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MINIMAL HYPERSPHERES IN TWO-POINT
HOMOGENEOUS SPACES

PER TOMTER

In Riemannian geometry the study of minimal submani-
folds has given the most important, higher-dimensional gen-
eralizations of geodesies. Especially significant from a global
point of view are closed minimal submanifolds (generalizing
closed geodesies); these raise many hard problems. In this pa-
per we study existence and uniqueness questions in the case
of the simplest topological type; i.e. minimal hyperspheres.
We restrict ourselves to study such questions for the com-
pact two-point homogeneous spaces; these spaces constitute
the most natural generalization of classical (three-point ho-
mogeneous) spherical geometry. They can be characterized
equivalently as (i) compact two-point homogeneous spaces,
(ii) compact rank 1 symmetric spaces, or (iii) irreducible com-
pact positively curved symmetric spaces. Since the standard
spheres have been investigated in great detail in connection
with the "Spherical Bernstein Problem", we only consider the
complex projective spaces CP(n), the quaternionic projective
spaces HP(n), and the Cayley projective plane Ca(2) here.

Introduction.

The compact two-point homogeneous spaces are also precisely the symmet-
ric spaces which have a homogeneous, minimal hypersphere, unique up to
congruence, and determined as the principal isotropy group orbit of maximal
volume. We call it the "equator" of the space. Hence this is the natural class
of spaces to study uniqueness questions analogous to the Bernstein problem;
i.e. the following question: Is any minimal hypersphere in a compact two-
point homogeneous space an equator?

The most effective method has been the "equivariant differential geome-
try" initiated by Wu-Yi Hsiang and B. Lawson. In the case of a cohomo-
geneity two subgroup G of the isometry group the reduced minimal equation-
in the orbit space is the geodesic equation for a suitably chosen metric; and
the problem of finding G-invariant closed minimal submanifolds is reduced
to finding geodesies that may "close up" by satisfying a delicate intersection
requirement with the singular boundary. The technical difficulties in proving
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the existence of such "closed geodesies" may be expected to depend strongly
on the coefficients of the reduced minimal equation; this is born out very
clearly in the increasing difficulties in proving the following results:

Theorem 1. There exist infinitely many congruence classes of imbedded,
minimal hyperspheres in CP(n); n > 2.

Theorem 2. There exist infinitely many congruence classes of immersed,
minimal hyperspheres in HP(n); n > 1.

Theorem 3. There exist infinitely many congruence classes of immersed,
minimal hyperspheres in the Cayley protective plane.

In fact, we will obtain a very explicit expression for how the oscillatory
behaviour of a second order linearized variational equation for the reduced
minimal equation changes with the dimension of the scalar field (C,H or
Co). Thus, although these spaces all have rich two-point homogeneous sym-
metry, the subtle changes in those symmetry groups related to change of
scalars strongly impact existence proofs for non-equatorial minimal hyper-
spheres.

Theorem 1 was proved in Hsiang, W.T., Hsiang, W.Y. and Tomter, P.:
"On the existence of minimal hyperspheres in compact symmetric spaces".
Ann. Scient. Ec. Norm. Sup., Vol. 21,(1988), 287-305. In that case
the proof is much simplified by lifting in the Hopf fibration S1 -> S2n+1 -»
CP(n); the orbital invariants are then easier to compute. This belongs to the
simplest class of equivariant geometric structures ("corner singularity of focal
type"), which enables one to prove Theorem 1 without too much analytical
complication. The quaternionic projective space can also be treated by lifting
in the Hopf fibration S3 -> 5 ί 4 n + 3 —y HP(n), the resulting dynamical system
is not of the above simple class and requires more complicated analysis in
the orbit space ("corner singularity of nodal type"). It should, however, be
feasible to compute the orbital invariants directly in the projective spaces;
although harder, this more general approach should be of interest for other
symmetric spaces. It becomes imperative in the case of the Cayley projective
plane, since it is well known that there cannot exist any corresponding "Hopf
fibration" S7 -> S23 -> Ca{2).

We therefore choose to give a unified treatment for direct computation
of the orbital invariants for all these symmetric spaces. This is done in ex-
plicit detail for Cα(2), which is the more complicated case, involving aspects
(triality) of exceptional Lie groups.
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1. Preliminary results.

We first observe that only the above cases are relevant for the study of closed,
minimal hyperspheres in two-point homogeneous spaces:

Proposition 1. Let M be a Riemannian two-point homogeneous space and
let N be a minimal hypersphere in M. Then M is either a sphere, a complex
or quaternionic protective space, or the Cayley protective plane.

Proof. As is well-known, a simply connected Riemannian manifold of non-
positive curvature is diffeomorphic to Euclidean space and has no compact,
minimal submanifolds. Since any two-point homogeneous space of nonposi-
tive sectional curvature is simply connected, we only need to consider those
of positive curvature. By FrankeΓs theorem ([F]) it follows that for any
closed minimal hypersurface TV in a Riemannian manifold M of positive
Ricci curvature, the induced map between fundamental groups is surjective.
This excludes the real projective spaces, and the result follows from the
classification of two-point homogeneous spaces. D

Proposition 2. Let G be a cohomogeneity two Lie group of isometrics
acting on the Riemannian manifold M and let π : M —» M/G — X be the
projection onto the orbit space. Let M* be the union of principal orbits
in M, and let X* = π(M*), with its orbital distance metric. If 7 is a
curve in X*, the mean curvature of π~1(j) in M* is given by: H(z) =
k(π(z)) — J^ lnV(π(z)), where k is the geodesic curvature 0/7, n is the unit
normal of 7, and V is the volume functional registering the volume of the
orbits.

This standard result makes it clear that the only needed data from the
orbital geometry are the orbital distance metric of X* and the volume func-
tional V.

Note: We always allow normalization of V by a multiplicative constant;
this does not change the equation.

Now, let M = CP(rc), HP(rc), or Cα(2), and let p e M. Let G be the
isometry-isotropy group of p; by two-point homogeneity the principal orbits
of G are hyperspheres. The cut locus C(p) is a C P ( n — 1), H P ( n — 1), or
Ca(l) — Ss respectively. We normalize the Riemannian metric such that
the injectivity radius is | , all geodesies have length π, and the range of the
sectional curvatures is [1, 4]. The orbit space M/G is then parametrized by
r G [0, | ] , the volume of the orbits is given by a function V(r) which vanishes
at r = 0, | , and the (unique) orbit of maximal volume is automatically
minimaly imbedded in M/G, i.e. our equator. Let q G C(p) and let H = Gq

be the isotropy group of the G-action at q. The action of H on M then
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defines the cohomogeneity two transformation group which we will apply to
prove Theorem 1-3.

2. The orbital invariants of the isotropy action.

Let M = CP(n), HP(n), or Ca(2) and p G M, let G be the isometry-
isotropy subgroup at p. Let X be a unit vector in TPM, then the geodesic
segment exprX, r G [0, f] parametrizes the orbit space M/G and selects a
representative triple of subgroups K C H C G for the almost homogeneous
G-space M, with K = G e x p r X , r G (0, f) and H = Gq,q = exp f X G C(p).
We summarize the orbital geometry of the G-action and give explicit details
for the case M = Ca(2).

Let M = F/G as a symmetric space and F_ — G + P be the Car-
tan decomposition of the corresponding Lie algebras. For Ca(2) we have:
F = JP4, G = Spin 9, P is the spin representation Δ 9 as a G-module,
K — Spin" 7, i/ = Spin 8, with corresponding orbit types:

r G ( 0, — I : G/iί = Sr, the geodesic sphere of radius r,

r = I : G/fί = C7(p).

Furthermore: Δ 9 | i ϊ = ΔjθΔ^", the direct sum of the two half-spin represen-
tations, where X G ΔjJ", and Δ^|iίΓ = p7φθ, A^\K = Δ 7 with Δ 7 the spin
representation, p7 the standard orthogonal representation of K = Spin" 7,
and θx the trivial one-dimensional representation along X. (Note: Here
Spin" 7 is a non-standard imbedding of Spin 7 in Spin 9, see the discussion
in Section 3). For the isotropy action of G on TPM the orbits are standard
spheres of radius r, S(r), where expp5(r) = Sr, r G (0, | ) . Let furthermore
G = H_+Ps a n d ϋ — K+Pγ be orthogonal decompositions. Since p'8 \K — Δ'7,
we may now write:

(i) G = X + ^ + Δ ;

(ϋ) £U = K + Δf

7 + pf

7 + p7 + 0 X + Δ 7

as Jf-modules (markings to distinguish different isomorphic submodules).
By (i) we identify the tangent space TK(G/K) with Δ 7 + p7\ the resulting
isomorphisms (needed later) between the tangent spaces of the S'rs, viewed
as Δ 7 + p7, and the orthogonal complement of X in TPM are simultaneously
realized in Proposition 3.

Definition. Define the map J(r) : G -> TexprXSr by J(r)(Z) = the Killing
field of Z at the point exp(rX)G, r G (0, f).
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Proposition 3. Let Z € G_ as above. Then we have:
(a) J(0)(Z) = 0, §J(0)(Z) = [Z,X], Ker J(r) = K, for r e (0, f).
(b) For Z € Δ^; J(r)(Z) = (sinr)(ExprX)*([Z,X]). For Z € ^

J(r)(Z) = §(sin2r)(ExprX)*([Z,X]).
(c) adX|Δγ 25 an isomorphism onto Δjf. adX|pγ is an isomorphism

onto the orthogonal complement of X in Δjj".
(Le/ί translation by exprX has been denoted ExprX).

Proof- £&(exptZ)(exprX)G = g£exp(Ad(exptZ)(rX))G = [Z,X] at
r = ί = 0. The result in (b) is well known from the solution of the Jacobi
equation in rank one symmetric spaces. From G-invariance of the inner
product it follows that [G, X] C X-1, from two-point homogeneity it follows
that [G_,X] has codimension 1, i.e. [G,X] = X"1 = p7 + Δ 7 . Since [BL,X] C
Δg" and [^, X] — 0, (c) now follows from (i) and (ii). D

Corollary . The Riemannian homogeneous space Sr is obtained from G/K
by the K-invariant inner product defined by the two scaling factors | s i n 2 r
and sinr on pf

7 and A'7 respectively, relative to the round unit sphere.

Remark 1. For the G-action on TPM we have of course the uniform scaling
factor r on p'7 + A'7 for S(r), and an analogous statement Proposition 3'.

Remark 2. Any G-invariant metric on G/K is defined by a if-invariant
inner product on pf

7-\-A7; by Schur's lemma any such inner product is defined
by two scaling factors relative to the unit sphere.

3. The orbital invariants of the cohomogeneity two action.

We now proceed to the computation of the orbital invariants of the cohomo-
geneity two action of H on M. Since the spheres Sri viewed as homogeneous
spaces G/K, are not in general naturally reductive, some complications may
be expected.

We again specify for the case M — Gα(2), and first recall some of the
needed facts about the relevant exceptional groups.

From the triality principle there are three distinct conjugacy classes of
Spin 7 in Spin 8; they are conjugate under outer automorphisms of Spin 8
(arising from inner automorphisms of F4). Two of these, denoted by Spin" 7
and Spin+ 7 are conjugate in Spin 9, with Spin Θ/Spin^1 7 = Slδ. The last,
denoted by Spinx 7, is in standard position in Spin 9, with Spin 9/Spinx 7
equal to the Stiefel manifold of two-frames in R 9 . The intersection of two
non-conjugate Spin 7 groups in H — Spin 8 is a G 2, and Spin 7/G2 = S7.
The orbit space TPM/H x H is the first quadrant R _̂, and the unit sphere
S(l) projects to the unit circle in R^. : {eu\t G [0; f ]}. The orbit types for
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the H x ff-action on TPM = Δ j + Δ^ axe:

(i) t = 0: H x H/ Spin" 7 x H = S7

(ii) t E (o, I λ : HxH/ Spin" 7 x Spin+ 7 = S7 x S7

(iii) * = ? = H x # / # x Spin+ 7 = S7.

Proposition 5. Let A 6e £Λe diagonal imbedding of H into HxH. Then
we have: The orbits of the restriction of the H x H-action to either: (a)
the Spin"1" 7 x Spin" 7-action, or (b) the AH-action, coincide with the full
H x H-orbits. (AH is the diagonal imbedding of H into HxH).

Proof. Since Spin" 7 Π Spin"1" 7 = G2, we have as principal orbit types: For
(a): Spin+ 7x Spin" 7/G2 x G2; For (b): Spin8/G2; these have full dimension
in the H x iί-orbits. The singular orbits are straightforward. D

Proposition 6. Let G_ = K_ + p'7 + A'7 be the K-module decomposition of G_
as before, and let Z be a unit vector in A'7 with respect to the standard metric
(scaling factors (1,1)). Then: (a) The orbit space Sr/H is parametrized by
exp(ΘZ)K, θ G [0, | ] , with the following orbit types:

(i) θ = 0 : Hκ = Spin" 7, H/Hκ = S7.

(ii) θ e (0, Ϋj : HEMtz)κ = G2, H/G2 = S7x S7.

(iii) 0 = £ : HEM,Z)K = Spin+ 7, H/ Spin+ 7 - S7.

(b) Έxp(ΘZ)K, θ G R, i5 α geodesic for any G-invariant metric on G/K.

Proof. Since (a) does not depend on the choice of metric, it suffices to prove
it for the standard metric; i.e. for S(l) C TPM = Δg" + Δ^ as an iϊ-module.
This coincides with the Δiϊ-module TPM considered in Proposition 5 (where
the H x H-action is the outer direct sum representation of Δg~ and Δ^~).
Since S(l) is a naturally reductive homogeneous space with respect to the
pair (if, C?), it follows that Έxp(tZ)K is a geodesic starting at X G Δg~ with
velocity Y = [Z,X]. By Proposition 3', 7 is a unit vector in Δ̂ Γ, hence
Exp(f Z)if G Δ^, and Exp(ΘZ)K projects bijectively onto S(l)/H, θ G
[0, | ] . Moreover, A'7 -\- p'7\G = μ7 + μ7 + HZ, where μ7 is the standard
representation of G2 on the pure Cayley numbers; hence the fixed point
set of G2 is {Έxp(ΘZ)K; 9 e R } , which is then totally geodesic in any G-
invariant metric. D

Proposition 7. Let F\ = K_ + A'7 + p'7 + ρ7 + θx + A7 be the K-module
decomposition of F\ as in 2(ii); and let Z be a unit vector in A7 as above.
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Then 7(0) = (ExpΘZ)(ΈxprX)G is a geodesic in Sr, orthogonal to the H-
orbits.

Proof. By the previous proposition η(θ) is a geodesic, by the Gauss lemma
it is orthogonal to the if-orbits. Setting Y = [Z,X] as above, we have
from the proof of Proposition 6: HExp(%z)(EχPrX)G = Spin+7, hence, by
the Gauss lemma applied to the point 7(f), Ύ(Θ) is also orthogonal to the
Spin+ 7-orbits. The tangent spaces of the Spin" 7 and the Spin"1" 7-orbits
together span the tangent spaces of the iϊ-orbits. D

Since Z G Δ'7, it follows from Proposition 3 that the Y-direction has
scaling factor sinr, hence the orbit space H \ F/G is now parametrized by
(r, θ) e [0, f ] x [0, f ] with the orbital distance metric ds2 = dr2 + sin2 rdθ2,
i.e. a regular spherical triangle. This can be made more explicit as follows:
P = expp(RX + KY) is a real projective plane; as the fixed point set of G2

it is totally geodesic in M; from the above discussion it must intersect all
iϊ-orbits perpendicularly. It is sufficient to identify iί-orbits in the disk D
of radius f in the 2-plane KX + KY in TPM. The centers Z(Spin~ 7) = Z2

and Z(Spin+ 7) = Z2 act on F(G2); here Z(Spin~ 7) acts as —Id on Δ̂ ~ and
Z(Spin+ 7) acts as —Id on Δg". Reflections around the X- and Y-axes then
identify points on the same ίf-orbit, and it follows that the intersection of
D with the first quadrant may be used to parametrize the orbit space.

In the orbit space the corners are the fixed points of H = Spin 8, the edges
are the fixed point sets of three non-conjugate Spin 7's in ϋf, permuted by
t1 e triality automorphisms.

The volume functional of the cohomogeneity two action. The scal-
ing factor which determines the relative volumes of the G-orbits Sr is given
by sin8 r sin7 2r. It remains to determine the scaling factors for the iϊ-orbits
H - {expθZ)K, θ E (0, f) in Sr. The Killing fields defined by H_ will again
span the tangent spaces of the i/-orbits, and hence determine the relative
volumes. Although these Killing fields are well understood as vector fields
(those corresponding to Spin" 7 and Spin+7 are the standard Jacobi-fields
on the sphere of sin#, cosθ-type, respectively), their metric properties in
terms of the SV-metric are more complicated. The K-invariant decomposi-
tion Tκ(G/K) = pγφΔγ defines a G-invariant decomposition of the tangent
bundle T(G/K) as a Whitney sum of two subbundles. However, it does not
follow from this that a Killing field defined by Z E K_ remains in the Af

7-
summand of scaling factor sinr (the Killing field is given by transvections
along (ex.pθZ)K with respect to the standard metric, i.e. those transvec-
tions are in SO(TPM) — SΌ(16), and need not respect the above splitting oί
T(G/K)). Since we are only interested in the volume element determined
by those Killing fields, the result turns out to be easy.
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Proposition 8. Let exp(ΘZ)K be a geodesic in Sr with Z a unit vector in
A7 as before. Then the scaling factor for the relative volumes of the orbits
Hexp(ΘZ)K, θ e (0, f) is given by sin7<9cos70.

Proof. Since Exp(—ΘZ)* is an isometry with respect to any G-invariant met-
ric on Sr, the Killing fields pull back to vectors in TK(G/K) of length sin#
and cos 0, respectively, with respect to the standard metric. Since the or-
thogonal complements of Z coincide for all if-invariant inner products on
p'7 + Δγ, the result follows. D

Corollary. The volume functional for the H-action on M is given by
V(r, θ) = sin7 θ cos7 θ sin7 r sin7 2r.

Proof. Since Z £ A7 corresponds to a factor sinr, and the volume of Sr is
sin8 r sin7 2r, it follows that the r-dependance of V(r, θ) must be sin7 r sin7 2r.

D

Remark. This is the same result as would be obtained by formal lifting
computations in a hypothetical "Hopf fibration" 5 7 -» S*23 -^ Ca(2).

We summarize the corresponding results for the remaining cases:

Complex projective space. CP(ή) = U(n + 1)/U(ή) x Ϊ7(l), G = U(ή) x
17(1), H = U(n - 1) x U(l) x U{1). The normal subgroup G1 = U{n) and
H1 = GιC\H = U(n—1) x Z7(l) have the same orbits as G and H respectively,
- hence we study their actions. We have K = U(n — 1) and the ίί-module
P_ — μn-ι Θ 20, where μn_i is the standard representation of U(n — 1) and
0 the trivial representation. The scaling factors sinr and |sin2r, defining
the metrics of the Berger-spheres SJ?"""1, have multiplicities 2n — 2 and 1,
respectively. The principal i/-orbits are of the type S2n~3 x S1, and the
volume functional is given by sin2n~3 r sin 2r sin2n~3 θ cos θ.

Quaternionic projective space. HP(n) = Sp(n + 1)/Sp(n) x 5p(l), G =
Sp(n) x 5p(l), fl" = Sp(n — 1) x 5p(l) x 5p(l). Again we can reduce to the
normal subgroup Sp(n) and Sp(n — 1) x 5^(1). We have: K = Sp(n — 1),
the iί-module P = z/n_! + 40, where z/n_χ is the standard representation
of Sp(n — 1). The scaling factors sinr and | s in2r now have multiplicities
An — 4 and 3, repectively. The principal ίf-orbits are of type S4n~5 x S3 and
the volume functional is given by sin4n~5 r sin3 2r sin4n~5 θ cos3 θ.

Change of coordinates. For convenience we define new spherical coor-
dinates by changing the center to the corner (r = 0, θ = | ) . (Except for
n = 2, this is not an ίf-fixpoint.) In these coordinates the volume function-
als now become: sin2 r cos2n~3 r sin 2Θ and sin6 r cos4 n"5 r sin3 2Θ for CP(n)
and HP(n), respectively (for Gα(2) there is no change).
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4. The analysis and geometry of the reduced differential
equation.

The previous results can be summarized as follows:
Let M be a projective space of complex, quaternionic, or Cayley-type.

Let H be the isometry group that fixes a pair of conjugate points in M.
Then the following holds:

1. The orbit space M/H with the orbital distance metric is a regular
spherical triangle parameterized by (r, θ) E [0, f] x [0, f]; ds2 — dr2 +
sin2 re/02.

2. The volumes of the if-orbits are given by the functional V(r, θ) =
sin26 r cosα r sin& 20, where:

a = 2n - 3, b = 1 for CP(n),

a = 4n - 5, b = 3 for HP(n),

a = b = 7 for Cα(2).

Let 7(5) = (r(s),#(s)) be a curve in the interior of M/H, parameterized
by arc length. By Proposition 2 the mean curvature of the corresponding
hypersurface of M is given by ^(7(5)) — jL In V, where the geodesic curvature
k = ά + ^cosr, and n = — s i n α ^ + cos a sin"1 rj^ ; α is the angle from
•^ to the tangent vector 7(5). Straightforward computation now gives the
following result:

Proposition 9. The hypersurface corresponding to the curve 7(5) = (r(s) ;

θ(s)) is minimal if and only if the curve Γ(S) — (r(s),θ(s),a(s)) satisfies
the following dynamical system:

r = cos a

(*) θ — sin a sin"1 r

ά — Kr sin a + 2b cos a sin"1 r cot 20,

where Kr — αtanr — (26 + 1) cotr.

This is singular along the edges θ = 0, f and r — f; by well known
arguments ([T2]) there exists, for each interior point P of an edge, a unique
solution 7(s) with initial value at P. This solution is analytic and has
initial direction orthogonal to the edge; thus it defines a smooth minimal
hypersurface in M. Solution curves with end point at the origin are more
complicated, we will need the following observation:

Proposition 10. Let Γ(s) = (r(s),θ(s),a(s)) be a solution of (*) with
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s ^ 0 - r(s) = 0; assume that the number of θ-critical point of Γ(s) is
bounded for s E (—£, 0). Then Γ(s) is the solution curve θ = j .

Proof, a) Since θ = sin a sin"1 r, it follows that sinα has constant sign in
(—e, 0) for some positive e. Since f at an r-critical point is easily computed
to be — sin2αϋί r, it follows that r-critical points must be minima for r <
r0 = Arctan \/(26 + l)a~x and maxima for r > r0. Hence, from the condition
limr(s) = 0, we may also assume cos a < 0 in (—e, 0).

b) Similarly, a computation of ά at a critical point for a gives: sin a(a cos"2

r cos a + (26 + 1) sin"2 r cos a) — 26 cos a sin~2 r tan" 2 2#(cos r cos a tan 2Θ —
2 sin a cos"2 20), where both terms have the same constant sign in some
(—e,0). Here the sign of tan 2Θ is found by plugging back into the condi-
tion ά = 0, i.e. tan 2Θ = —26 cos α sin"1 riίΓ"1 sin"1 a. Hence, ά must have
constant sign in some interval (—e,0); and ot\ — lim^o- OL{S) exists.

c) We prove that a\ = π and 6χ — \. We have: ~ — sin"1 r tan a «
sin"1 r tanαi for small e, i.e. θ(r) w (7+ |(tanαi) ln[(l — cosr)(l
—>• oo unless tanα x = 0; hence cx\ = π follows. Also, ψ- =

26 sin"1 r cot 2Θ w 26 cot 20X sin"1 r if cot20χ 7̂  0. By a similar integration
this would imply |α(r)| —)- 00, which is a contradiction. Hence θγ — j ,

and the above solution curve must be tangent to θ = j at the origin.

d) To conclude the proof, assume that sine* > 0 in (—e,0), hence #(s) <
j in (—e,0). Prom (*) this implies that ά becomes negative as soon as
(26-1- l)cotrsinα dominates αtanrsinα; this contradicts lims_>0- &(s) = π
unless a = π, θ = j . The case sinα < 0 is treated similarly. D

Definition. We define the following points in M/G: O = (0,0), A =
(f,0), B = ( f , f), C = ( | , f ) , D = (ro,0), E = (r o,f), with r0 =
Arctan ^(26 + ̂ α " 1 .

Proposition 11. The following curves define solutions of (*):

(i) r = ro = Arctan \J(2b+ l)^1,

(iii) sinr sin0 Ξ ^b{a + 2b + I ) " 1

(iv) sin rcosθ = ^b(a + 26 + I)- 1 .

Proo/. We have α Ξ ± | for (i), α Ξ 0 or π for (ii), and the result follows
directly by substitution into (*). The solutions (iii) and (iv) correspond to
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the orbits of maximal volume for the isotropy groups of the points B and A,
respectively. •

Remark. (i), (iii) and (iv) define smooth hypersurfaces of M, here (iii)
and (iv) are "equators", i.e. homogeneous, minimal hyperspheres. Similarly,
any solution curve of (*) with initial point on the interior of the edge OA
and terminal point on the interior of AB must define a smooth, minimal
hypersphere in M. The most effective technique so far for proving existence
of solution curves which are "closed" in the generalized sense that they have
end points on the singular boundary, is to study variations of the pattern of
critical points of auxilary functions along solution curves.

Definition. Let Γ(s) = (r(s), 0(s), a(s)) be a solution curve for (*),

s > 0. Let 7^(7) and rι

M(η) denote the i-th local minimum, respectively

local maximum, for r(s), s > 0; similarly for 0^(7) and # M ( 7 )

Proposition 12. Let Γ(s) = (?"(s), θ(s), α(s)), 5 > 0, be a solution curve
for (*) in X* = M*/H, which does not coincide with (i) or (ii). Then the
critical points of r(s) and θ(s) are non-degenerate, and no two of them can
coincide. Moreover, we have: Any rι

m(j) occurs with r < r 0, τι

M{η) with
r > r0. Any ^ ( 7 ) occurs with 0 < f, 0^(7) with θ > \.

Proof. From (*) we have f — —(αtanr — (26+ l ) c o t r ) at a critical point

for r, hence r ^ 0 unless r = ro; by the uniqueness theorem for differential

equations a solution with r(s0) — r0, cosα(s0) — 0 must be (i). Similarly,

a critical point for θ is non-degenerate unless θ — \ and sinα = 0, i.e.

the solution (ii). At an r-critical point we have sinα = ± 1 , hence 0 ^ 0 .

Straightforward computation of f and 0 concludes the proof. D

Definition. The (r, 0)-pattern P(Γ) of the above curve Γ(s) is the following
sequence: Assign symbols rι

M, r^, 0j^, 0^ in the same order as corresponding
critical points occur along Γ(θ); s > 0. At a boundary point critical points of
r and 0 coincide, in that case the pair is enclosed in a bracket and considered
as one symbol. PN(T) is the segment consisting of the N first symbols of
P(Γ).

Definition. Let Γd(s) — (^(s), θd(s),ad(s)) denote the solution curve with

rd(0) = f ,0d(O) - d,ad(0) = - π , and let Ίd{s) - {rd(s),θd(*))

We need the following observation:

Proposition 13. The curve ηd depends continuously on d E (0, | ) .

Proof. This is the "continuous dependance of solutions beyond intersections
with the singular boundary"; for proof see [HT]. Notice that also Td depends
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continuously on initial conditions modulo identification of a with a + π at
boundary points. •

Proposition 14. Let I = (bx - e, bλ + e) C (0, f ) . Assume that PN~ι(Tb)
has no symbol of bracket type for b E I and fΛαί P j / v (Γ 6 l ) Λαs N-th symbol
of bracket type. Then we have:

(1) P^-^Γd) w constant for del.

(2) £e£p 6e the first intersection point ofTbl(s) with the boundary (s > 0);

the N-th symbol of PN(Γbl) is then as follows:

peOD: {rlM

peOE: (riA)

peDA or AC: (r^M

peEB or BC: (rj,,^).

(3) P2N(Tbl) is reflectionally symmetric about its N-th symbol, and P{Ybl)
is periodic with period 2N.

Proof. This follows from Proposition 12, a careful analysis of the sharp turn-
ing of solution curves near the singular boundary, estimates on ά from (*),
and Proposition 13. (For detailed arguments of this type, we refer to [Tl].)
For (3), just observe that if 7&1(so) is the first boundary intersection point,
then the solution curve 7&1(s), s G [o, s0], can be extended to [0, 2s0] by
retracing backwards, and then extended to all s by periodicity. D

Remark. In contrast to P N ( Γ ) , the whole pattern P(Γ) will not, in general,

be constant on any open interval.

We now turn to the most delicate analysis that is needed: the initial part
of P(Td) as d -> | ; this is determined by the intersection pattern of 7d(s)
with the solution θ = j .

Let θ — θ — | , straightforward computation from (*) gives:

(**) T 7 + [c o t r ~ c o s ~ 2 <*(α tan r — (26 + 1) cot r)] —
drλ dr

+ 26 sin"2 r cos"2 a tan 2Θ = 0.

By continuous dependance of solution curves on initial conditions it follows

that on compact intervals contained in [0, | ) , ad —> —π. θd —>• 0 as d —>• *|.

We can then approximate by the linearization of (**) along the solution

0ΞΞO:

(**0 ? ? + [2(6 + 1) cot r - α tan r] ̂  + 46^sin"2 r - 0.
αr 2 αr
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The substitution θ = υ cos~~̂  r sin~^6+1^ r gives

(***)

where q(r) = f (26 + 3) + 56 + 1 + (36 - 62) cot2 r - ^ ^ tan 2 r. As r -» 0+,
the dominating term is 6(3 — 6) cot2 r, and we have:

For CP(n) : b = 1; 2cot 2 r ->r_*0+ oo
For HP(n) : 6 = 3 : 0
For Cα(2) : 6 = 7 : -28 cot2 r -> r _ > 0 + -oo.

Hence the oscillatory behaviour near r = 0 of ηd as d -> \ changes
drastically with the scalar field: the term forces rapid oscillations in the
CP(n)-case, it counteracts oscillations in the Cα(2)-case, H P ( n ) must be
intvestigated separately.

We estimate the number of zeroes of a non-zero solution of (***) on the
interval [e,T] by applying a delicate criterion based on Sturm's comparison
method:

Proposition 15. Let I = [e, Γ], e > 0, q(r) >0 for r E I, and let N be the
number of zeroes of a non-zero solution of the equation (***) on I. Then we

have: ' \dq(r)\
q(r)

Proof. This is given in [Ha], T h 5-2, p. 347. D

P r o p o s i t i o n 16. Let M = CP(ra) ; i.e. a = 2n - 3, 6 = 1 , and δ £ (0, f ) .

Then any solution of (***) has infinitely many zeroes on (0,<J).

PTΌO/. For δ sufficiently small we have q(r) > p(r) = l , 9 c o t 2 r and it suf-
fices to consider v" + p(r)υ — 0. Here Je λ/l.9cot2 roίr = \/Γ^(ln(siriί) —
ln(sine)), and | /€ |dlnp(r)| = — |ln(cote) + | ln(cotJ) , hence the differ-
ence approaches infinity as e —> 0-f, and the result follows from Proposition
15. D

Theorem 1. There exists infinitely many congruence classes of imbedded,
minimal hyperspheres in CP(n), n > 2.

Proof. Let Pm(Γd) be the segment of the (r,#)-pattern of Γd up to and
including the first r m . From Proposition 16 it follows that the number of
intersections of the curve 7d(s), s G [0, f ] with θ=j approaches infinity as
d —> j . Hence Pm(Γd) becomes a 0m, ^-sequence of length N terminated by
an r m , where N ~> oo as d —> | . By Proposition 14 it follows that as d, —>> j ,
it passes through an infinite number of values d' such that ηd> intersects the
singular boundary before the first r m . By Proposition 10 this intersection
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occurs in the interior of one of the edges OA or OB; by Proposition 11
ηd> determines a minimal hypersphere in M. Since ηd> does not have self-
intersections before the first r m this hypersphere is imbedded. D

For HP(n) and Ca(2) it is not possible to obtain the desired solutions from
the local oscillation properties around 0. It is needed to obtain long-time
control of the solution curves emanating from the boundary AB to find the
intersections with OA and OB. The most delicate analytical result required
for this is given by the following:

Proposition 17. Let M = HP(n) or Ca{2). Then there exists a positive
δ such that for d G {j, \ + δ) the solution curve 7d(s) intersects θ = j twice
before rλ

m{ηd).

Proof. We prove this for the HP(n) case, and refer the Cα(2)-case to the
Appendix.

Prom Proposition 15 and standard approximation arguments it follows
that it is sufficient to show that:
(A) /e

T y/q(r)dr > 2π + \ /£

T ̂ ^ for some positive e. To minimize the
computations, we reduce to a previously treated case as follows: The results
in [HS], imply that Q{r) = (2<W)™-4d _ (m-2)(m-4d) t a n 2 r s a t i s f i e s ( A ) ? ( f o r

some Γ G (0, f)), when d = 3, m > 12. It is clear that if (A) holds for
some Q(r), it also holds for Q(r) = CλQ(r) + C2, where CΊ > 1, C2 > 0.
Now choose CΊ = (4n - 5)(4n - 7)(m - 2)~1(m - 12)"1, C2 = 18n -
f - |(7ra - 12)(4n - 5)(4n - 7)(m - 2)~1(m - 12)"1 and rf = 3. Then
CiQ(r) + C2 = 18n - ^ - \(4n - 5)(4n - 7) tan2 r = g(r). It remains only
to observe that choosing m = 4n makes CΊ > 1, C2 > 0. D

Corollary. There exists a d G ί j , Arccos ^fb{a + 2&+1)"1) such that

P(Γd) is periodic with period (θm,rm,θM, (0 m ,r M ), θM,rm,θm, (θM,rM)).

Proof. The solution curve (iv) of Propostion 11 has periodic (r, #)-pattern
with period ((#m,rm), {ΘM^M))- Hence it follows from Propositions 13 that
for d close to Arccos y/b(a + 26+ I ) " 1 the second intersection point of ηd

with θ = I occurs after r^(7d), with α G (0, | ) . By Proposition 16 and
continuous dependence on initial conditions, it follows that for d G (f, f + £)
with sufficiently small δ, the second intersection point of ηd with θ — j has
α G ( | ,π). Hence, by continuity, α = | at the second intersection point of

7d with θ ΞΞ I for some d G (f + 5, Arccos yjb{a + 2b+ I ) " 1 ) . This is then
the first rm, and the solution is continued through reflection around θ = | ,
to yield the above periodic (r, #)-pattern. D
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Remark. Computer pictures of solutions close to this one are shown in
the appendix.

Proposition 18. There are infinitely many d G (f, f) such that <yd inter-
sects the boundary arc OD.

Proof. Let dx = Arccos >/&(α + 26 + I ) " 1 . Since P(Γdl) is periodic with
period ( ( r ^ , ^ ) , (^,0]^)), it follows from Proposition 13 that for d suffi-
ciently close to d1? the number of 0m's before r™ in P(Td) is either 27V — 1
or 2N. Let oί be as in the preceding corollary, with the period of -P(Γ )̂ equal
to (0m, rm, 0M, (θm,rM),θM, rm, 0m, (0M, rM))- Again, by Proposition 13, the
number of 0m's before r ^ in P(Td) is now 3iV — 1 when d is sufficiently close
to d. It follows form Proposition 14 that as d passes through the interval
ίj,Arccosyjb(a + 26+ I ) " 1 ) , 7d must have intersected OD at last N — 1
times. D

Theorem 2. There exists infinitely many congruence classes of immersed
minimal hyperspheres in HP(n), n > 1.

Theorem 3. There exists infinitely many congruence classes of immersed,
minimal hyperspheres in the Cayley protective plane, Ca(2).

Proof. These theorems are now corollaries of Proposition 18 and Proposition
11. D

Appendix.

Estimates for the Cayley projective plane. In this case we have:

(***) % + 9(r)υ = 0,υ ( | ) = 0,

with q(r) = 95.5 - 28 cot2 r - 8, 75 tan2 r.

This time the now negative term 6(3 — 6) cot2 r limits the region where (***)
is of oscillating type, i.e. q(r) > 0, to [ri,r2], where rx « 0,50216, r2 «
1,27296. Here J^2 y/q(r)dr < 2π, so there is no hope of applying Proposition
15 to prove Proposition 17, as was done for HP(n). In that case an argument
was needed that applied for all n. Now, however, we need only the case
n = 2, i.e. the above equation (***); which opens for brute force estimates.
Computer pictures of solution curves close to those of Proposition 17 and
its corollary are given at the end. Let w — — ̂  — ̂  we then have:

dr
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Recalling that υ = #cos^ rsin 8r, it is clear that crossings with θ = 0 cor-
responds to zeroes of υ, i.e. to ^-crossings with ±00 (notice that we are in
the region where a Φ ±f, i.e. ~ φ 0). To obtain suitable bounds for w, we
observe the following:

Lemma. Let w(r) and w(r) be solutions of ^ = q + w2 and — — C +
w2 respectively, defined on the interval [r',r"], and assume that q > C on
[r',r% w{r") > w(r"). Then w > w on [r',r"}.

Proof. Notice that -^(w — w) = q — C + w2 — w2 is positive whenever
w = w\ this contradicts the possibility of the two solutions crossing on

[r'yγ D

The solution of ^ = —A2 + w2 with initial value w(rr) = B is given by:

(Al): A(e2^ r '- r)(B + A) + B - A)(e 2^ r '- r)(£ + A) - (B - A))'1.

The special case limr_ r̂/ w(r) — 00 by:

(A2): A[e2A^'-^ + l){e2A^'-^ - I ) " 1 .

The solution of —• — A2 + w2 with initial value w(r') — B is given by:

(A3): A t a n ( ^ ( r - V ) + Arctanf).

The special case limΓ_>r/ W(r) = 00 by:

(A4): Atan(A(r-r ') + f).
We note that q(r) reaches its maximum at r3 « 0, 92878; is increasing in

(0,r3) and decreasing in (r3, ~). We will obtain relevant bounds as follows:
(i) For [r',rn] C (r2, | ) : The comparison equation is ^ = -A2 + w2 with

^2 > _ g ( r " ) .

(ii) For [r',r;/] C (r 3,r 2). The comparison equation is ~: — A2 +w2, with
A2<mΐre[r,yι]q(r),i.e. A2<q{r").

(iii) For [r;,r/;] C (^i,r3) the comparison equation is as in (ii) with A2 <

ςr(r').

(iv) For [r',r"] C (0, π ) : The comparison equation is as in (i) with A2 >

-qr(r').

We have limr_>|_ tϋ(r) = limr_>^_ jMnt>(r) = 00, and we wish to bound
w(r) from above as r decreases from | . We give the steps in detail, the
numerical values can now readily be checked on a calculator.

a) We choose to start with the interval [1,55; f — 0,01], and apply (i)
with A2 — 87398,7 > ρ ( | — 0,01); since we have no upper estimate for
w(f-0,01), we choose the case w{\-0,01) = 00. By (A2) we get: ΰJ(l,55) =

2 Λ ( f l 5 6 ) 2 A ( f l 5 6 ) l
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b) We divide (1.30, 1.55) into intervals (r',r") of length at most 0.02, and
apply (i), case (Al), where the initial value B is set equal to the previously
obtained upper bound for w(r"). At each step, care is taken in rounding off
to insure the validity of the upper bound. This gives iu(1.30) < 10,77; a
final application of this procedure to [1, 273,1.30] gives u>(l, 273) < 8, 78.

c) We divide (0,95; 1,272) into intervals of length at most 0,01 and ap-
ply (ii), (A3). This gives the estimate w(0.95) < -28,5. Let [r',rn] =
[0,915; 0,95], then Ίnfre[r,yf]q{r) = ρ(0.95) > 64,07 = A2. We can then
again apply (ii), (A3), and obtain: § < - | § ^ , Arctanf < -1,2969, A
(0, 915 — 0, 95) < —0,28; hence the argument of tan in (A3) has already
passed — | ; hence w(r), and, by comparison, w(r), has passed — oo before r
reaches 0.915.

Corollary. The first zero of v(r), as r decreases from | , occurs for r >
0.915.

d) On the interval [0,91; 0,915] we apply (iii), (A4), to obtain w(0,91) <

ϊΰ(0,91) <200.

e) Dividing (0,52; 0,91) into intervals of length 0,01, and applying (iii),

case (A3), we obtain the bound w(0,52) < —10,8. Continuing with 3 inter-

vals of length 0,005, we obtain: w(0,505) < -12,8.

g) It follows that w(0,50) < —12,8; we are now in the region q < 0.
Applying (iv), (Al) to the intervals [0,48;0,50] and [0,45;0,48], we obtain
w(0,45) < -32,4. Now consider the denominator D(r) = ( e 2 Λ ( 0 ' 4 5 " r ) ( β +
A) - (B - A)) of (Al) on [0,40; 0,45], with A2 = 62,71> -#(0,4), B =
-32,4. Then £>(0,45) = 2A > 0. £>(0,40) « -13,7 < 0, hence D(r) = 0 for
some r G (0,40; 0,45), this implies w(r), and hence w(r) reaches —oo in this
interval.

Corollary. The solution υ(r) o/(***) has at least two zeroes on the interval
0,40 < r < | . This completes the proof of Proposition 17 for the Ca(2)-case.

The computer pictures of solutions shown on the next pages were obtained

in collaboration with Dr. Gil Bor.
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Solution of (*) for a = 7, 6 = 3,: HP'(3).
The two solutions shown are for d — ~ = 0.06 and 0.07, respectively.

^ ^

•

— ŝ

0 -«- l.ΠO -0.715311 -y- 0.1IS3SI
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Solution of (*) for a = 7, b = 7,: Cα(2).

The two solutions shown are for d — J = 0.6, 0.4; 0.2; 0.1; and 0.05.
Touching with the boundary occurs for a value between 0.2 and 0.1.

Solution of (*) for a = 7, 6 = 7,: Cα(2).
The two solutions shown are for d — | = 0.04 and 0.05, respectively.

T
-—' Ί===

—- J
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