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COHOMOLQGY COMPLEX PROJECTIVE SPACE WITH
DEGREE ONE CODIMENSION-TWO FIXED

SUBMANIFOLDS

KARL H. DOVERMANN AND ROBERT D. LITTLE

If M2n is a cohomology CPn and p is a prime, let Dp(M2n)
be the set of positive integers d such that d E Dp(M2n) if there
exists a diffeomorphism of M2n of order p fixing an orient able,
codimension-2 submanifold of degree d. If p = 2 or n is odd,
then 1 <Ξ Dp(M2n) implies that Dp{M2n) = {1}. The case p odd
and n even is also investigated. If M 4 m is a homotopy CP2m

and m ^ 0,4, or 7 (mod 8), then 1 E D3(M4m) implies that
D3(M4m) = {1}.

1. Introduction.

A cohomology complex projective n-space is a smooth, closed, orientable
2n-manifold M2n such that there is a class x E H2(M; Z) with the property
that H*(M;Z) = Z[x]/(xn+1). If i : K2n~2 C M2n is the inclusion map of
a closed, connected, orientable submanifold and d is an integer, we will say
that the degree of K2n~2 is d if iJ[K\ is the Poincare dual of dx. We will
always assume that the orientation of K2n~~2 is chosen in such a way that
d is nonnegative. Let p be a prime number and let Gp denote the cyclic
group of order p. Let Dp(M2n) be the set of positive integers d defined by
the condition that d E Dp(M2n) if M2n admits a smooth Gp action such
that the fixed point set of the action contains a codimension-2 submanifold
of degree d. If d E Dp(M2n), then d φ 0 (mod p), (see [2, pp. 378-383]).
The following conjecture is motivated by the work of several authors ([3],
[4], [β], [8]).

Conjecture 1.0. If Dp(M2n) is nonempty, then Dp(M2n) = {1}.

This conjecture has been verified for small values of n ([3], Theorem A
(n = 3,p > 3,n = 4,p > 3), [4], Corollary 4.5 (n = 4,p = 2), [7], Theorem
1.7 (n = 4,p = 3)). We begin this paper with the observation that a weaker
version of the conjecture is true if p = 2 or n is odd.

Theorem 1.1. Let M2n be a cohomology complex projective n-space.
(1) Ifp = 2 and 1 E D2(M2n), then D2(M2n) = {1}.
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(2) If n is odd and p and q are primes, then 1 G Dp(M2n) implies that
either Dq(M2n) is empty or Dq(M2n) = {1}.

(3) // n is odd or p = 2, then Dp(M2n) is a finite subset of the odd
natural numbers.

It is easy to see that if CPn is complex projective n-space, then 1 G
Dp(CPn), and so, if p = 2 or n is odd, it follows from Theorem 1.1 that
Dp(CPn) = {1}. This result appears in the literature ([4], Theorem A), but
Theorem 1.1 does not. Less is known about Dp(M2n) if p is odd and n is
even. We will state a theorem similar to Theorem 1.1 about the case p odd
and n even after some preparation.

Suppose that n and p are arbitrary and that M2n admits a smooth Gp

action fixing a closed, connected submanifold F2n~2. If n > 2 and p > 2 or
n = 2 and p > 2, then the fixed point set of the action consists of F2n~2

and an isolated point and F2n~2 is a Z/pZ-cohomology C P " " 1 . If n = 2
and p = 2, then there are two possibilities, either the fixed point set is S2

and an isolated point or RP2 ([2, pp. 378-383]). If M2n admits a Gp action
fixing F2n~2 and an isolated point, then the action is said to be of Type II0.
An action of Gp on M2n fixing F2n~2 is of Type II0 if and only if F2n~2 is
orientable ([4], Lemma 4.1). This means that Dp(M2n) is the set of degrees
arising from actions of Type II0. The set Dp(M2n) is related to a larger set
of invariants which contains information about the tangent representation
at the isolated fixed point. We will define this set in the next paragraph.

Suppose that p is an odd prime, g is a generator of Gp and λ = exp(2πi/p).
If M2n admits a Gp action of Type II0 fixing F2n~2, then the normal bundle
of F2n~2 C M2n has a complex structure and the eigenvalue of the action
of a generator g of Gp on the normal bundle of F2n~~2 C M2n is λ if g is
chosen properly. If pt is the isolated fixed point, then the tangent space
τpt(M2n) may be thought of as a complex representation of Gp, and with
the right choice of complex structure, the eigenvalues of the differential of
g are contained in the set {λ̂  : 1 < j < μ}, where μ = (p — l)/2. Let
rrij be the multiplicity of the eigenvalue Xj and let DEp(M2n) be the set of
( μ + 1 ) - tuples of integers such that (d;m 1 ,m 2 , . . . ,mμ) G DEp(M2n) if M2n

admits a Gp action fixing a submanifold of degree d and having multiplicities

mi, m 2 , . . . , mμ at the isolated fixed point. Note that mi +rri2-\ +τnμ = n.
If p is odd, then Dp(M2n) is the image of DEp(M2n) under projection on the
first factor. Trivially, DE3(M2n) = jD3(M2n). There is evidence to support
the following strengthened version of Conjecture 1.0.
Conjecture 1.2. If DEp(M2n) is nonempty, then
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Conjecture 1.2 is equivalent to the conjecture that if M2n admits a Gp

action of Type 7/0, then the degree of the fixed submanifold is 1 and the
representation of Gp at the isolated fixed point is n times the representation
of Gp at the normal bundle of the fixed submanifold. The conjecture is true
if n = 3 or 4 and p > 3 ([3], Theorem A(n = 3,p > 3;n = 4,p > 3), [7],
Theorem 1.7 (n = 4,p = 3)). Theorem 1.1 in the case n — 2m+ 1 and p odd
can be phrased in terms of DEp(M4πι+2).

Theorem 1.3. Suppose that (l;rai,m 2,... ,raμ) G DEp{M4m+2). If
(d; ra^, m 2 , . . . , m'μ) is an element of DEp(M4rn+2), then d=l.

We will prove a theorem similar to Theorem 1.3 about DEp(MAm),p odd.
Our result is not as strong as Theorem 1.3, but is strong enough to contain
new information about DEp(CP2m) and D 3 (CP 2 m ).

Theorem 1.4. Suppose that M 4 m is a homotopy CP2m. Assume that
(l;rai,ra 2,... ,mμ) and (d;rai,m2,... ,mμ) are both elements ofDEp{M4m).
IfmφO (mod 4), then d is odd. If mφ 0,4, or 7 (mod 8), then d = 1.

Corollary 1.5. Suppose that (d;2ra,0,... ,0) € DEp(CP2m). IfmφO
(mod 4), then d is odd. If m φ 0,4, or 7 (mod 8), then d = 1.

Note that Corollary 1.5 follows immediately from Theorem 1.4 because
(1; n, 0,..., 0) G DEp(CPn) for arbitrary n. If F 2

4 m " 2 = {[z0, *i, - , z2m+1] G
C P 2 m : *g + *? + + * ! m + 1 = 0}, then V^771"2 is a Q-cohomology CP2m~l

([11], p. 71) and so it can not be eliminated as a possible codimension-2
component of an action of Type II0 on CP2m on the basis of cohomological
criteria ([2], pp. 378-383). If d G D3(CPn), n arbitrary, then d2 = 1
(mod 9), and so F2

4 m~2 is not fixed by a G3 action on CP2m ([8], Corollaries
D and E). If V2

4m~2 is fixed by a Gp action on C P 2 m and p > 5, what can be
said about the multiplicities of the eigenvalues of the action at the isolated
fixed point? It follows from Corollary 1.5 that if m ψ 0 (mod 4), p > 5, and
γ4m-2 j g g χ e ( j ky a ^ action on C P 2 m , then the multiplicities at the isolated
fixed point are exotic, that is (mi,m 2,... ,mμ) ψ (2m,0,... ,0). It is not
known if CP 2 m admits a Gp action of Type II0 with exotic multiplicities at
the isolated fixed point.

Theorem 1.6. Suppose that M 4 m is a homotopy CP2m and that m φ 0,4,
or 7 (mod 8). //1 G D3{M4m), then D3{M4m) = {1}.

Corollary 1.7. If m φ 0,4, or 7 (mod 8), then D3(CP2m) = {1}.

Theorem 1.6 and Corollary 1.7 are immediate consequences of Theorem
1.4 and they add to our understanding of D3(M2n) in general and D3(CPn)
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in particular. Upper bounds for D 3(M 2 n), n arbitrary, in terms of prime
divisors are known ([7, Theorem 1.6]), but knowledge of these upper bounds
produced results weaker than Corollary 1.7. We were only able to produce
the result that D3(CP10) = {1} ([7], p. 177) using these methods and this
result is contained in Corollary 1.7.

This paper is organized as follows. Section 2 contains a proof of Theorem
1.1 based on a congruence for the degree of the fixed submanifold which is
valid if p = 2 or n is odd. Section 3 contains integrality results for the sig-
natures of self-intersections of codimension—2 submanifolds of arbitrary 2n-
manifolds. In Section 4, we apply the results of Section 3 to the study of Gp

actions of Type II0. We show that the Atiyah-Singer #—Signature Formula
for actions of Type II0 reduces to a formula involving (Gf;mi,ra2,... ,mβ),
the signatures of the self-intersections of a submanifold of degree 1, and al-
gebraic numbers oij = (Xj + l)(Xj — I)" 1 ,1 < j < μ. This formula is a special
case of the Berend-Katz version of the Atiyah-Singer g—Signature Formula
([1], Theorem 2.2). Section 5 contains some combinatorial material which
will be used in the proof of a theorem in Section 6 which contains Theorem
1.4 as a special case.

2. Degree one fixed submanifolds.

If M2n is a cohomology CPn, let if 2n~2 be an oriented submanifold dual
to x E i72(M;Z), a generator of the cohomology algebra, that is, K2n~~2 is
a submanifold of degree 1. Such a submanifold can always be found ([10],
Theorem II. 27). If n is a positive integer, let f(n) be n! divided by a
maximal power of 2. Let K^ be the 5-fold transverse self-intersection of Kx

in M2n. The numerical congruences in the next theorem relate integers in
the set Dp(M2n) to the signatures of Kx and K^ if p = 2 or n is odd.

Theorem 2.1. ([4, Theorem B]). If d € Dp(M
2n), then

(2.2) ±/(n) = f(n)d Signify (mod d(l - d2)), if n is odd,

(2.3)
±/(n) ΞΞ f(n)d2 Signi^2)(mod 2d2(l - d2)), if n is even and p = 2.

Corollary 2.4. (1) Suppose that 1 e Dp(M2n). If n is odd, then

Signify = ±1. If n is even andp = 2, then SignϋΓ^ = ±1.
(2) Suppose that Dp(M2n) is not empty. If n is odd and S\gnKx = ±1,

or ifn is even, p = 2, and Signup2* = ±1, then Dp(M2n) = {1}.

Proof We begin by verifying statement (1). Suppose that 1 E Dp(M2n). If
n is odd, then it follows immediately from (2.2) that Sign Kx — ±1. If n is
even and p = 2, then it follows immediately from (2.3) that Sign K^ — ±1.
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Our next step is the verification of statement (2). Suppose that d G
Dp(M2n). If n is odd and Sign Kx = ±1. then it follows from (2.2) that
/(n)(±l ± d) = 0 (mod d(l - d2)). If d φ 1, this implies that either d(l + d)
or d(l — d) divides /(n). Neither divisibility condition is possible since f(ή)
is odd and so d = 1. If n is even, p = 2, and Sign ί C ^ = ±1, then it follows
from (2.3) that /(ή)(±l ± d2) = 0 (mod 2cP(l - d2)). This congruence can
only hold if the signs of 1 and d2 are not the same because (2.3) implies that
d2 divides f(n) and so in particular d is odd. Therefore /(n)(l + d2) φ 0
(mod 2d2(l - d2)) because 1 + d2 =£ 0 (mod 8) and 1 - d2 = 0 (mod 8).
This means /(n)(l - d2) = 0 (mod 2d2(l - d2)). The assumption d φ \
leads to the contradiction that f(n) is even after dividing by 1 — d2 and so
d = l . D

Proof of Theorem 1.1. We begin by verifying statement (1). Suppose that
p = 2 and 1 G ̂ (Aί2 7 1)- If n is odd, then it follows from statement (1) in
Corollary 2.4 that Sign Kx — ±1 and so (2) in Corollary 2.4 implies that
D2(M2n) = {1}. If n is even, then statement (1) in Corollary 2.4 implies
that Sign K™ = ±1 and so D2{M2n) = {1} by (2) in Corollary 2.4.

The verification of statement (2) proceeds as follows. Suppose that n is
odd, p and q are primes such that 1 G Dp(M2n) and Dq(M2n) is not empty.
Statement (1) in Corollary 2.4 implies that Sign Kx = ±1 and so (2) in
Corollary 2.4 implies that Dq(M2n) = {1}.

Statement (3) follows from (2.2) and (2.3) together with the fact f(ή) is
odd. If n is odd and d G Dp{M2n), then (2.2) implies that d divides /(n). It
n is even, p = 2, and d G D 2 (M 2 n ), then it follows from (2.3) that d2 divides
f(n). D

Note that if we take p = q in statement (2) of Theorem 1.1 we obtain an
assertion contained in the abstract of this paper. If n is odd and p is any
prime, then 1 G Dp(M2n) implies that Dp(M2n) = {1}.

The rest of this paper is devoted to the study of Dp(M2n) in the case
n even and p odd. The hypothesis (d; mi,m 2 , . . . , raμ) G DEp(M2n) in this
case leads to an equation similar to (2.2) and (2.3). This equation involves an
integrality formula for the signatures of self-intersections of codimension-2
submanifolds.

3. An integrality theorem for signatures of self-intersections of
codimension-2 submanifolds.

If M2n is an arbitrary smooth, closed, oriented 2n-manifold and ί ί 2 n ~ 2 C
M2n is a closed, oriented submanifold, let K^ denote the s-fold self-intersec-
tion of K in M. The dimension of K^ is 2(n — s). If K is dual to a
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cohomology class y G iT2(M;Z), then we will use the notation Ky as in
Section 2. If z is a complex number and d is a nonnegative integer, let

(3.1) Td{z) = [(1 + z)d - (1 - z)d]/[(l + zY + (1 - z)%

lίri(d) is the coefficient of z2i+ι in the Maclaurin series for Td(z), then Ti(d)
is a polynomial in d with rational coefficients and if n — s is even, then
Sign K$ can be expanded in terms of Sign K&k+S\Q < k < (n - s)/2,
and certain combinations of the polynomials r^rf) ([4], formula (3.7)). The
polynomials Ti{d) factor in such a way that the signature expansion leads
to a numerical congruence involving Sign K^SJ and Sign ϋfW ([4], formula
(3.8)). In this paper, we will combine the expansion and the congruence in
a single integrality formula which will yield more detailed information (see
formula (3.12)). Let N be the set of nonnegative integers and let Q be the
set of rational numbers.

Definition 3.2. If k,s G N \ {0}, then the function Λ M : N —> Q is
defined by

(3.3) Rk,M=

The notation in (3.3) means that every possible choice of nonnegative inte-
gers ίi,<25. -.,iβ with iι + i2 + - " + is = k occurs in the summation. For
example, Rk,i(d) = rk(d).

Lemma 3.4. There exists a polynomial ckyS(d?) with integer coefficients
such that

(3.5) f(2k + s)RkiS(d) = ckyS(d2)ds(l - d2).

Proof. We know ([4], Lemma 3.14) that rk{d) = cf(l - <P)qk(d?) where
f(2k + l)qk(cP) is a polynomial with integer coefficients and so (3.5) holds if
s = 1 with ckΛ(d?) = f(2k + l)qk(d?). It follows from this fact, (3.3) and the
fact that Us

j=1f{2ij + 1) divides f(2k + s) if ix + i2 + + is = k that (3.5)
holds for s > 1 with ck}S(d?) equal to a sum of products of the polynomials

Note that (3.5) is a more precise formulation of (3.16) in [4]. The poly-
nomials qk((P) involved in the construction of cki8(cP) in (3.5) are quite
complicated ([7], Table 2.16). We record a recursion formula for these poly-
nomials which we will use later. This formula follows from the factorization
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rk(d2) = d(l — d2)qk(d2) and a recursion formula for rk(d?) ([4], Lemma 3.14
and formula (3.18)). If k > 2 and d ψ 1, then

Our next step is to define an important integral multiple of c&)S(cί2), a poly-
nomial associated with this multiple and a cohomology class y £ H2(M] Z).
Note that f(2k + s) divides f(n) if 0 < k < (n - s)/2.

Definition 3.7. If n — 5 is even and 0 < k < (n — s)/2, then

(3.8) cktS(<?) = f(n)f(2k + s)-χck

Definition 3.9. If Kyn 2 C M 2 n is as above and n — s is a positive even
integer, then

(n-s)/2

(3.10) δs(cP,y)=

We set δn{(P,y) = 0.

Theorem 3.11. 5ωppose that y € #2(M; Z) and that if2""2 C M2n is dual
to y. Ifn — s is even, then

(3.12) f(n) SignϋfW = /(n)d s SignϋΓ^ + d s(l - d?)δs(d?,y).

Proof. Formula (3.12) follows from the expansion

(n-s)/2

(3.13) SignJ^d* Signup + £ Rktβ

([4], formula (3.7)) by multiplying both sides of the expansion by f(n) and
using Lemma 3.4 together with Defintions 3.7 and 3.9. D

Formula (3.12) is the integrality formula for the signature Sign ϋQ*' promi-
sed at the beginning of this section. It has some advantages over (3.13) for
some applications because every term in (3.12) is an integer. A congruence
for f(n) Sign KJfJ can be read off immediately from (3.12).

Corollary 3.14. Suppose that y € H2(M;Z) and that K2n~2 C M2n is
dual to y. If n — s is even, then

(3.15) f(n) S ignup = f(n)ds SigntfW (mod <f (1 - d2)).
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Formula (3.15) is the same as (3.8) in [4]. Our next step is to make
a combinatorial analysis of δs(d2,y) to obtain additional information from
formula (3.12).

Lemma 3.16. //ife,s6N\ {0}, then

(3.17) cM(d 2) = sf(2k + s)qk{d2) (mod (1 - d2)).

Proof. Formula (3.17) holds for s = 1 since ckΛ(d2) = f(2k + l)qk(d2) (see
the proof of Lemma 3.4.). If s > 2, it follows from (3.3) and the factorization
rk(d) = d(l - (P)qk(d2) ([4], Lemma 3.14) that

(3.18) RKs(d) = sd*(l - d2)qk(d2) + Y^ril{d)τi2{d)... r iβ(d),

where the summation is taken over all partitions i l 5 i 2 , . . . , is oik with at least
two ij positive. It follows from the factorization r^.(d) = d(l — d2)qij(d2),
the facts that Πj=1/(2z j + 1) divides f(2k + s) if iλ + i2 + + is = k and
that at least two ij are positive in the summation in (3.18) that

(3.19)

f(2k + s)RkιS{d) = sds(l - d2)f(2k + s)qk{d2) (mod d°(l - d2)2).

Formula (3.17) now follows from (3.19) and (3.5). D

Corollary 3.20. Ifn — s is even, then

(3.21) δs(d\y) = s

where the summation is taken to be zero if n — s.

Proof. Immediate from (3.8), (3.10) and Lemma 3.16. D

Theorem 3.22. Suppose that y e H2(M; Z) and that K2n~2 C M2n is dual
to y. Ifn — s is even, then

(3.23) /
(n-β)/2

k=l

Proof. Immediate from (3.12) and (3.21). D

Note that (3.23) contains (3.15) in this paper and (3.9) in [4] as special
ses. This type of sharpened congruence will be important when we return
cohomology projective spaces with Gp actions of Type II0 in the next
tion.

cases
to
section
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4. The Atiyah-Singer ^-Signature Theorem for

Gp actions of type II0.

In this section, we return to the main theme of this paper, cohomology pro-
jective space with Gp actions of Type II0. If M2n is a cohomology CPn

and x G H2(M\Z) is a generator of the cohomolgy algebra, then (3.12) is
an integrality formula for the signature of the 5-fold self-intersection of a
submanifold of degree d in terms of d, the signature of K^ and the polyno-
mial δs(d2,x). Our next step is to introduce two polynomial functions of a
complex variable associated with M2n and d.

Definition 4.1. If M2n is cohomology CPn and d G N, then

SignKi2kh2k-2, n = 2m,
(4.2) P(z) = { ^

Σ SignKi2k+1h2k~2, n = 2m + 1.

ίm - l

Σ δ2k(d2,x)z2k-2, n = 2m,

δ2k+1(d2,x)z2k-2,

We state the Atiyah-Singer ^-Signature Formula for Gp actions of Type II0

in terms of d, P{z), Qd(^), and the complex numbers a.j =

Theorem 4.4. Suppose that M2n is a cohomology CPn and that p is an
odd prime. If (d;mi,m2,... ,mμ) G DEp(M2n), then

(4.5) /(nX 1 αJ l 2 . . .< μ =

ί±/(n)± f(n)d2{a2 - l)P(da1)+ d2(l - d2)(a2 - l)Qd(rfαi), n

n

Before we turn to the proof of Theorem 4.4, we accept it and deduce some
consequences. The next corollary is an immediate consequence of (4.5) and
the fact that the coefficients of P(z) and Qd{z) are rational integers.

Corollary 4.6. If p is an odd prime, then the Atiyah-Singer g-Signature
Formula for a Gp action of Type II0 on a cohomology CPn is an equation
in the ring of complex numbers Z[αχ, α 2 , . . -, αμ].

Corollary 4.6 is a special case of a theorem of Berend and Katz which
exhibits the general Atiyah-Singer g-Signature Formula as a formula in a
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ring of complex numbers ([1], Theorem 2.2). Formula (4.5) expresses the
signature formula in a form useful for our calculations. Earlier efforts showed
no clear pattern for arbitrary n ([5], p. 573). The term in (4.5) involving
Qd{daι) is the modulus of a congruence in the ring Z[αi,α2j i&μ] ([7],
Theorem 4.2). Knowledge of this modulus will enable us to obtain more
information about d.

It is worth recording (4.5) in the case p = 3. Then μ = 1, OL\ = —i/y/3,
and iPM-ipi-fe) and df-^^Q^) are rational integers. If we define a nu-
merical function a(n) = f(n)[3[n/2] + (-l)[n/2]~1]/4, then (4.5) is an equation
of rational integers involving a(ή).

Corollary 4.7. If d e D3(M2n), then

n = 2m,

^) + d3(l - d2)3m-ιQd(^), n = 2m + 1.

Formula (4.8) contains information about the modulus of a congruence
of rational integers for D3(M2n) ([7], Theorem 5.1) as well as the fact that
d e D3(M2n) implies d2 divides a(n) if n is even and d3 divides a(n) if
n is odd. This divisibility condition was used to obtain upper bounds for
D3(M2n) in terms of prime divisors ([7], Table 5.4).

The proof of Theorem 4.4 is based on (3.12) and a formula of Berend and
Katz for the contribution Lθ(u)L(F)[F] to the signature formula of the nor-
mal bundle v of a codimension-2 submanifold F of an arbitrary 2n—manifold
with a smooth, orientation preserving Gp action fixing F. This contribu-
tion is the product of a nonstable characteristic class, L>e{v), depending on
θ = 2π/p, and L{F), the total Hirzebruch L-class of F, evaluated on the fun-
damental class of F. We choose the generator of Gp so that the eigenvalue
of the action of Gp on v is λ.

Proposition 4.9. ([1, Formula (8.1)]). If M2n is an arbitrary 2n-manifold
which admits a smooth, orientation preserving Gp action fixing a codimensi-
on-2 submanifold F, then

(4.10)

( m

-(α? - 1) Σ a?*"2 SignF(2fc\ n = 2m,

fc=1

a i SignF + (α? - at) £ α2*~2 S\gnF^k+1\ n = 2m+l.
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Corollary 4.11. (Atiyah-Singer G-Signature Formula). Suppose that M2n

is a cohomology CPn and thatp is an odd prime. If M2n admits a smooth Gp

action of Type II0 fixing F2n~2 C M2n and having eigenvalue multiplicities
mi, m 2 , . . . , mμ at the isolated fixed point, then the g-signature of the action
is given by

(4.12) Sign(p,M) = ±Lθ{v)L(F)[F] ± a^a™2... a™».

Proof of Theorem 4.4. Formula (4.5) follows by multiplying both sides of
(4.12) by /(n) and then using (3.12) and (4.10) together with the facts that
Sign (g, M) = ±1 if n is even and Sign (g, M) = 0 if n is odd, which follow
immediately from the fact that M2n is a cohomology C P n , and Sign F = ± 1
if n is odd ([4], Lemma 4.1). D

In our next lemma, we begin our study of the effect on DEp(M2n) of the

presence of a fixed submanifold of degree one in the case n even. We will see

that if a submanifold of degree other than one is fixed, then under certain

conditions an equation holds which leads to a contradiction in some cases.

L e m m a 4.13. Suppose that M4m is a cohomology CP2m and that
(I ;m 1 ,7n 2 , . . . ,m μ ) is an element of DEp(M4rn). If (d m^^m^ ... ,m^) G

DEp(M4m),dφl, and a?1 a?2 .. .a™" = ±a?1a™'2 . . . α ? 1 , then

m

(4.14) d2Qd(dai) = /(2m) ] Γ SignK (2*)(1 + d2 + • • • + ^-^af'2.
fc=l

Proof. It follows from the hypotheses and (4.5) that

(4.15) f(2m)a7[llaψ2 ...α™"

_ ί ± / ( 2 m ) ± f{2m)d2{a\ - ^Pidon) + d?{l - &){a\ -

t±/(2m)±/(2m)K-

The choice of signs must be the same in the corresponding terms in the two
lines in (4.5) as indicated. To see this, suppose that the signs of /(2m)
are not the same. Consider the image of the difference of the two lines
under a homomorphism η : Z [ α i , α 2 , . . yθίμ} —> Z/4Z such that η(l) — 1
and η{θίj) = ±1,1 < j < μ ([1], Lemma 7.8). If the signs of f(2πι) are
not the same, the contradiction 2 Ξ O (mod 4) is obtained. Therefore the
signs of /(2m) are the same in both lines. It follows that the same choice
of orientation is used in computing Sign (g,M) in the two lines and so
the signs of the terms involving P(z) in the two lines are the same since
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Signi^2*) = {tanh2*zL(M)}[M] ([7], Lemma 2.1). Formula (4.14) now
follows by taking the difference of the two lines in (4.15) and dividing by
1 - cP φ 0 and a\ - 1. D

Definition 4.16. If d, m e N \ {0}, then

τ n - 1

(4.17) b(d\m) = ^ ( m
k=0

771—1 /m—k

( 4 . 1 8 ) A ( < i 2 , m ) = £ ( Σ K

The next step is to apply one of the homomorphisms

f/:Z[αi,α 2 , . . . ,α μ ] —> Z/4Z

described above to (4.14) and obtain an equation which leads to a numerical

congruence used in Section 6.

Proposition 4.19. Suppose that M4m is a homotopy C P 2 m and that

(I ;mi,m 2 , . . . ,m μ ) is an element of DEp(M4τn). If (d;m/

1^m/

2^... ,mjj E

DEV{M4™), dφl, and a?1 a?2 ...a™*= ±a?'1a?2... a™'μ then

(4.20) Δ(d2,m) = ±b(d\m) (mod 4).

Proof. Since M 4 m is a homotopy C P 2 m , it follows that S i g n u p = 1
(mod 8), 1 < k < m. In fact, Signup2*) = 1 + 8σ2(m_fc), where σ2(m-k) is a
Sullivan splitting invariant [9]. It follows from (3.10) and (4.3), that if M 4 m

is a homotopy C P 2 m , then d2Qd{d) = Δ(cP,ra) (mod 4). Formula (4.20)
follows from this observation and the equation in Z/4Z which results when
any of the homomorphisms η described above is applied to (4.14). D

5. Combinatorics.

The purpose of this section is to analyze both sides of (4.20) and to determine

the set of values of m and d for which (4.20) holds. We begin with the right

side of (4.20).

Lemma 5.1. //c ί ,mGN\ {0}, then

0 (mod 4),ra = 0,7 (mod 8),

(5.2) d odd = > b(d\ m) Ξ
2 (mod 4), m = 3,4 (mod 8),

3 (mod 4),m = 2,5 (mod 8).
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(5.3) d even => b(d2,m) = m (mod 4).

Proof. If follows from (4.17) that if d is odd, then b(d2,m) = m(m + l)/2

(mod 4). Formula (5.2) follows from this fact and (5.3) follows immediately

from (4.17). D

The analysis of the left hand side of (4.20) is more difficult because
Δ(cP,m) involves the numerical functions Qj2fc(rf2),l < I < m — k,l <
k < m — 1 (formula (3.8)). The first step in the determination of Δ(cf2,ra)
(mod 4) involves formula (3.17).

Lemma 5.4. // d, m G N \ {0}; then

ra-1

ί
0 (mod 4),rf evenProof. Formula (5.5) in the case of d even follows immediately from (4.18).

To see that (5.5) holds in the case d odd, note that it follows from (3.8)
and (3.17) that i f l < I < m — k, 1 < k < m — 1, and d is arbitrary, then
f(2m)qι(d2) is an integer and

(5.6) cιak{d2) = 2kf(2m)qι(d2) (mod (1 - d2)).

Formula (5.5) in the case d odd follows by inserting the mod 4 informa-

tion provided by (5.6) into (4.18), reversing the order of summation, noting

that the sum of the first m — / integers is (m~f

2

1~/)' a n d changing the final

summation index from I to k. D

It is clear from (5.5) that we can determine A(d2,m) mod 4 if we can
determine the parity of the integers /(2m)^(l) , l < k < m — 1. Recall
that qk(d2) is a rational number such that f(2k + l)qk(d2) is an integer ([4],
Lemma 3.14) and there is a recursion formula for ^(d 2 ) if k > 2 and d φ 1
(see formula (3.6)). The parity of f(2m)qk(l) is the same as the parity of
f(2k + 1)^(1), 1 < k < m — 1, and so the information we need is in the next
lemma.

Lemma 5.7. Ifk>l, then f(2k + l)qk(l) is odd.

Proof. Note that if d is odd, then f{2k + 1)^(1) = f(2k + l)qk(d2) (mod 8)

since d2 = 1 (mod 8). It follows from (3.6) that if k > 2, then f(2k +

1)9*(9) = -7(2* + l)©g*-i(9). Since Ql(d2) = 1/3 for any d ([4], Table
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3.19), it follows by induction that if k > 2, then f(2k + l)qk(9) is odd and so
f(2k + l)<?fc(l) is odd if k > 2 by the above remark. The proof of the lemma
is complete since /(3)#i(l) = 1. •

Lemma 5.8. // d, m 6 N \ {0}, then

(5.9) d odd - • ΔW, m) S ί 2 ( m ° d 4 ) l m " 2 ( m ° d 4 ) '
\θ (mod 4), m φ. 2 (mod 4).

(5.10) if even = > Δ(<P,m) = 0 (mod 4).

Proof. Formula (5.10) is just (5.5) in Lemma 5.4 in the case d even. To
establish (5.9), note that it follows from the fact that f(2m)qk(l) is odd
proven in Lemma 5.7 and (5.5) in the case d odd that (5.9) is equivalent to

m + l - k \ ( l (mod 2),m = 2 (mod 4),

2 ) ~ \θ (mod2) ,m^2 (mod 4).
(5 11) ψ fm + l k \ ( l
(' ' f^\ 2 ) ~ \θ

To see that (5.11) holds, note that

,5.12) Σ 1 (•"+ι -k) - Σ 1 (»- "v - ( m + i " : ) ( m - i ) .

The first equality in (5.12) follows by noting that (m~f

2

1~*) is the sum of the
m—1

integers from 1 to m — k and hence that £ ( i ) is the sum (m —1)(1) +
k=l

(m - 2)(2) + + (l)(m - 1). The second equality in (5.12) follows from
well known summation formulas. Formula (5.11) follows immediately from
(5.12). D

6. Proof of Theorem 1.4.

The purpose of this section is to state and prove a theorem which contains
Thoerem 1.4 as a special case.

Theorem 6.1. Suppose that M4m is a homotopy CP2m. Assume that
( l ;m l 5 m 2 , . . . ,mμ) and (d]mt

1^m/

2,... ,m'μ) are both elements of DEp(M4m),

and that a^otψ ...a™» = ±a?1a™'2 ...a™'μ. If m =έ 0 (mod 4), then dIs
odd. Ifmψ 0,4, or 7 (mod 8), then d = 1.

Proof Suppose that the hypotheses of the theorem are satisfied amd that d
is even. It follows from (4.20), (5.3), and (5.10) that m = 0 (mod 4) and
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so, if m φ 0 (mod 4), d is odd. If m φ 0,4, or 7 (mod 8) and d φ 1, then
(4.20) does not hold in view of (5.2) and (5.9). D

The proof of Theorem 1.4 is now complete since Theorem 6.1 clearly
contains Theorem 1.4 as a special case.
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