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ON THE MAPPING INTERSECTION PROBLEM

A.N. DRANISHNIKOV

It is proved that if the inequality dimX x Y < n holds for
compact a X and Y with dimX or dimY φ n — 2 then for every
pair of maps / : X -» Rn and g : Y -> Rn and for any e > 0
there are e-close maps /' : X -> Rn and g' : Y -)> Rn with
f'(X)Γ\g'(Y) = 0. Thus an affirmative answer to the Mapping
Intersection Problem is given except in the codimension two
case. The solution is based on previous results in this subject
and on a generalization of the Eilenberg Theorem.

1. Introduction.

We say two compacta X and Y have the unstable intersection property in Euclidean
space Rn (and denote it by X\\Y) if every pair of maps / : X -> Rn and g : Y -> Rn

can be approximated arbitrarily closely by maps /' : X -» En and g' : Y —> Rn with
disjoint images (Im/'Πlmg') = 0.

If X and Y are polyhedra then X\\Y in Rn if and only if dimX + dimY < n. This
is the so-called general position property. If one of X, Y is a polyhedron, again there
is an equivalence X\^Y <=^ dimX + dimF < n. An interest in the property X\\Y
for arbitrary compacta arose after McCullough's and Rubin's paper [1], where an
example of an n-dimensional compactum X is constructed with X\\X in R2n. Their
compactum X had the property dimX x X < 2n. Then the natural conjecture
appeared: X\\Y in Rn if and only if dimX xY < n.

The conjecture was immediately proved in the complementary case: dimX +
diniF = n [2],[3],[4],[5], [6]. It was known from [7] that the inequality dimXxY < n
gives only one restriction dimX + dimY < 2n — 4 on the sum of the dimensions,
which is far beyond the complementary case.

The proof in [6] in the complementary case is based on Alexander duality. That
proof was extended later to the metastable case by means of Spanier-Whitehead
duality in [8],[9]. A different approach based on Weber's theorem was used in [10].

The author considered the following parallel problem: Suppose that the com-
pactum X is a subset of Rn. Under what conditions can every map / : Y —> Rn

be approximated by a map /' : Y ->- Rn — X avoiding X ? Such a subset
X C Rn is called Y-negligible. In [11],[12] this problem was solved for tame X
with codimX φ 2:
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The Negligibility Criterion. Suppose X is a tame compactum in W1 of di-
mension dimX φ n — 2. Then X is Y-negligible if and only if ά\τaX xY<n.

inSoon after, the conjecture was proved in the direction "
n" [13].

A significant move toward the conjecture was made in [14]. There the conjecture
was proved for the case codimJf codimF > n (except the codim = 2 case). Moreover
the remaining part of the conjecture "dimX x Y < n => X\\Y in Rn" which is called
the Mapping Intersection Problem, was reduced to the Embedding Problem for
cohomological dimension: given a compactum X of dimension < n — 2, does there
exist a compactum X' C W1 such that c-dim^X = c-άrnxoX1 for all abelian groups
GΊ We say in that case that X and X' have the same cohomological dimension
type. Even more, it was proved in [14] that the Mapping Intersection Problem is
equivalent to the Embedding Problem.

According to the Splitting Theorem ([14]), every n-dimensional compactum has
the cohomological dimension type of a compact countable wedge of fundamental
compacta VSi ^(^?n«) f°r nι < n The cohomological dimensions of the funda-
mental compacta are defined by the Kuz'minov table [15], [7], [14]
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Here p, q are primes, q runs over all primes φ p and Q is the rationale, Z(p) is the
localization of the integers at p, Zp = Z/pZ; Zpoo = Q/Z(p).

In this paper we prove that all n-dimensional fundamental compacta F(G, n) can
be realized in Mn+2. Therefore the Embedding Problem for cohomological dimension
has an affirmative answer by virtue of the Splitting Theorem. The proof is based on
a generalization of the following Eileriberg theorem [22]: Suppose that f : A —> Sk

is a map of a closed subset A C X of a compactum X of dimension dimX < n + 1
to the k-dimensional sphere. Then there exists a compactum Y C X of dimension
dimy < n — k such that f has an extension over X — Y.

We recall that the inequality dimX < m is equivalent to the following property
XrSm : for any map f : A —> Sm of a closed subset AcX, there is an extension

f : X -> Sm. The other notation for this is Sm E AE(X) i.e. the sphere S m is an
absolute extensor for the class {X} consisting of one space X.

So, there is the following way to generalize Eilenberg's theorem: replace the
condition dimX < n + 1 ^=> Xτ{Sk * Sn-k) by Xτ{Sk * L) and ά\mY < n - k by
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YτL. Moreover, we may consider instead of the A -sphere Sk an arbitrary complex
K. The corresponding generalization for countable CW-complexes K and L is
proved in §2.

As a consequence the Generalized Eilenberg theorem yields the solution for count-
able complexes K and L of the problem from [16]: If a compact space X has the
property Xτ(K * L) then X is the union X = Z U (X — Z), where ZrK and
(X - Z)τL.

Thus, the Mapping Intersection Problem is completely solved except in the codi-
mension two case. The problem here is to prove The Negligibility Criterion for
compacta of codimension two.

2. The Generalized Eilenberg theorem.

By K * L we denote the join product of spaces K and L : K * L ~ K x L x

[—1, l]/(α;,y, —1) ~ (#,?/,—1); (#,?/, 1) ~ (α:',y, 1). There are natura l imbeddings

K C K*L and LcK*L. Denote by πκ : K*L-L -» K and πL : K*L-K -* L
the natural projections.

It's known that the quotient topology on K * L is not the appropriate one for
the general type of CW-complexes, but for locally compact complexes it's good.
Since for the purpose of this paper it's sufficient to consider only locally compact
CW-complexes, we will not discuss the topology on the join K * L as well as on the
other constructions like the product K x L and the smash product K A L.

Proposition 2.1. Let a space X = A U B be the union of closed subsets and let
f : A -> K and g : B -> L be maps to absolute neighborhood extensors K and L.
Then there exists a map ιp : X -> K * L with the properties πjc ° Ψ \A= f and
πL°Ψ \B=9-

Proof. First, we extend / and g over some open neighbourhoods to / ' : [ / — > K and

g' : V -> L, A C U,B C V. Let us consider a function φ : X —> [—1,1] such t h a t

φ-χ(-l) = A - V and ^ ( l ) =B-U.We define

ifxeA-V;

XxeB-U.

Ώ

Proposition 2.2. Let X be a compact metric space and let K be a countable
CW-complex. Then there exists a countable family {f{ : B{ —> K} of maps of closed
subsets of X such that for any closed B C X and any map f : B —> K there is a
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number i for which B C Bi and the restriction fi\β is homotopic to f.

Proof. Denote by Cl(B) the closure of a subset B C X. Consider a countable
basis {Uj}j€N for the topology of X and for every finite subset a C N define
Ba = \JjeaCl(Uj). Then for every a we consider the set [Ba,K] of homotopy
classes. Since Ba is compact and the complex K is countable, the set [Ba, if] is
countable. For every a choose a countable family {/? : Ba -> if} of representatives
and then renumerate the family {/?} to obtain {fi : Bi -» K}ieN.

Let B and / : B —» K be arbitrary. There is an extension / : U —» K over an open
neighbourhood U. Since {Uj}jeN is a basis and B is compact, there is an α such
that B C 2?α C U. The restriction / | # β is homotopic to some fim.Bi = Ba —> if.
Hence / i | β is homotopic to /. D

Note that every countable CW-complex is homotopy equivalent to a locally com-
pact complex. Since the extension property XrK depends only on the homotopy
type of JFΓ, we will assume that all our countable complexes are also locally compact.

Theorem 1. Suppose that K and L are countable GW-complexes and X is a
compact metric space with the property XTK * L. Let g : A —> K be a continuous
map of a closed subset A C X. Then there exists a compact set Y C X having the
property YτL and the map g is extendable over X — Y.

Proof Let {/< : Bi —y L} be a family for X as in Proposition 2.2. By induction we
construct a sequence gι : A< —> K such that for all i A+ C Intyl i + 1, <fc+iU< = 9u
A\ = -A, #i = g and /< is extendable over X — Ai+Ϊ. Then the set Ui^ΐ 1S open
and we can define Y = X — Ui^ϊ The union U<fc gives an extension of g over
X — Y = [JiAi. Clearly YτL. Indeed, consider an arbitrary map / : B —> L,
(5 C 7); then there exists i such that B C B{ and fi\B is homotopic to /. Since
fi is extendable over y, the Homotopy Extension Theorem implies that / is also
extendable over Y.

We define Aτ = A and gx = g.
Assume that the sequences Aλ ClntA2 C ... C An and {<& : Ai —>- if} are

constructed such that #i+iUi = 9% and /$ is extendable over X — Ai+ι for i < n.
By means of #n and /n we define a map ψn : An U l?n -> if * L as in 2.1. Since

Xrif * L, there is an extension ψn : X -> if * L. Let ί/n be an open neighbourhood
oίψ-ι(L) in ψ-λ{K*L-K) such that Cϊ(£/n) C X - Λ , - We define 4n+i = X - # n
and gn+i = π/c o t/in|>ιn+1. It is clear that fn is extendable over ψ~x (if * L — if) and,
hence, over Un = X — An+ι. By 2.1 we have <7n+iUn = 5n Π

A complex L has the completion property if every σ-compact metric space Z
with the property ZτL has a completion Z with the same property. It is known
that the Eilenberg-MacLane space if(Zp,n) has the completion property for finite
dimensional Z [15], [17]. The proof of that fact is valid for arbitrary L with finite
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skeletons L^ for all k. Other results on the completion property are in [16], and
the most recent result on that subject is due to Olszewski and it states that every
countable CW-complex has the completion property [25].

Corollary 2. Suppose that K and L are countable complexes. If for some com-
pactum X the property XτK * L holds then there is a G$-set Z C X such that ZTL
and (X - Z)τK.

Proof. According to 2.2 there is a countable family {gι : Ai -> K} such that any
map g : A -> K of a closed subset A of X is homotopic to some restriction g^A-
By Theorem 1 there exists a sequence of compacta Yi C X such that YiτL and gι
is extendable over X — Yi. By the countable union theorem (the next proposition)
we have the property (\JYi)τL. By the completion property of L there is a G$-
set Z C X, Z D \JYi and ZTL. NOW consider the complement X — Z. By the
construction every compact subset Y C X—Z has the property YτK. The countable
union theorem implies (X — Z)τK. D

Proposition 2.3. (Countable union theorem). Suppose that K is a CW-complex.
Let X be a metrizable space and X = \J Xι where each Xι is closed in X and has
the property X^K. Then XτK.

Proof. Let / : A —> K be an arbitrary map. By induction we construct a sequence
fi .Ai-ϊK such that A{ is closed and Ai C IntAi+1, /i+iUi = f% and X = \J A{.
That would be sufficient to get an extension / : X -> K.

Let Ai = A and /i = /. Assume that fn : An —» K is constructed. Since XnrK
there is an extension fn : An U Xn —> K. There is an extension / n + i of fn over a
closed neighbourhood An+ι containing AnU Xn D

3. Realization of Fundamental compacta in Euclidean space.

The cohomological dimension of a topological space X is the highest number n
such that for some closed subset A C X, the n-dimensional cohomology group
Hn{X,A\G) is non-trivial. We denote it by c-dimo-X", where G is a coefficient
group. It is known [15], [7] that the inequality c-aimGX < n is equivalent to the
property XτK(G, n) where K(G, n) is the Eilenberg-MacLane complex (here n > 1
and X is at least paracompact).

By M(G,n) we denote the Moore space, i.e., M(G,n) is a CW-complex with
trivial homology groups in dimensions i φ n and with Hn(M(G,n)) = G.

Lemma 3.1. Suppose that L * M(G, 1) is (n + l)-connected for some countable
complex L and for some abelian group G. Then there exist an n-dimensional com-
pactum Y C Kn"1"2 with non-trivial Steenrod homology group Hn(Y;G) φθ and with
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YτL.

Proof. Let A = S1 C Sn+2 be a circle in the n + 2-dimensional sphere and let
g : A -+ M(G, 1) induce a non-trivial element of TΓI (M(G, 1)). By Theorem 2
there exist a compactum Y C Sn+2 with F r L and an extension g : 5 n + 2 — Y ->
M(G, 1). Since the natural inclusion i : M(G, 1) —> if(G, 1) induces an isomorphism
of the fundamental groups, the composition iog is a homotopically non-trivial map.
Therefore i o g is a homotopically non-trivial map. The map iog represents some
non-trivial element a G Hι(Sn+2 -Y G). By Sitnikov duality [23] there is a dual
non-trivial element β G Hn(Y;G). This implies that dimY > n. We always may
assume that dimY = n. D

Lemma 3.2. Suppose that two countable abelian groups have the properties H ®
G = 0 and Tor(H^G) = 0 (Tor means the torsion product [24]). Then for every
n there exists an n-dimensional compactum Y C Mn+2 with c-dim y Y < 1 and
Hn(Y;G)^0.

Proof. For any pair of locally compact based spaces (X, x0) and (Y,yo) there is a
closed contractible set C lying in X * Y such that the quotient space X * Y/C is
homeomorphic to the reduced suspension over the smash product X AY. Indeed,
define C as the union of the cones above X and Y naturally embedded in X*Y. Thus
for locally compact CW-complexes X and Y we have the equality X*Y = Σ(XΛ7)
of homotopy types. Since the Moore spaces M(G, 1) and M(£Γ, 1) can be represented
by locally compact CW-complexes, we may compute homology groups Hi(M(H, 1)*
M(G, 1)) via homology groups of the smash product. The homology group of the
smash product X/\Y is equal to the homology group of the pair (X x Y, X V Y). Now
the homology exact sequence of the pair (M(H, 1) x M(G, 1), M(fί, 1) V M(G, 1))
and the Kunneth formula imply that Hi(M(H,l) * Λf(G, 1)) = 0 for all i > 0.
Since TΓI(M(iϊ, 1) * M(G, 1)) = 0, the space M(H, 1) * M(G, 1) is n-connected for
all n by the Hurewicz theorem. Lemma 3.1 yields a Y C Sn+2 with YτM(H, 1).
By Theorem 6 of [18] the property YTM implies the property YτSP°°M where
SP°° is the infinite symmetric power. According to the Dold-Thom theorem [19]
SP°°M(H,1) =K(H,1).

So, we have the property YrK(H, 1) and hence c-dim^Y < 1. D

Theorem 3. For every n there are n-dimensional fundamental compacta F(G,n)
lying in Mn+2.

Proof. We have four series of fundamental compacta. So, let us consider four cases.
1) F(Q,n). We define H = 0 α / / pZp and G = Q. Then the properties G®H =

Γor(G, H) = 0 hold. Apply Lemma 3.2 to obtain an n-dimensional compactum Y C
E n + 2 with c-dimH Y < 1. Then it follows that c-dimZp Y < 1 for all primes p. The
Bokstein inequality c-dimZp > c-dimz ^ [15], [7] implies that c-dimz «, Y < 1. The
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other Bokstein inequality c-dimZ(p) Y <max{c-diniQ Y,c-dimZpOO Y + 1} implies o
dimZ ( p ) Y < c-diπiQ Y provided c-diπiQ Y > 2. According to Lemma 3.2 Hn(Y, Q) φ
0 and hence c-diniQ Y > n > 2.

Since Y is n-dimensional, c-dimQ Y <n and hence c-diπiQ Y — n. The Bokstein
inequality c-diniQ <c-dimZ(q) completes the proof in the first case.

2) F(Z(P), n). Define H — ®q^p Zq and G — Z(p). Then we obtain n-dimensional
Y £- ĵ n+2 ^ j c h i s one-dimensional with respect to Z9oo and Zq. By virtue of the
Bokstein inequality c-dimZpOO Y <max{c-diniQ Y,c-dimZ(p) Y — 1} it is sufficient to
show that c-dimz ^ Y = n.

Lemma 3.1 implies that Hn{Y;G) φ 0. Therefore Hom(Hn(Y),G) φ 0 [23].

Hence the group Hn(Y) can not be divisible by p. This means that Hn(Y)®Zp00 ψ 0

and hence Hn(Y\ Zp°o) φ 0.

3) F(Zp,n). Define H = Z [̂ ] and G = Z p . By the Lemma 3.2 we obtain an

n-dimensional compactum Y C Mn + 2 which is one-dimensional with respect to the

groups Q,Z ( 9 ),Z g,Z goo (q φ p) and Hn(Y,Zp) ψ 0. Since Rom{Hn(Y),Zp) is non-

trivial, the product Hn(Y)®Zp is non-trivial and hence c-dimZp Y — n. The equality

c-dimZ(p) Y — n follows by the Bokstein theorem [15] which claims that for a finite

dimensional compact space Y there is a prime p such that dimy=c-dim Z ( p ) Y, and

the equality c-dimZp00 Y = n — 1 follows from the Bokstein inequalities [15].

4) F(ZpOO, n) . Consider L = Af (z [j] , l) V M(ZP, n - 1).

First we show that L * M(Zpoo, 1) is an n + 1-connected space. We have Hι(L *

M(Zpco,l)) = J f f i . 1 (LΛM(Z p co,l)) = u ^ ( M ( Z [i] , l ) ΛM(Z P ~,1)) θίΓ<-i(AΓ

(Z p > n - 1) Λ M(Zpoo, 1)). Since Z | j] 0 ZpOO = 0 and Tor (z [i] ,Zpoo) = 0, it

follows that M (z [̂ ] , l ) Λ M(ZpOO, 1) is contractible. Notice that Hi_λ{M(Zp, n -

1) Λ M(Zpoo,l)) = 0 for i — 1 < n. Then the Hurewicz theorem implies that

L * M(Zpoo, 1) is n + 1-connected.

Lemma 3.1 implies that there exist an n-dimensional compactum Y C R n + 2 with

the property Yr (M (Z [̂ ] , l) V M(Zp, n - 1)). Hence we have YrM (z [̂ ] , l)
and YτM(Zp,n - 1). Therefore c-dimz[i] Y < 1 and c-dimZp Y < n - 1. These

inequalities completely define the space F(Zpoo,n). D

4. Proof of the main theorem.

Theorem 4. Suppose that X and Y are compacta and dimX, dim Y φ n — 2.

Then the following are equivalent

1) dimX x Y < n,

2) X\\Y in IP1.

Proof. 2)=> 1) is contained in [13].
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1)=> 2). A non-trivial case is dimX,dim F < n — 2.
Since every compactum X has the cohomological dimension type of a countable

union of fundamental compacta (see [15] or [14]), Theorem 3 implies that there is
a compactum X' C IRn with c-dimGX = c-dimG-X̂ ' for all abelian groups G.

According to [14] (Lemma 1.2) every map h : X' -> Rn can be e-approximated
for given e > 0 by a map h! with C'dλτΆGh! (X1) = D-dim^X' for all G.

Since the dimension of the product of compacta is determined by the cohomo-
logical dimensions of the factors, we have dimh'(X') xY < n.

By the Negligibility Criterion (see introduction) and the Stanko tameness theo-
rem [21] h'(X') is Y-negligible.

Since h' is an arbitrary approximation for h and h itself is an arbitrary map, we
have the property JΓ'H^.

Then by [20], [14] any map g : Y -» Mn for any e > 0 has an e-approximation g'
such that g'{Y) is X'-negligible.

By the Negligibility Criterion we have the inequality dimg'(Y) x X1 < n and
hence άimg'{Y) x X < n.

By the Negligibility Criterion and the Stanko tameness theorem [21] g'(Y) is
X-negligible.

Now if we have maps / : X —> W1 and g : Y —> W1 and given e > 0 we choose g'
e-close to g. Then by the X-negligibility of g'{Y) there exists / ' : X -> W1 e-close

So, X\\Y. D

Corollary 5. Let X be a compact metric space of the dimension < n — 2. Then
every map of X to n-dimensional Euclidean space can be approximated arbitrarily
closely by maps with the images of the same cohomological dimension type.

Proof In [14] it was shown that the positive solution of the Mapping Intersection
Problem implies the above statement. D

Corollary 6. We may assume that in Theorem 4 the dimension of only one
compactum (say X) is not equal to n — 2.

Proof. 2) =Φ 1) is considered in [13]. 1) => 2): Let / : X ->• En and g : Y -> Rn

be arbitrary maps and e > 0 be given. By Corollary 5 we can choose an e/2-
approximation /' : X —> Rn of / with f'(X) having the same cohomological dimen-
sion type as X, By the Stanko tameness theorem [21] there is a tame reimbedding
of f'{X) in En which is e/2-close to the identity. Since dim/'(X) x Y < n, by the
Negligibility Criterion there is an e-approximation g' of g avoiding the reimbedded
set /'(X). This means that the property X\\Y is checked. D

I am thankful to E. V. Schepin for pointing out me the last Corollary. Also I am
thankful to J. Dydak who informed me about [25] and gave me an elegant proof of
its main result.
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