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A FROBENIUS PROBLEM ON THE KNOT SPACE

R.G. WANG

According to J.-L. Brylinski, there is a natural almost com-
plex structure J on the space K of all knots in the Euclidean
space R3. The almost complex structure is formally integrable
on K, i.e, the Nijenhuis tensor of J vanishes. The problem is
whether J is integrable and hence K is a complex manifold.
In this paper, we study the integrability of J explicitly in view
point of a Probenius problem.

1. Introduction

A knot is by definition a smooth imbedded circle in the Euclidean space
R3. The knot space is the space of all knots. In this paper, we study an
integrability problem on the knot space which is as follows: According to
Brylinski [3, 4], for any 7 £ if, the tangent space TΊK is the space of sections
of the normal bundle of 7 in R3. A natural almost complex structure J is
defined on K as a rotation of | in the normal plane bundle. J is formally
integrable on UΓ, i.e, the Nijenhuis tensor of J vanishes. Compared to the
well-known theorem of Newlander-Nirenberg [17], the problem is whether J
is integrable and hence K is a complex manifold.

A result of Drinfeld and LeBrun [3, 4] is that J is weakly integrable
on the space Ko of real analytic knots, i.e., there are enough holomorphic
functions on each local chart of Ko. In Lempert [15], the theory of twistor
CR-manifolds is used to prove that J is weakly integrable on the space of
real analytic knots in a real analytic 3-manifold with a real analytic metric.
It is also proved that J is not integrable on the space K and Ko, i.e., there is
no open set U Φ φ on the knot space which is biholomorphic to an open set
in TΊK or TΊK0. LeBrun [14] has a similar result on the so-called space of
world-sheets which are time-like 2-surfaces in 4-manifold with a Lorentzian
metric.

In this paper, we define a natural local coordinate system on K and study
the integrability of J explicitly in view point of a Frobenius problem. It will
be shown that in the local coordinate system J can be written explicitly to
see that it is real analytic and the d-equation can be complexified to obtain
a Probenius problem and the Frobenius problem can be further reduced to a
first order nonlinear partial differential equation in two dimensions. In the
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case Ko, the equation is solvable and hence J is weakly integrable by the
theorem of Cauchy-Kowalewska. In the case ϋf, the equation is not solvable
and thus the Probenius problem is not integrable. (This does not implies
that J is not integrable.) It is also explained that why the holomorphic
functions on Ko fail to make a local chart by the implicit function theorem.

Acknowledgement. The author wishes to thank Professor C.H. Taubes
for introducing him to the problem and helpful advices and Professor J.-L.
Brylinski for valuable conversations and encouragement, and also Professor
L. Lempert and J. Bernstein for discussions.

2. The Knot Space K

In this section, some basic properties on the knot space K are collected and
a natural coordinate system on K is defined on K. To formulate the almost
complex structure J on if, the local basis on each of the local chart is also
explicitly given. For a general knowledge on the knot space if, the reader
may refer to Brylinski [5], which serves as the background of the paper.

2.1. The knot space K. The knot space K is roughly speaking the space
of all knots in R3. A precise identification of the space K is given as follows.

The knot space K has a close relation with the loop space L, i.e., the space
of all smooth maps from the standard circle S1 to i?3, with the topology of
uniform convergence of the map and all its derivatives. It is well-known that
L is a Frechet space, and the orientation preserving diffeomorphism group of
Sι acts on L as a reparametrization. Restricted on the space L* of imbedded
loops, the action is free and the quotient space is a smooth Prechet manifold.
The knot space K is thus defined to be the quotient space.

An element in if is a closed oriented imbedded curve in R3. For any
7 E if, denote I the arc length of 7 and s an arc-length parametrization of
7. For convenience, a parametrization θ of 7 is called standard, if

An elementary fact is that different arc-length or standard parametrizations
of 7 differ only by a constant.

For any 7 e K, let NΊ denote the normal bundle of 7 in R3. A basic fact
is that the tangent space TΊK is the space Γ(iV7) of sections of 7V7. This
can be understood as follows: Since L* is an open submanifold in L, for any

Modulo the tangent factor to the knot, TΊK = T(NΊ).
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For any 7 G if, denote by ^ ( 7 ) the tubular neighborhood of 7 with
radius δ in R3. Note that, when δ > 0 is small, ^ ( 7 ) is imbedded in it!3, the
space Λfδ{j) of knots in R3 with image in Nδ(j) is an open neighborhood of
7 in if. Note also that Λίs(j) can be identified as the space of sections h of
JV7 with C°-norm \\h\\co < δ.

(2.1) Λfδ(Ί)~{heΓ(NΊ):\\h\\co<δ}.

Similarly, the space Λίg(j) of knots in i?3, which can be identified as

(2.2) ^ ( 7 ) ~ { f t 6 Γ ( J V 7 ) : | | Λ | C i < ί } ,

is also an open neighborhood of 7 in if.

2.2. A local coordinate system on K. To define a local coordinate sys-
tem on the knot space if, recall the basic theory of frenet of curves in R3

as follows. Note that an element 7 E K is a closed imbedded curve in i?3,
the curvature n of 7 is a well-defined continuous function along 7. K has
nonnegative values and may be zero somewhere on 7. Denote by if* the
space of knots in R3 with curvature K, > 0 everywhere, i.e,

K* = {7 G if : K > 0} .

There is first the following:

Lemma 2.1. TΛe space if* is open and dense in if.

Proof. Clearly if* is an open set in K. To show that if* is dense in if, the
idea is that, for any 7 G if, even K vanishes somewhere on 7, a generic small
twist of the curve has positive curvature everywhere. In another word, a
certain generic perturbation of 7 is in if*.

To describe the perturbation, note first that NΊ is a trivial plane bundle,
there are two sections e2:e3 of JV7 which form a basis of Γ(iV7). Let θ be
a standard parametrization of 7; then the perturbation 7 is a twist by the
normal frame field as follows:

where /2, / 3 are smooth periodic functions in θ. Note that ^ | involves /2, / 3

and their first derivatives, when δ > 0 is small, and

^ | Φ 0 everywhere. Denote by s an arc-length parametrization of 7. Then

for a generic perturbation (/2,/s), ~̂? φ 0 everywhere. Thus ^(7) > 0,

7 G if*. This shows that if* is dense in if. Lemma 2.1 is proved.
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To define a local coordinate system on K, for any 7 G K*, fix an arc-
length parametrization s and a standard parametrization 0 of 7. Note that
the Prenet frame {ei,e2,e3} is well-defined along 7, where

ds

(2.3)

d

= βi x e 2 .

Recall the following Prenet formula:

(de1

(2.4)
de2

—- = —/ςei + re 3

I ds = - r e 2 .

Recall that the open neighborhood ^ ( 7 ) of 7 is identified as (2.1). For
any 7 G Λfδ(j), 7 correspondences to a section ^(θ) G Γ(iV7). Note that JZ(0)
can be written as

z(θ)=x(θ)e2+y(θ)e3;

where x(θ), y(θ) are smooth periodic functions in θ. Expand x(θ) and y(θ)
as Fourier series

x(θ) — x0 s'm(2kπθ) + x2k cos(2kπθ),
k=l

(2.5)
k=l

fc-i sin(2A;π(9) + y2k cos(2kπθ),

then a local coordinate of 7 = 7 + z(0) G Λ/j(7) can be given as the Fourier
coefficients {xk->yk ' k G N}.

To define the local coordinate system on ϋf, it is left to show that the
collection

(2.6) {λfδ(Ύ):ΊeK*,δ>0}

is an open cover on K. Needless to say, in (2.6), δ > 0 is chosen small so
that the tubular neighborhood ^ ( 7 ) is imbedded in R3.
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Lemma 2.2. K = UΊeK%δ>oλίδ(j).

Proof. For any 7 E K, choose δ > 0 and a sequence {jn} in ̂ * so that Ns(j)
is imbedded and 7 n —>• 7 in C°-norm. Choose n large such that N^(jn) is
also imbedded; then 7 E Λ/|(7n).

Similarly, the collection

(2.7) {MΪ(Ί):ΊeK\δ>0}

is an open cover on K. Thus (2.7) also defines a local coordinate system on

K. This is the local coordinate system we will use.

2.3. A local basis on the local patch. To formulate the almost complex
structure J in local coordinates, a local basis {Xfc, Yk : k E N} on K will be
defined in this section. It will be also shown that {Xk,Yk : k E N} is the
local basis, i.e., Xk = dXk,Yk — dyk for all k E N.

To define Xo> consider the normal vector field e2 = e2(θ) along 7. Note
that e2 can be regarded as a tangent vector on If at 7. It is defined that
X0(j) — e2. For any 7 E ̂ ( 7 ) , to define Xo(τ)5 translate the vector field
e2 = e2(0) along 7 onto 7. Note that e2 may not remain in T^K, i.e., e2(^)
may have both normal component e2 and tangential component eζ along 7.
It is defined that Xo = e2. e2 will be explicitly computed later.

To define Yo on λί}(j), consider the normal vector field e3 = e3(θ) along 7.
The translated vector field e3(θ) along 7 may have both normal component
e3 and tangential component ej. It is defined that Yo — e3. e3 will be also
explicitly computed later.

Similarly, for any k E JV, consider the translated vector field s'm(2kπθ)e2(θ)
along 7. Note that the normal component is s'm(2kπθ)e2 and the tangential
component is eos(2&π#)e<f. It is defined that

(2.8) X2A;_i = s'm(2kπθ)e2.

There are also the following definitions:

X2k = cos(2kπθ)e2,Y2k_1 — sin(2kπθ)e3,

(2.9) Y2k - cos(2kπθ)e3(k E N).

Proposition 2.3. {X^,!^ : k E iV} defined above is the local basis on the

local patch Af^il) when δ > 0 is small, i.e.,

(2.10) Xk = dXk,Yk = dyk,
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where {xk,Vk} is the local coordinates defined as (2.5).

Proof. Notice that Xk,Yk are in fact inherited from the base vectors on the
loop space L. To be precise, let

Then L1 is an open subset in L. For any 7 G £', let {βi, e2, e3} be the Frenet
frame along 7. Note that, for any 7 in a neighborhood of 7 in L, 7 can be
written as

for some smooth periodic functions hι,h2,h3. Thus, a local coordinate of 7
can be given as the coefficients of the Fourier expansion of h = (hijh2, h3)]
ei,e2,e3 are all local base vectors on L. Modulo the factor with values in
the Virasoro algebra, e2, e3 are both local base vectors on Λ/^(7),

= dyo.

Similarly, the other Xk,Yk's are also base vectors on .Λ/$ (7),

Remark. Notice that Hê Ĥ o a n ( ^ lleίllc° i n v ° l v e the first derivatives of
x(θ) and y(θ). To ensure e2,e3 Φ 0 and linear independent along 7, e2 and
e3 are defined only on the small local patch Λ/J (7). On the other hand, it is
a remark that these local patchs do give an open cover on K and thus defines
a local coordinate system on K. The proof is similar to that of Lemma 2.2.

e2 and e3 are now explicitly computed as follows. For 7 G if*, denote by
l,κ,τ the arc length, curvature and torsion of 7, and s,θ an arc-length and
standard parameter of 7, also {βi,e2,e3} the Frenet frame along 7. For any

(2.11) η = Ί + x(θ)e2 + y(θ)ez,

let 5 denote the arc-length parametrization of 7, eλ = ^ the unit tangent
field along 7.

To compute e2 and e3, differentiate (2.11). By the Frenet formula,

ds
e i— = /(I - /ra)ei + Or' - ίry)e2 + (y; + lτx)e3.du

For convenience, introduce

(2.12) λi = 1(1 - KX), λ2 = x1 - lτy, λ3 = y' + lτx;
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then there are the following identities:

^ — (\2 \ 2 \ 2 \ έ
~~ V I ' 2 *~ 3/ '

(2.13) βi = (λiβi + λ 2e 2 + λ3e3) / (λ^ + λ2 + λ 3 ) 2 .

Notice that

2̂ = e2 - (e 2,ei)ei,

6 3 = e 3 — ( e 3 , βi) βi,

e2 and e3 are given as:

e2 = [—λiλ2ei + (λj + λ3) e2 — λ2λ2e3]/ (λj + λ̂  + λ3) ,

(2.14) e3 - [-λ1λ3e1 - λ2λ3β2 + (λ? + λ2

2) e3]/ (λ? + \2

2 + λ3

2).

Notice that both e2 and e3 are linear combinations of βi,e2,e3 with co-
efficients which are real analytic functions in κ^r1x(θ)1y(θ) and the first
derivatives x'(θ),y'(θ).

3. The almost complex structure J

On the knot space if, there is a genuine almost complex structure J. Recall
that, for any 7 G ϋf, TΊK = Γ(JV7). JΊ is defined as the rotation of | in the
plane bundle. In [3-5], it is proved by Brylinski that J is formally integrable,
i.e., the Nijenhuis tensor of J vanishes on K. In this section, J is formulated
explicitly in local coordinates. This means to compute the action of J on
the local basis {Xk,Yk} defined as (2.8) and (2.9). In this way J is shown
real analytic on K.

To compute J(Xk) and J(Yk), for any 7 G ϋf*, fix a standard parametriza-
tion θ for 7 and the Prenet frame {eu e2, e3} along 7. For any 7 G Λ/J(7),

let s be the arc-length parametrization for 7 and ex = ^ .
Recall that βi, e2 and e3 are computed as (2.13) and (2.14). Since J is

the rotation of f,
J(e 2 ) = ei x e2,

(3.1) J(e 3 ) = βi x e3.
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Substituting (2.13) and (2.14) to (3.1), J(e 2 ) and J(e 3 ) are computed as
follows:

(3.2) J(e 3 ) - ( λ i e 3 - λ ^ ) / (λ? + A* + λ*) ,

where λχ,λ2 and λ3 are given as (2.12). Written as linear combinations

(3.3) J(e 2 ) = ae2 + be3, J(e 3 ) = ce2 + de3,

the coefficients are then given as follows:

a =

6 =

c = —

(3.4) d= —

Let A denote the 2 x 2 matrix defined as

Note that, for any X = # 2e 2 + ρ3e3 G Γ 7 i ί ,

(3.6) JX = ei x X = ρ2e2 -f

Denote by X — (^2,^3), J is then given as

(3.7) JX = XΛ.

J is represented by the matrix A and can be compared to the almost complex

structure in two dimensions.

At the origin of Λ/"/(7), A is the standard matrix
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Note that A is a 2 x 2 matrix with entries which are real analytic functions
in K, r, x(θ),y(θ) and the first derivatives x'{θ),y'(θ). J is a well-defined and
smooth almost complex structure on K. There is further the following:

Proposition 3. J is a real analytic almost complex structure on K.

Proof. With J given explicitly as above, the proof is omitted.

Remark. Since A involves the first derivatives x'(θ) and y'(θ), for any

JΊ : TΊK -> TΊK

make sense as an endormorphism only when K is equipped with the smooth
Frechet topology.

To end the section, the formula (3.7) is explained as follows. Note that
for fixed 7 G Λfsil): the entries of A are smooth periodic functions. Expand
the entries as Fourier series

a — α0 -h Yj a>2k-i sin(2kπθ) + a2k cos(2kπθ):

0 0

b = b0 + Σ b2k-i s'm(2kπθ) + b2k cos{2kπθ),
k = l

then J(e2) is actually given as

00

(3.9) J(e 2) = αe2 + be3 = YjakXk + bkYk.

k=o

J(e3) can be formulated similarly as (3.9).

4. The <9-Equation and the Frobenius Problem

In this section, we formulate the 9-equation corresponding to the almost
complex structure J which is conjugate to the 9-equation. Recall that J
is real analytic on if, the 9-equation can be complexified into a Frobenius
equation. Since J is represented by the 2 x 2 matrix A, and the entries of A
involves the first derivatives of the coordinate functions, the Frobenius equa-
tion can be reduced to a first order nonlinear partial differential equation. In
the next section we solve the nonlinear equation and prove that J is weakly
integrable on the space Ko of real analytic knots and in Section 6 we prove
that the Frobenius equation is not solvable on K. Note that the Frobenius
equation is stronger than the 9-equation: When the former is solvable, so
is the latter. Conversely, if the d-equation is solvable and the solutions are
real analytic, the complexified solutions satisfy the Frobenius equation.
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4.1. The 5-equation. A few notations are fixed first to formulate the d-
equation. First, since J is an almost complex structure on K, for any 7 G K,
J% — —I as an endormorphism on TΊK, where / is the identity map. Let

be the complexified tangent space

where

(4.1) T'ΊK = {X- UΊX : X G TΊK)

is the z-eigenspace of J 7 : T^K -> T^K and

(4.2) T'JK = {X + UΊX : X G TΊK}

is the (—i)-eigenspace of J 7 .
Let T' i ί = ΌΊeKT'ΊK. Then T ;K is a subbundle of TCK. It is well-known

that T'K is closed under the Lie bracket if and only if J is formally integrable,
i.e., the Nijenhuis tensor of J vanishes. Similarly T"K — UΊeKT"K is also
a subbundle of TCK.

For fixed 7 G ϋf* and 7 £ ^ ( 7 ) , T7if is given as

(4.3) T 7 # = {X - iXA : X G C°°{S\ R2)} ,

i n loca l c o o r d i n a t e s , w h e r e A is t h e 2 x 2 m a t r i x (3.5) . N o t e t h a t T^K is
s p a n n e d b y

{Xk - iXkA :keN}

since J 2 = —/.
Introduce complex coordinates

(4.4) d-Zk = \{Xk+iYk){keN).

Xk — iXkA is computed as

(4.5) (1 + b - ia)dZk + (1 - b - ia)dZk.

Since J is formally integrable, the collection

< 4 6 »
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is close under the Lie bracket. Thus elements in (4.6) are commutative. It
will be proved in the next section that for any k (Ξ N, the 9-equation

is solvable on the space Ko.

4.2. T h e Frobenius equation. Recall that α,6 are real analytic functions
in «,r, and the coordinate functions x(θ),y(θ) and their first derivatives.
Without confusion, denote by

(4.8) a = a(z(θ),z(θ)),b = b(z(θ),z(θ)).

Note that both a and b can be complexified as a(z(θ), w(θ)) and b(z(θ), w(θ)),

(4.6) can be complexified as

(4-9) \ oZk + T—T7 — ϊ
1 + b(z, w) — ia(z, w) Wk,

on the complexified local patch

(4.10) λίlc(Ί) = {/ G Γ(iV7

c) : | |/ | |σ, < δ} .

Note that a smooth map on N}C(Ί) can be written as

oo

(4.11) Φ(z(θ), w(θ)) = φo + Y) φ2k_1 sin(2λ;7r6>) + φ2k cos(2fcτr(9)

with φkS are functions in {zk,Wk : k E N}. Let Dγφ — ( f̂2-) denote the
Jacobian matrix. The Frobenius equation is then

(4.12)
φ(0,w) = w.

The reader may compare our formulation with Lang [12].

4.3. The reduction of the Frobenius equation. To solve the Frobenius

equation (4.12), as Lang [12], for any (z,w) £ J^lc(l)-> ^ Ψ ̂ e ^ e m a P

defined as

(4.13) ψ(t, z, w) = φ(tz, w).
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By the equation (4.12), φ(t,z,w) satisfies the following ordinary differential
equation in the et space C°°(S'1,i22):

ί
dφ_ _ (1 -b(tz,ψ) -ia(tz,ψ))z
~dt~ l + b(tz,<ψ)-ia(tz,<ψ)
ψ(0,z,w) = w.

Recall that a(z(θ) and w(θ)), b(z(θ),w(θ)) are C^-functions in «, r, z(θ), w(θ)
and ^(0),w'(0). The Probenius equation (4.14) involves ψ, §f and §f, it is
a nonlinear partial differential equation of the first order.

Proposition 4. For z,w G COO(S1,R2), the Frobenius equation (4.12)
α unique solution φ{z,w) iff (4.14) Λαs α unique solution φ(t,z,w) for 0 <
t < 1. TΛe relation between the solutions is

(4.15) 0(z,iι;)

Proo/. Similar to that of [12] or [11]. D

5. The Weak Integrability on Ko

In this section, we solve the Probenius equation (4.12) and prove that J is
weakly integrable on the space Ko of real analytic knots. By the construction
in Section 4, the proof is quite easy by the theorem of Cauchy-Kowalewska.
Since Ko is equipped with the C^-topology, we need to pay attention to
analytical details. An explanation is also given in the section that the holo-
morphic functions on Ko fail to make a local chart on Ko by the inverse
theorem of Nash and Moser.

5.1. The C^-topology on Ko. The precise definition of Ko is given as fol-
lows. Let Lo be the space of C-loops in B? and LQ be the space of imbedded
C^-loops in R3. Then the orientation preserving Cω-diffeomorphism group
of 5 1 act freely on the space L*o and Ko is defined as the quotient space.

The C-topology on Lo is given as follows. Note that for any j(t) G Lo,
can be extended analytically over a certain annulus

Aeo = {z G C : 1 - e0 < \z\ < 1 + e0} .

Let

(5.1) MΛΊ) = {l£L0: ||7 -

with e < e0. As Brylinski [5], the collection
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define a local basis of the C^-topology at 7. Note that 7 G L is in Lo iff the
arc-length parametrization 7(5) or the standard parametrization j(θ) is Cω.

As Lemma 2.1, let Lo be the space of C^-loops with curvature K > 0
everywhere. Then L'o is an open and dense set in LQ. Thus the collection

(5.2) {KΛΎ) 'ϊeL'Q,e>0,δ>0}

gives an open cover on Lo and hence a local coordinate system on Lo. Note
that the C^-topology is a finer one than the smooth Frechet topology, be-
cause by the Cauchy formula, for any e,e' with 0 < e < e', all the Cn-norm
of 7 G Lo on Ae can be bounded by ||7||c°(i4e/)j a s Theorem 14.6 of [20].

Descending to the quotient topology, for any 7 G Ko, define again Me^{l)
by (5.1). Then the collection

(5.3) { j V € f ί ( 7 ) : 7 € l f ί , € > 0 , ί > 0 }

is an open cover on Ko and gives a local coordinate system on Ko. As (2.5),
(2.8) and (2.9), let x(θ) and y{θ) denote the local coordinate functions, and

(5.4) {Xk,Yk:keN}

be the local basis on Nti&(η).

5.2. The weak integrability on Ko- For any 7 G Ko, the tangent space
TΊK0 is the space T0(NΊ) of C^-sections of the normal bundle iV7. Let J be
defined as the rotation in | in Γ0(JV7). The computations in Section 4 can
be translated on Ko; As (3.7), J is represented by the 2 x 2 matex A with
entries (3.4).

Proposition 5.1. J is a well-defined, formally integrable almost complex

structure on Ko and is real analytic.

Proof. For any e, e' with 0 < e < e', since

(5.5) \\z{k)\\co{Ae)<C\\z\\co{Kl),

for any k G iV, the matrix A defines a smooth map in the C^-topology. Thus
J is well-defined on Ko. J is formally integrable by Brylinski [3, 4]. With J
given explicitly as (3.4), the proof of the analyticity is omitted.

Theorem 5.2 (Drinfeld, LeBrun). The almost complex structure J is weakly
integrable on the space Ko, i.e., for any k G N} the d-equation (4.7) is
solvable and the holomorphic differentials {dζk : k G Λ̂ } is weakly dense in

Proof. By Proposition 5.1, J is real analytic on Ko. As Section 4, the d-
equation can be complexified into a Frobenius equation and the Frobenius
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equation can be further reduced to a first order nonlinear partial differential
equation

( dφ_ _ l-b{tz,ψ) -ia{tz,ψ)
"dt" l + b(tz,<ψ)-iα{tz,ψ)Z

φ(0,z,w) =w.

Note that, for any 7 G K£, κ,τ are both real analytic functions in 0, and
for any (z,w) G Cω(S\R2), the nonlinear PDE (5.6) is a real analytic
system. By the theorem of Cauchy-Kowalewska, (5.6) has a unique solution
ψ^^z^w) for small t > 0. By rescaling, il)(t,z,w) is defined on 0 < t < 1.
By Proposition 4, the Frobenius equation

{ 1 - b(z, φ) - iα(z, φ)

ιΨ l + b(z,φ)-iα(z,φ)
φ{0,w) = w

has a unique solution for any (z, w) G λfe^{η) ® C when δ > 0 is small.
The <9-equation is thus solvable, the holomorphic functions are given by
ζk = zk + φk(z,z).

Let Φ be the map on λί€^{j) defined as
(5.8) Φ(zk) = zk + φk(z,z).

Notice that

2(1 -iα)
(5.9) DΦ(z,z) =

b-iα'

involves the first derivatives of the coordinate functions. DΦ is invertible
on Λfetδ(Ί) Thus the germ of holomorphic differentials is weakly dense in
T*KQ. Theorem 5.2 is thus proved.

5.3. On the inverse function theorem. In this section, it is shown that
the inverse function theorem of Nash and Moser fails to implies that Φ
defined as (5.8) is a local diffeomorphism and thus J is integrable on K.
The reader may refer to Hamilton [8] for the exact statement of the inverse
function theorem. Roughly speaking, the inverse function theorem works
in the tame category. As in Hamilton [8], the space Cω{Sλ,R2) with the
C^-topology is a tame Prechet space. It will be shown that the map Φ fails
to satisfy the tameness conditions.

It is a remark that however Φ and the inverse of DΦ both satisfy the
tameness estimates in the (7°°-topology. By (5.9), the inverse of DΦ is an
ordinary differential operator. As Corollary 2.2.7 of Part II of [8], the inverse
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is a tame map on ^,5(7). To prove that Φ is tame, we solve the equation
(5.6). (We will return to this practise of solving (5.6) more specifically
in Section 6, and here we are brief.) As in Garabedian [6] and John [9],
(5.6) can be solved by integrating a system of ordinary differential equations
which describes the characteristic curves with initial conditions given by w.
As Theorem 3.2.1 of Part II of [8], the tameness estimates of Φ can be easily
established.

Proposition 5.3. The inverse of DΦ defined as (5.9) is not a tame map in
the Cω-topology.

Proof. Consider the Frobenius equation around the circle

7(0) = -!-(cos(2π0),sin(2π0),O)
2ττ

and let x(θ) = 0. Note that I = 1, K = 2π, r = 0,

(5.10) λ1 = l , λ 2 = O , λ 3 = y ' ( 0 ) ,

the matrix A has the the following explicit entries:

Thus the inverse of DΦ is computed as

(5-12)

Note that (DΦ)"1 has a nonlinear term y/2. As Example 2.1.3 of Part II of
[8], it is not a tame map in the C^-topology.

6. The Frobenius Problem on K

In this section, we give an explicit form of the Frobenius equation

( dφ _ 1 - &(te, φ) - ia{tz, φ)
Ί)t ~ l + b(tz,φ)-ia(tz,φ)Z

φ(0,z,w) =w

and prove an insolvability of the equation. By Proposition 4, the Frobenius
problem on K is thus not integrable.
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6.1. An explicit form of the Probenuis equation. Consider the Frobe-
nius equation (6.1) around the standard circle

7(0) = (cos(2π0),sin(2π0),O).

Then/ = 2π,κ; = l , τ = 0,

(6.2) λi - 2π(l - x(θ)), λ2 = χ'(θ), λ3 = y'(θ).

Introducing

(6-3) μ2 = τ-,μ3 = T",

the matrix A has the following entries:

+ Ms
μ\ + μ\

c(z,z) =
+ μ2 + μί

(a Λ\ jί -\ μ2μ3

(o.4j a{Z)Z) = .

All the entries can be complexified as a = a(z, w) etc..
To find a simple form of the equation, let z — δ > 0. Then

iμμ = 2,

(6.5) 1 - 6 - ia = - μ 2 - z

The equation (6.1) has the explicit form

(6.6) ^ dt 16π2(l-δt-φ)2

t=o = w(θ).

Introduce ψ = 1,/t_^> and v = ̂ 3^. Denote again by t for γ ^ j . Then (&.6)
is converted as

(6.7A) { = ω + (
\ dt ψ \dθ
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6.2. A simpler example. The equation (6.7) is a first order, nonlinear
equation. As in Garabedian [6] and John [9], when w is a real function,
(6.6) can be explicitly solved by integrating a system of ordinary differential
equations which describes the characteristic curves. This is also the case
when w is real analytic. To show that the Frobenius equation is not solvable,

(6.7) will be shown unsolvable for certain v. To illustrate the idea of proof,
consider first the equation

(6.8Λ) = (
\ dt \dθ

Proposition 6.1. Let v(θ) be a smooth function on S1 with Iinv'(θ) φ 0 on

S1. Then the equation (6.8) is solvable iff v £ Cω.

Proof. The "if" part is by the theorem of Cauchy-Kowalevska. To prove the
"only if" part, note that (6.8) can be explicitly solved. Let η = | ^ . Then
(6.8) is converted into the quasi-linear Burger equation

(6.9A) f 9η dη
I dt 'dθ

and the solution is given as

(6.10) η(t,θ) = υ'(θ + 2tη(t,θ)).

Assume that v1 is never real and (6.8) has a solution η(θ,t). Then for
small ί, η(θ,t) is also never real. By (6.10), v' is extended over a certain
annulus Ae. To show that the extension is holomorphic, let

(6.11) η = 7/i + iη2,v' = v[ + iv'2

and rewrite (6.10) as

(6.12) η(t,θ) =υ'(θ + 2tηu2tη2).

Differentiating the explicit function (6.12),

{
dη dv dv

— - 27/i-—+ 2r/2—r-
at \t=o αζi ας2

dη __dv_

dθ\t=o~ δCi'

Substituting (6.13) to (6.9),
'dv1 .dv'

(6.14)

Since r/ 2 /0 for small ί, v' satisfies the Cauchy-Riemann equation, v' G Cω.
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6.3. An unsolvability of the Probenius equation. Denote by S the set
of complex valued, smooth functions υ(θ) on S1 such that

2 '2

on S1. The following proposition shows that the Probenius equation is not

solvable on the knot space K.

Proposition 6.2. (6.7) is unsolvable for generic v G S.

Proof To find the general solution for (6.7), let p = | | , q = | ^ and rewrite

the equation as

(6.15) F(θ,t,φ,p,q)=q-φ2-p2 = O.

As [6] and [9], (6.7) is solved by integrating

(6.16)

ds

%L = -Ft- qFψ = Ίqφ
as

with the initial condition

(6.17)

0|s=o = r
t\s=o = 0
ψ\s=o = v{τ)
P\s=O =v'(τ)

q\s=o = v2{τ) v'2(τ).

Where s and r are two parameters.
To integrate (6.16), note first that (6.16) implies t = s. The last two

equations of (6.16) imply that £ is independent of 5,

(6.18)
υ2 + v'2

q=—-i P
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Substituting (6.18) to (6.16), (6.16) is reduced as

( dθ

Tt=~2p

(6.19)

Let

20)

λ and μ be functions

A(r

defined as

9 '

^ υ + v
vf

2

-,/i(?
V

Then the equation (6.19) implies

(6.21)
dφ λ — 2p

dp~ 2ψ ^ -"F

Substituting (6.21) to (6.19), p is integrated as

dp

-ί
Jv'

du

(6.22)
λ(τ)

Substituting (6.21) to (6.19), (6.7) is solved;

(6.234)

(6.235)
λ(λί - μ)

Note that r = τ(θ,t) is determined by (6.23A) implicitly.
When Imλ Φ 0 on S1, similar to the case of Burger equation, if the equa-

tion (6.7) has a solution, then (6.23A) implies that r is a complex variable
and thus μ(τ),λ(τ) are both forced to extend over a certain annulus Ae.
Assume that λ and μ are extended as

(6.24) λ = λ(r, f), μ — μ(τ, f).
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Let z(τ, t) and η{τ, t) be functions defined as

2λ
(6.25) z{τ,t) = λt - μ,Ί(r,t) =

1 + z2

Introduce
_ 2 d z _ 2 dμ

a ~ TΊ2^ ~ ϊT7^a7'

(626)

Differentiating (6.23A),
dr άj —

dt | α | 2 - | / 3 | 2 '

dτ _ ά-β

< β 2 7 > m - w
Note that a ~ 1 and β ~ 0 for small t.

Differentiating (6.23B) follows that

1 ; df 1 + z2 5ί (1 + z2)2

Substitute

Oί" ~ ~dτ~dt + df a t '

θμ_dμdτ dμdf_
{b dί)) Έ~frTt + dfdt

and (6.27) to (6.28). ^ - ψ1 is then computed as

-A2 άy-βj \-μz2+2z + μd\ Λ(l - z2) dμ

| α | 2 - | / 3 | 2 I (1 + z2)2 dτ ~ (1 + z2)2

dμ\

dτ )

- z2

dτ
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Similarly | | is computed as

ά-β ( -μz2 + 2z + μd\ λ(l - z2) dμ Λ
~\a\2-\β\2 1 ( l + z 2 ) 2 Ίh " (l + z2)27h)

a — β j -μz2 + 2z + μd\ \(l — z2) dμλ
( ' ' ~\a\2-\β\2 { (1 + ^ 2 ) 2 af ~ (1 + z2)2 df J *

Note that /? is a linear function in |£ and |^, a is a similar function in
and |^ . Multiplying the equation (6.7) by

it follows that |^, | ^ and ί satisfy a polynomial equation

Consider P as a polynomial in | ^ and |^ . Note that, when

(6.34) ^ = ° > 5 F = °>
or or

λ, μ and thus υ and ?/ are holomorphically extended, (6.23) gives a solution
to (6.7). Hence (6.34) is a solution to (6.33), the constant part Po of P
vanishes identically.

(6.35) P

Let H = P-P0.
By (6.31) and (6.32), Po can be easily computed as a complete square.

Valued at t = 0, (6.35) implies the equation

(636) + χ
(6.36) IJ'Έ + Γ i T x Γ χ'

dτ 1 + μ2 or
(In fact, (6.35) and (6.36) are equivalent.) Consider the equation H — 0.
Valued at t = 0, the equation implies either the linear equation

or the linear equation

μ2)dμ 2λ

l+μ2 dτ l+μ2'
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The vanishing of the coefficient of the highest t-poweτ in H implies the
equation

Λ 2_dμ 2 fyΛ / dλ θμ
\ l+μ2dτ l + μ2dτ) \ β df dτ

(M8) + * fe( « + A f t t ) - a
1 + μ2 or \ or or)

Where the first and second term of (6.38) are derived from those terms of
(6.32), since the highest ί-power appears in the square of (6.32). By (6.36)
and (6.37A), substituting f£ and f£ to (6.38),

(6.39)
2λ

1 + μ2 1 + μ2

dμ

JT

2

=Ό.

Thus ψτ = 0, § = 0. v e Cω.
The complicated case is the equation (6.37B). In this case, substituting

again (6.36) and (6.37B) to (6.38) follows that ψ- is a quadratic equation in
dj.

(,40, £ -

To complete the proof of Proposition 6.2, it will be shown that, the equa-
tion H — 0 implies two more nontrivial equations which can be reduced to
different polynomial equations

r, (*,*£)-o.

(Λ,μ,|)=(6.41) r2^λ,/i,^J=O

which are in the single variable f£ by (6.36), (6.37B) and (6.40). Thus
by restricting λ and μ on the real line τ — τ, for generic v(θ), (6.41) has
no solution. (The resultant can be used to check that I\ and Γ2 have no
common solutions.)

The two polynomials can be indeed chosen in the following way. Regard
H as a polynomial in z instead of t. Then the two polynomials are deduced
from the constant term and the coefficient of z. An explicit calculation can
be given to show that the polynomials are in fact different; the calculation
is lengthy however not difficult, may we omit the details here. Proposition
6.2 is thus proved.
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Corollary 6.3. The Frobenius problem on K is not integrable.
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