence of disjoint spines in com-
pact contractible manifolds which motivated the preced-
ing theorems are stated in §6.

1. Introduction. Let M be a compact manifold with boundary.
A compactum X is a spine of M if there is a map f : OM — X
and a homeomorphism h : M — Cyl(f) such that h(z) = q((z,0))
for x € OM. Here Cyl(f) denotes the mapping cylinder of f and
g: (0M x [0,1]) U X — Cyl(f) is the natural quotient map. Thus
@amx[o,1) and ¢|X are embeddings and ¢(z,1) = ¢(f(z)) for z €
OM. So h carries M homeomorphically onto ¢(M x {0}),h™ ' ogx
embeds in X int M, and M — h™1(g(X)) = OM x [0,1).

An arc A in the interior of an n-manifold M is tame if A has a
neighborhood U in M such that (U, A) is homeomorphic to
(R*,[-1,1] x (0,0...,0)). An arc in the interior of a manifold
is weld if it is not tame.
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Recall that a space is contractible if it is homotopy equivalent to
a point, and it is acyclic if its homology groups are isomorphic to
the homology groups of a point. A homotopy n-sphere is a closed
n-manifold which is homotopy equivalent to an n-sphere. A ho-
mology n-sphere is a closed n-manifold whose homology groups are
isomorphic to the homology groups of an n-sphere. (Throughout
this paper all homology groups have integer coefficients.) We now
list some elementary facts about these terms that will be used with-
out comment in the proofs below.

(1) Every contractible space is acyclic, and every homotopy n-
sphere is a homology n-sphere.

(2) The boundary of every compact acyclic n-manifold is a ho-
mology (n — 1)-sphere.

(3) Every bicollared homology (n — 1)-sphere in a homology n-
sphere separates the homology n-sphere into two compact
acyclic n-manifolds.

(4) Conversely, a closed n-manifold is a homology n-sphere if it is
the union of two compact acyclic n-manifolds which intersect
in their common boundary.

(5) A compact n-manifold is acyclic if it is the union of two com-
pact acyclic n-manifolds which intersect in a compact acyclic
(n — 1)- dimensional submanifold of the boundary of each.

(6) A simply connected acyclic manifold is contractible.

(7) A simply connected homology n-sphere is a homotopy n-sphere.

(8) For n > 4, a compact contractible n-manifold is an n-ball if
its boundary is an (n — 1)-sphere.

(9) For n > 4, a homotopy n-sphere is an n-sphere.

Facts (1) - (5) follow from well known results of homology theory in-
cluding homotopy invariance, excision, the Mayer-Vietoris sequence,
and universal coefficient and duality theorems. Facts (6) and (7)
follow from the Hurewicz isomorphism theorem and a theorem of
Whitehead. Facts (8) and (9) follow from the Poincaré conjecture
for topological manifolds, 2] and [7].

In the following proofs, all homomorphisms between homology
groups or homotopy groups are inclusion induced unless otherwise
specified.
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We state two lemmas which play essential roles in the subsequent
proofs of the theorems.

LEMMA 1. For each n > 4, if ¥" is a homology n-sphere, then
there is a bicollared embedding of a homology (n — 1)-sphere ™~
in " such that m (") — 7 (Z") is onto.

Proof. The n = 4 case is just Proposition 2 of [4]. For n > 5,
this result is known. (J. C. Hausmann has called it the “New-
man construction” because it generalizes the method of [15].) We
sketch the argument because we will refer to it in the proofs of
the theorems. Since H*(X";Z,) = 0, then by [12] =" has a PL
structure. Since H;(X") = 0, then 7;(X") is a finitely presented
perfect group. According to §2.1 of [8] (or see Proposition 4.4
of [3]), m(Z") is the homomorphic image of a finitely presented
perfect group G of deficiency 0. (A group presentation has defi-
ciency 0 if the number of generators equals the number of relators.)
Use the presentation of G to construct a finite 2-complex K with
m1(K) = G. An analysis of the cellular homology sequence of K
reveals that K is acyclic. (The fact that the presentation of G has
defiency 0 is used here.) The epimorphism m(K) ~ G — m(X")
determines an embedding of K in ¥" so that the inclusion induced
homomorphism 7; (K) — 7;(£") is onto. Let N be a regular neigh-
borhood of K in ¥". Then N is acyclic and, hence, N is a homol-
ogy (n — 1)-sphere. Since n > 5, general position arguments show
that m(ON) — m;(N) is an isomorphism. Since m(K) — m1(N)
is an isomorphism, and m(K) — m (") is onto, it follows that
71 (ON) — m(X") is onto. ]

LEMMA 2. Every compact contractible n-manifold (n > 4) is de-
termined by its boundary.

Proof. Suppose C' and D are compact contractible n-manifolds
with 0C = 0D = ¥. We must prove C is homeomorphic to D.
Observe that S = (C x {0}) U (X x [1,0]) U (D x {1}) is homology
n-sphere which, by Van Kampen’s Theorem, is simply connected.
Thus, S is a homotopy n-sphere and, hence an n-sphere by the
Poincaré conjecture. So S is the boundary of an (n + 1)-ball B.
Therefore, (B, C x {0}, D x {1}) is a simply connected h-cobordism
which already has a product structure joining 9C x {0} to D x {1}
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in 0B. Hence, the known h-cobordism theorems imply there is a
product structure on B joining C' x {0} to D x {1}. This product
structure induces a homeomorphism from C' to D. O

Another crucial ingredient in the proofs of Theorems 1 and 2 is
the following result.

THEOREM 0. FEvery homology n-sphere bounds a compact con-
tractible (n + 1)-manifold.

This is proved for n > 4 in [11] and for n = 3 in [7]. Later we
will give a new proof for n > 5, which relies on the n-dimensional
Poincaré conjecture.

2. Proof of Theorem 1. Suppose C is a compact contractible
n-manifold (n > 5). Then Lemma 1 provides a bicollared embed-
ding of a homology (n — 2)- sphere ¥ in dC such that m(¥) —
m(0C) is onto. ¥ separates dC into two compact acyclic (n — 1)-
manifolds ¢); and @,. Each loop in @, is homotopic in 0C to a loop
in ¥. If such a homotopy is cut off on 0Q); = X, then we see that
each loop in @ is a boundary component of a (singular) punctured
disk in ; which has its other boundary components in ¥. The same
is true of the loops in (). In algebraic language: every element of
m1 (@) lies in the normal closure of the image of m;(X) — m(Q:).

Theorem 0 implies that ¥ bounds a compact contractible (n—1)-
manifold D. Hence, for i =1 or 2, @Q; Us D is a homology (n — 1)-
sphere. Since every element of 7;(Q;) is in the normal closure of
the image of m(X) — m1(Q;), and since m;(D) = 1, then every
element of 7 (Q);) includes trivially into m;(Q; Ug D). Consequently,
m1(Q:i Ug D) = 1. Thus each @; Ug D is a homotopy (n — 1)-
sphere and, hence, an (n — 1)-sphere by the Poincaré conjecture. So
each (Q; Ug D) bounds an n-ball B;. Observe that By Up B; is a
compact acyclic n-manifold which is simply connected and, hence
contractible. Furthermore, 3(B; Up Bs) = Q1 Us Q2 = 0C. Lemma
2 now implies that C is homeomorphic to B; Up Bs. d

3. Proof of Theorem 2. Let C be a compact contractible n-
manifold (n > 5). Then Lemma 1 provides an embedding of £¥x [0, 1]
in C where ¥ is homology (n — 2)-sphere such that for each ¢t €
[0,1], the inclusion of ¥ X {t} into C induces an epimorphism of
fundamental groups. Therefore, 0C — ¥ x (0,1) = Qo U Q; where
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each Q; is a compact acyclic (n — 1)-manifold with 0Q; = ¥ x {i}.
Define the map f: C — [0,1] by f(Qo) = 0, f(2 x {t}) =t for
0 <t<1,and f(Q;) = 1. We will argue below that Cyl(f) is
the cell-like image of C' and that Cyl(f) satisfies the disjoint disks
property. Since Cyl(f) is clearly finite dimensional, it will then
follow by Edwards’ theorem [6] that C is homeomorphic to Cyl(f),
proving that C' has an arc spine.

We make some preliminary remarks about the topology of Cyl(f).
Cyl(f) is the image of a metrizable space via a quotient map which
is a closed map with compact point inverses. According to Theorem
XI.5.2 on page 235 of [5], this makes Cyl(f) metrizable. Cyl(f) is
an ANR because, in the terminology of Theorem VI.1.2 on page
178 of [10], Cyl(f) is an “adjunction space” which is formed from
spaces that are all ANR’s.

The construction of a cell-like map from C to Cyl(f) is similar
to the proof of Theorem 1. By Theorem 0, ¥ bounds a compact
contractible (n — 1)-manifold D. As in the proof of Theorem 1,
Qi Usx(iy (D x {i}) is an (n — 1)-sphere, for i = 0 or 1. So each
Qi Usx (i} (D x {i}) bounds an n-ball B;. Consequently, By Upx o}
D x[0,1]Upx {13 By is a compact contractible n-manifold. Moreover,
0(Bo Upxioy D x [0,1] Upxy Bi) = Qo Usxoy T X [0,1] Ugyqyy
@1 = 0C. So Lemma 2 implies By Upx{o} D X [0,1] Upx(1} B1
is homeomorphic to C. Let 8C x [0,1] be an exterior collar on
By Upx oy D x [0,1] Upxq1y By so that (z,1) identified with z for
each z € C. Then the union of By Upx{o} D x [0,1]Upx{1} By and
the exterior collar C x [0, 1] is homeomorphic to C. Let us identify
C with this union. Then 9C is identified with dC x {0} in the collar
OC x [0,1]. We define a cell-like map g : C — Cyl(f) as follows.
Let ¢ : (OC x [0,1]) U [0, 1] — Cyl(f) be the natural quotient map.
For a point (z,t) in the collar dC x [0, 1], set g((z, 1)) = ¢((z, ).
Set g(Bo) = ¢(0), g(D x {t}) = q(t) for 0 <t < 1, and g(B1) =
¢(1). Hence, for z € 9C,g(z) = ¢((z,0)). g is cell-like because
the only non-singleton point inverses of g are the contractible sets
97(¢(0)) = Bo, g7 (q(t)) = D x {t} for 0 <t < 1, and g7*(g(1)) =
B.

We now verify that Cyl(f) has the disjoint disks property. Assign
Cyl(f) a metric. Let A = ¢([0, 1]). First we will prove the following
assertion: if Y is a dense subset of A,¢ : B2 — Cyl(f) is a map,
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and € > 0, then ¢ is within € of a map ¢’ : B2 — Cyl(f) such that
#'(B?)NA C Y. Then we will show that this assertion easily implies
the disjoint disks property.

There is a finite sequence 0 =ty <t <ty < ... <tp_1 <ty =1
and a 6 > 0 such that the sets Uy = q((Qo U (X x [0,%1))) x (4, 1]),
U; = q((Z % (tiz1,tiz1)) X (6,1]) for 0 < i < k, and Uy, = q(((T x
(tk—1,1]) U Q1) x (4,1]) are of diameter < /3. Clearly {U; : 0 <
i < k} is a collection of contractible open subsets of Cyl(f) which
covers A. Observe that Uy — A = ¢((Qo U (X x [0,%1))) x (4. 1)).
U — A= q((E X (ti—lati+1)) X (5, 1)) for0<i<k,and U, — A =
g(((B % (te-1,1])UQ1) x (6,1)). Hence, each U; — A is a non-empty.
connected, dense subset of U;. Let T be a triangulation of B? which
is so fine that if 0 € T and ¢(o) intersects A, then ¢(o) is contained
in some U;. Then ¢ can be perturbed by less than £/3 so that it maps
the 1-skeleton of T" into Cyl(f) — A. Since 71 (X x {t}) = m(9C) is
onto for 0 <t < 1, then the argument given in the proof of Theorem
1 can be used here to show that if 0 < u < ¢;, then every element
of m(Qo U (X x [0,¢1))) is in the normal closure of the image of
m (2 x {u}) = m(Qo U (X x [0,%1))). Consequently, if 0 < u < ¢,
then every element of 71 (Uy—A) is in the normal closure of the image
of 1 (q((X x {u})x(6,1))) = m1(Up— A). Similarly, if tx_1 < u <1,
then every element of 7, (Uy—A) is in the normal closure of the image
of m(q((X x {u}) x (6,1))) = 7 (U — A). Also for 0 < i < k, if
tio1 < u < tipq, then m(qg((Z x {u}) x (4,1))) = m (U; — A) is
onto. Since Y is a dense subset of A, we can choose uq € [0,11),
u; € (ti—1,t;1) for 0 <4 < k, and uy, € (g1, 1] such that q(u;) € Y
for 0 < i < k. Set y; = q(u;) for 0 < 7 < k. Now suppose
o € T is a 2-simplex such that ¢(c) N A # @. Then ¢(0) C U;
for some 7 between 0 and k, and ¢(do) N A = @. It follows from
the facts cited above that there is a punctured disk 7 C o such
that do is a component of 7 and there is a map ¢, : 7 —» U; — A
such that ¥y9, = Y9, and ¥,(01 — o) C q((E x {us}) x (6,1)).
(If 0 < 7 < k, then 7 can be taken to be an annulus.) Since the
components of the closure of o — 7 are disks in the int(c) and since
q((Z x {u;}) x (8,1]) is the interior of a cone with vertex q(u;) =
and base ¢((X x {u;}) x {d}), then ¢, extends to a map x, : 0 —
(U; — A)U{y;}. Now define ¢' : B> — Cyl(f) as follows. Let 0 € T
be a 2-simplex. If (o) NA = &, set ¢, = ¢p,. If p(0) N A # 2, set
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ls = Xo- Then ¢' is within ¢ of ¢, and ¢'(B?) C (Cyl(f) — A)UY.
This establishes our first assertion.

Now to verify that Cyl(f) has the disjoint disks property, suppose
# : B2 — Cyl(f) and ¢ : B2 — Cyl(f) are maps and € > 0. Let
Y and Z be disjoint dense subsets of the arc A. Our previous
assertion provides maps ¢ : B2 — (Cyl(f) — A)UY and ¢’ :
B? — (Cyl(f) — A) U Z such that ¢’ is within £/2 of ¢ and 7' is
within €/2 of 9. Thus ¢'(B?) N¢'(B*) N A = &. Since g carries
dC x [0,1) homeomorphically onto Cyl(f) — A, then Cyl(f) — A is
an n-manifold. Since n > 5, then ¢|,¢"1(Cyl(f)—A) and ¢|’¢'—1(Cy1(f)—A)
can be perturbed into “general position”, thereby producing maps
@" : B2 — Cyl(f) and 9" : B2 — Cyl(f) with disjoint images such
that ¢” is within ¢ of ¢ and " is within € of 1.

Now Edwards’ theorem [6] implies that the cell-like map g : C —
Cyl(f) can be approximated by homeomorphisms. Moreover, the
approximating homeomorphisms can be chosen to agree with g over
any closed subset of Cyl(f) which is interior to the subset of Cyl(f)
over which g is already a homeomorphism. In particular, there is
a homeomorphism A : C — Cyl(f) which agrees with g on dC. So
h(z) = g(z) = ¢((z,0)) for z € C. We conclude that C has an arc
spine.

We now prove that the arc spine of C is wild, or equivalently that
A = ¢([0,1]) is a wild arc in Cyl(f). In fact, we will argue that A
is wild as long as ¥ is not simply connected. It is automatically the
case that X is not simply connected if dC' is not simply connected,
because 7 (X % {t}) — m1(0C) is onto for 0 < ¢t < 1. However if 0C
is simply connected (i.e., if C is an n-ball), then we must explicitly
choose ¥ to be a non-simply connected homology (n — 2)-sphere
such that ¥ x [0,1] embeds in dC. This is easily accomplished
because, in fact, every homology (n — 2)-sphere ¥ has a collared
embedding in S”~!. (Proof: ¥ bounds a compact contractible (n —
1)-manifold D whose double D Uy D is an (n — 1)-sphere by the
Poincaré conjecture.) Thus, we may assume (after taking special
care to choose ¥ appropriately in the case that C' is an n-ball) that
m(X) # 1. If A were tame, then the point ¢(1/2) € A would have
a neighborhood U in ¢((¥ x (0,1)) x (0,1]) such that U — A is
simply connected. Let U be any neighborhood of ¢(1/2) in ¢((X x
(0,1)) x (0,1]). There is a 6 € (0,1) such that ¢((¥ x {1/2}) x
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{6}) c U. Since Q|(E><(0,1))><(0,1) is a homeomorphism, then 7 (¢((X x
{1/2})x{6})) = m1(g((£x(0,1))x(0,1))) is an isomorphism. Since
this isomorphism factors through m (U — A),and since 7 (q((¥ x
{1/2}) x {6})) = m(X) # 1, then U — A can’t be simply connected.
Consequently, A must be wild in Cyl(f). O

4. Proof of Theorem 0 for n > 5. Let ¥ be a homology n-
sphere (n > 5). As is the Proof of Lemma 1, there is an acyclic
finite 2-complex K embedded in ¥ such that m;(K) — m1(X) is
onto. Furthermore, if IV is a regular neighborhood of K in ¥, then
ON is a homology (n—1)-sphere such that 7 (ON) — m(X) is onto.
Set Q = X —int N. Then @ is a compact acyclic n-manifold.

Let K’ be a copy of K embedded in S™, and let N’ be a regular
neighborhood of K’ in S™. Then N’ is acyclic and, hence, N’ is a
homology (n—1)-sphere. Set D' = S™—int N'. Then D' is a compact
acyclic n-manifold. 7;(D') =~ m(S™ — K), and m(S™ — K) = 1 by
general position since K is 2-dimensional and n > 5. So D’ is simply
connected. Therefore D’ is a compact contractible n-manifold with
0D’ = ON'.

We will now prove that N is homeomorphic to N’'. Since n > 5,
then according to [14], regular neighborhoods of the 2-complex K
in manifolds of dimension n are classified up to homeomorphism by
homotopy classes of maps from K to BPL. We will argue that any
two maps from K to BPL are homotopic. Then N = N’ will follow.
Let ¢, : K — BPL be any two maps. Since K is acyclic, then
m(K) is perfect. Also m;(BPL) = Z,. (m1(BPL) = 71(BO) by the
Hirsch-Mazur Theorem stated at the bottom of page 384 of [13], and
m1(BO) = m5(0) = Z, by the homotopy exact sequence of a bundle
and the fact that the orthogonal group has two components.) Hence,
¢4 : ™ (K) — 71 (BPL) and 94 : m(K) — 71 (BPL) are zero maps.
Therefore, ¢ and v lift to mags\é,@ . K — BPL where BPL is the
universal cover of BPL. Since BPL is simply connected it is n-simple
for alln > 1 (ie., wl(ﬁﬁ) acts trivially on m,(BPL) for n > 1).
Consequently, obstructlon theory apphes routinely to the problem of
finding homotopies between maps into BPL. Since BPL is simply
connected, there is a homotopy h : K' x [0,1] — BPL joining
Pk to 1ﬁ| k1. (Here K® denotes the i-skeleton of K for i = 0,1,2.)
According to Eilenberg’s homotopy theorem (Theorem 8.3 on page
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184 of [9]), é is homotopic to ¢ via a homotopy which extends
hikoxo,; if and only if an obstruction 6%(, v, h) € H2(K; 7r2(]§TDf))
vanishes. Since K /g/ acyclic, then a universal coefficient theorem
implies H2(K; my(BPL)) = 0. We conclude that ¢ is homotopic to
. Therefore, ¢ is homotopic to 1. So N is homeomorphic to N'.
Since ON is homeomorphic to ON’, then N bounds a compact
contractible n-manifold D. As in the proof of Theorem 1, N Ugy D
and QQ Uy D are homotopy n-spheres and, hence, n-spheres by the
Poincaré conjecture. So N Usy D and Q Ugy D bound (n + 1)-balls
B; and B,, respectively. Then B; Up B, is a compact contractible
n-manifold with 8(B; Up B;) = N Usgy Q = X. a

5. Arc spines in dimensions 3 and 4. Suppose C is a compact
contractible manifold of dimension 3 or 4 and A is an arc spine of
C. Then [1] and [16] imply that A is tame. Hence, A can be shrunk
to a point, revealing that C' is just a cone on its boundary and that
O0C must be simply connected. We conclude that the only compact
contractible 3-manifold that admits an arc spine is the 3-ball and
its spine must be tame. We also conclude that the only compact
contractible 4-manifolds that admit arc spines are either the 4-ball
or cones on exotic homotopy 3-spheres (if they exist) and again the
spines must be tame.

6. Questions.
1. Is the n-ball the only compact contractible n-manifold (n > 4)
that has two disjoint spines?

2. Does every compact contractible n-manifold (n > 4) have two

disjoint spines?

We remark that although Theorem 2 provides each high dimen-
sional compact contractible manifold with a wild arc spine, the ex-
istence of disjoint spines does not follow directly, because a wild arc
can’t necessarily be pushed off itself by ambient homeomorphism.
Indeed, according to [17], for each n > 4, there is an arc A in R®
which is sticky in the sense that there is an € > 0 such that no
homeomorphism of R” which is within € of the identity moves A off
itself.
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