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COMPLETE INTERSECTION SUBVARIETIES OF GENERAL
HYPERSURFACES

ENDRE SZABO

In this paper we classify the nontrivial complete intersec-
tion curves on a general hypersurface of large enough de-
gree. We prove, that in principle, one can classify nontrivial
complete intersection curves on hypersurfaces with relatively
small degree as well, and give a recipe for doing so. We also
estimate the codimension of the components of the Noether-
Lefschetz locus corresponding to complete intersection curves.
Similar theorems hold for higher dimensional complete inter-
section subvarieties.

Introduction.

Let X C P3 be a very general hypersurface of degree at least four. The
classical theorem of Noether-Lefschetz asserts that any curve on X is the
complete intersection of X with some other surface. For hypersurfaces in
higher dimensional projective spaces similar questions are poorly under-
stood. Griffiths-Harris [3] posed a series of conjectures about curves on
hypersurfaces. The strongest one turned out to be false (Voisin in [1]), the
weaker ones have been proved in some cases ([2], [7], and Kollar-s example
in Trento Examples in [6]). There is another generalization in [5].

The aim of this note is to look at a special case of the above problem: to try
to understand those curves C C X C Fn+1 which are complete intersections
in Pn+I but not in X. Even in this special case the problem turns out to
be surprisingly subtle. We give a complete answer in case deg X > dimX +
2 (Corollary A). We prove that if degX > e dimX for a fixed e > 0,
then a complete description is possible in principle (Corollary B). This is
somewhat surprising since other existence theorems about special curves
on hypersurfaces seem to predict that there are lots of nontrivial curves if
degX < dimX.

Actually, we prove more in Corollary B. We prove that if deg X > e dimX
for a fixed e > 0, then (in principle) one can classify all complete intersection
curves C C Pn+1 such that the corresponding component of the Noether-
Lefschetz locus has small codimension, say smaller than Cdeg(X) for some
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constant C. Moreover, this classification depends only on C and e, but
independent of deg(X) and dim(X).

We prove also that essentially the same results hold for r dimensional com-
plete intersection subvarieties, just one has to replace deg(X) with deg(X)r

everywhere (Corollary B).

I want to thank professor Janos Kollaf for his continuous help during the
preparation of this paper. He simplified many of my proofs and corrected
my mistakes. I also want to thank the referee for his careful reading and for
his suggestions.

Throughout this paper we shall work with projective varieties over a fixed
algebraically closed field (of any characteristic). That a statement is true
for a general point means that it is true in a dense open subset.

Let / = 0 be the equation of X C ΨN, and gx — 0,.. .gn = 0 be the
equations of a complete intersection variety V C P^ for some N. One way
to ensure that V C X is to take gι — f for some i. We are not interested in
these kind of subvarieties.

Definition. A complete intersection subvariety V of a hypersurface X is
called nontriυial if we cannot write V as the complete intersection of X and
other hypersurfaces.

If we find a V C X then we can find polynomials hi,... hn such that
/ = ΣΓ=i 9ih% F° r generic choice of g{ and hi we can interchange some g{

with the corresponding hi and get another complete intersection V C X. The
following definition reformulates this symmetry in terms of the multidegree
of V. Also it is convenient to talk about lines, plane cubics, etc. without
specifying the dimension of the ambient space.

Definition. We say that two sequences I — (ίi,Z2, I™)
L = (Li, L2? Ln) are equivalent if one can get the first from the second
by adding or deleting some 1 to or from it, and permuting the entries. We
denote it by / ^ L. Fix a degree d. The above two sequences are related
(with respect to d) if one can get the first from the second by replacing some
of the Li with d — L^ adding or deleting some 1 or d — 1 to or from it, and
permuting the entries.

Let us see what we should expect. Let X C P n + 1 be a general hypersurface
of degree d. Let V be a complete intersection curve of multidegree Ί *>
(Zi,.../m) where U > 1. We shall fix m and /*, and vary n and d. An
easy dimension counting gives that the dimension of the family of complete
intersection curves of multidegree / contained in X is at most an — βd +
7 with coefficients independent of n and d. This dimension estimation is
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done in Lemma Γ in a more general setup. In this formula one can easily
calculate α and /?, but it seems hard to give useful estimates for 7. Prom
the calculation one sees that a/β decreases rapidly if we increase m or any
of the U\ hence if d > en for some e > 0 then one can try to list the
possible multidegrees for V contained in a general X (and the list should
not depend on d or n). In particular, for large enough e, a general X should
not contain any nontrivial complete intersection subvariety. Fortunately this
picture is essentially correct, as we shall see in Corollary A, but the proof is
long, because of the presence of the above 7. Main Theorem A reduces the
problem to a finite number of multidegrees, and then the above estimate of
a/β can be used to get the actual list of exceptions. The basic estimates
for Main Theorem A are proved in the second half of the paper, namely in
Theorem 3.

If we consider r-dimensional complete intersection subvarieties, we can
get very similar estimates. The only change is that we have to replace the
term βd with a degree r polynomial (coming from the Hubert polynomial of
V), and we can calculate the leading coefficient. We shall see also that when
a general X does not contain subvarieties of multidegree ί, then the same
formula gives an estimate for the codimension of the loci of those X that
contains one. One can hope for the same kind of picture as in dimension
one, and indeed, one gets finite, easily calculable exceptional lists. This
more general (but less explicit) result is contained in Main Theorem B and
Corollary B, and this proof is based on the estimates given in Theorem 2.

Proposition C contains some result in the other direction. It gives some
example when a general X contains curves of multidegree I. The proof is
based on a construction given in Lemma C. I learned this construction from
Janos Kollar. The result is far from being complete, but at least proves that
Corollary A is sharp, and classifies the complete intersection subvarieties of
a general quintic threefold.

Proposition D is an easy calculation for the next simplest case, for pro-
jectively normal curves.

Now we state the main results precisely.

Main Theorem A. Let d > n > 1 be integers and assume that a general hy-
persurface X C lPn+1 of degree d contains a nontrivial complete intersection
curve C of multidegree I = (Zi,... ln).

If d > 11 then I is related to (1), (2), (2,2) or (3).
J/d = 8,9,10 then I is related to (1), (2), (2,2), (3) or (4).
Ifd = 7 then I is related to (1), (2), (2,2), (3) or (2,3).
Ifd = Q then I is related to (1), (2), (2,2), (2,2,2), (3), (2,3), (2,2,3) or

(3,3).
Moreover, ifd>6 then a general X does not contain any complete inter-
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section surface.

Corollary A. Let X C P n + 1 be a general hypersurface of degree d.

• If d > 2n — 1 then there are no nontrivial complete intersection curves on
X.

• // d > ~n + \ then the nontrivial complete intersection curves on X have

multidegree related to (1). (line).
• If d > n + 2 then the nontrivial complete intersection curves on X have
multidegree related to (1), or (2). (line, or plane conic).

Corollary B. For any dimension r and any multidegree I = (Zi,... lm) with

all U>2 there is a constant 7 with the following property:

A general hypersurface X C P n + r of degree d does not contain any non-

trivial r-dimensional complete intersection subvariety of multidegree I ~ I,

whenever

vkere 0 =

For any real number e > 0 and any dimension r there are only finitely
many values of m and finitely many multidegrees I such that β > e. More-
over, there is a constant D such that for arbitrary n > 1 and any degree
d > max(JD,en1/ r) a general hypersurface X C P r + n of degree d can have
nontrivial r-dimensional complete intersection subvarieties only with multi-
degrees related to an I with β > e. For e = 1/3 and r = 1 we give the list
of these I. Each entry has the form (lι,..Λm)β where β is the coefficient
defined above.

(1)2 (2 ) | (3)1 (2,2)1 (4 ) | (2,3) | (2,2,2) | ( 5 ) |
(6) | (2,4)1 (3,3)1 (7)f (2,2,3) £ (2,5)| (8) |
(2,2,2,2) | (9 ) | (2,6) | (3,4) |.

Part One.

The proof of the above theorems can be divided into two parts. The first
part is a geometric argument, reducing the problem to an inequality about
the Hubert function of a complete intersection variety. The second part is a
rather long inductive proof of this inequality. We shall try to separate the
two parts as much as possible. Although the first part uses the results of the
second, for aesthetical reasons we prefer to keep this order.

In the second part, in order to make the induction work, we use only the
(higher order) convexity properties of the Hubert functions. For convenience
we include the statements with all the necessary definitions, but we postpone
the proofs for that part.
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Definition 1. For n > 0 we define the functions Gn from the integers to
the reals. Let Gn(x) = 0 for x < 0 and Gn(x) = (n+x) for x > 0. Let define
for n > 0 the family of functions

Tn = \ f : Z —> R f(x) = YjaiGn(x - i) , 0 < α, G R , α0 > 1 I .
2 = 0

Remark 1. For all m > 0 the functions / G Tm are nondecreasing and for
m > 0 they are convex functions. f(x) = 0 for x < 0 and f(y)>l for ?/ > 0.
For any x we have /(#) > Gm(x).

Definition 2. For an integer / > 0 and any function / : Z —> K let

Δ// : Z —>- E be the difference Aιf(x) = f(x) — f(x — I). For any sequence

luhi'-k > 0 of integers let Δh...Zfc/ = AhAh ... Ahf.

Remark 2. Δίl.../fc/ does not depend on the order of the U. For m > 0 and

t > 0 w e get AtGm(x) = Σi^o Gm-i(^ - i). This implies that:

• If k < m and lu.. Jk are integers and / G ̂ *m then Ah^Λkf G Tm-k.

• If k < m and / G •T1™ then Δ^..< ί f c/ is a nondecreasing function in /̂  for all

i.

• For a < b we have J^, C ^"α

• For k < m, any / G ̂ "m, any number # and any sequence lu.. .lk we have

Ah...ihf{x)>*h...i>Gm{x).

T h e o r e m 2. For an?/ real numbers C > 0, a > 0 and any integer r > 1
£Λere are integers D,L,T > 0 SΪ/CΛ £Λa£ whenever we choose integers n>l,
d > m a x ( ί ) , a n 1 / / r ) , α sequence 1 < h < h" ' < ln < d/2 and a function
f G ̂ "n-f-r, we find either that lλ = l2 — • = / n - τ = 1 and U < L for all i,
or

(**)

2 = 1

Theorem 3. Choose arbitrary integers n > \, 1 < l\ < < ln, d >
max{2Zn,n + 1}7 and any function f G Tn+\.

• If d > 11 and £/ιe sequence I = {h^h — -In) is not equivalent to any of
the following sequences: (1), (2), (2,2), or (3), £Λen the following inequality
holds:

(***)

• 7/cJ = 8,9,10 and / is noί equivalent to (1); (2), (2,2), (3), (4), ί/ien apain

(***) holds.
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• If d = 7 and I is not equivalent to (1), (2), (2,2), (3), (2,3), then again
(***) holds.
• For d = 6 and I is not equivalent to (1), (2), (2,2), (2,2,2), (3), (2,3),
(2,2,3), (3,3), then again (***) holds.

Now we are ready for the geometric part of the proof. We start with a
definition.

Definition Γ. Let V C p n + r be a subvariety of dimension r such that
only one component of the Hubert scheme of p n + r passes through the point
[V]. Let V be that component. Let V be the projective space parametrizing
the hypersurfaces X C F n + r of degree d. Let Vy be the locus of those
hypersurfaces that contain any subvariety from V. Then Γ(n,d, V) denotes
the codimension of Vy in V.

For a hypersurface X C p n + r of degree d let %x denote the subscheme of
the Hubert scheme of X that parametrize schemes from V. Let Γ(n, d, V) —
Γ(n, d, V) if it is positive, otherwise let f (n, d, V) — — dim(Ήχ) for a general
hypersurface X.

If V is a complete intersection variety of multidegree I — (Zi,... Zn) ( a n d
dimension r) then we use also the notations Γ(n,d, r, Z) = Γ(n,d, V) and
f f

By an easy general position argument one can prove the following:

Observations. If we get the multidegree / = (Z 1 ? . . . lή) from the multide-
gree / = (Z l 7 . . . Zn) by omitting some of the degrees Zi9 and f — r + (n — n),
then Γ(n,cf, r,Z) < Γ(n, d, r,Z) and they are equal if we drop only degrees
li > d. If Z; = (Zj,... ZJJ is another multidegree related to Z with respect to
cZ, then again we have Γ(n,d,r,Z) = Γ(n,cZ,r,Z').

Lemma Γ. Lei V C P n + r δe an r-dimensional locally complete inter-
section variety. Assume that the natural map H° ίpn+Γ,Opn+r(cί)J —y
H° (V, Ov(d)) is surjective and the Hilbert scheme o/P n + r is regular at [V],
Let My denote the normal bundle ofV in P n + r . Then the following inequality
holds:

(Γ) Γ(n,d,V) >t(n,d,V) > dimH°{V,Ov(d)) - dimH°(V,λίv).

The second inequality becomes equality if the middle term is nonpositive.
Let Iy be the ideal sheaf of V on P n + r and assume now that the natural

map H° (Pn + r,/y) —> H°(V,Iv/Iy) is surjective. Assume moreover that
we can find a homomorphism g : λίy —> Oy(d) such that

H°(g) : H°{V,λfv) —> H°(V,Ov(d))
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is either injective or surjective. Then the second inequality in (Γ) becomes
again an equality. Moreover in this case the Hubert scheme of X is regular
at [V] for a general X containing V.

The conditions on V in the first part are satisfied, for example, if V is pro-
jectively normal, locally a complete intersection and Hι{V,Nv) — 0. They
are also satisfied when V is a complete intersection variety of multidegree
I = (Zi,...Zn). Moreover, in this latter case the map H° (Pn+r,/v(d)) —>
H° (V,Iy/Iy(d)) is surjective and the inequality (Γ) becomes the following:

Γ(n,d,r,0 >f(M,r,Z) > dimH°(V, Ov(d)) - ^ d i m i ϊ 0 ^ , O

Remark. (Theorem 3.1, p. 172, [4]) is another result about the regularity
of the Hubert Scheme.

Proof of Lemma Γ. It is clear that Γ(n,oί, V) > f (n,d, V). Also, if V is
a complete intersection variety of multidegree / = (̂ i, ίn) then λίy =
©£=i O{h)- This explains the last statement. We prove the rest. We note
that the assumption that V is locally a complete intersection is needed only
to be able to talk about the normal bundle. In general one can replace
H°(V:λίv) withHom(Jv,CV).

Let V be a locally complete intersection variety such that the natural
map H° (ψn+r,Or+r(dή —-> H°(V,Ov(d)) is surjective and the Hubert
scheme of ipn+r is regular at [V]. We shall use the notations introduced in
the Definition Γ. The dimension of V is

A = dimH°(V,λfv)

where λίv is the normal bundle of V in F n + r . Let [W] be a general element
of V. Then semicontinuity gives us that

>άimH°{W,Ow{d)) > r

-άimH°(ψn+r,Iw(d)) >dimiί 0 (F n + r ,O F n + .(d)) - dimH°(ψn+r,Iv(d))

where Iv and Iw denote the ideal sheaves of V and W on p n + r . By assump-
tion, the first and the last terms are equal, hence all four terms are equal.
So the dimension of the family of those hypersurfaces of degree d that are
going through W is

- dimiϊo(Pn + r, Or+r(d)) - 1 - dim#°(V, Ov{d)).
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The dimension of V (the projective space parametrizing all hypersurfaces of
degree d) is

F = dimH°(Vn+r,OVn+r(d)) - 1.

Let X denote the scheme parametrizing the pairs (W C X) where X C P n + Γ

is a hypersurface of degree d, and W C P n + r is a scheme with [W] G V.
Prom the above calculation we see that dim X = A + B.

There is a projection Φ : X —> P, and the fiber of Φ at a hypersurface X
is exactly Ήx (the intersection of V with the Hubert scheme of X). Hence
if Φ is not surjective then f (n,d, V) is the codimension of the image. On
the other hand, if Φ is surjective then — Γ(n, d, V) is just the dimension of
a general fiber of Φ. The codimension of the image is at least F — A — B,
and if every fiber is nonempty then a general fiber has dimension exactly
A + B — F. This proves the inequality (Γ). It is clear that if the middle term
of (Γ) is nonpositive then Φ is surjective, and the second half of (Γ) becomes
an equality.

Now we turn to the second part of the lemma. Let JsfP and Λfx denote
the normal bundle of V relative to P n + r and X. There is an exact sequence
onX:

Prom the cohomology long exact sequence of the above sequence we get

H°(g)
0 _ > H°(λfχ) —> H°(ΛίP) —> HΌ(Ov(d)).

Hx is the fiber at [X] of the above map Φ and in the first part of the proof we
actually got a lower estimate for the dimension of any nonempty fiber. On
the other hand deformation theory gives an upper estimate for the dimension
of the Hubert scheme. Comparing the upper and the lower estimates we get

h°(λίχ) > dimhx > h°(λίp) - h°(Ov(d)).

So if we find an example of V and X were H°(g) is surjective or injective,
then at least one (nonempty) fiber has dimension h°(λίχ), and therefore the
second half of (Γ) becomes an equality. In this case h°(Λίx) = dim[v] Hx,
hence Hx is regular at [V]. The map g is constructed in the following way.
The homogeneous equation of X is a global section of Iv(d), and g is just
its image in Iv(d)/Iy2(d) ~ Homy(Λ/p,C?v(cί)). Since the map

H°(Ψn+r,Iv(d)) —>H°(V,Iv(d)/Iv

2(d))

is surjective, for different choices of X we can get every possible homomor-
phism
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g : A/jpr+i —> Όy. So in order to get equality in (Γ) we need only to con-

struct a g with surjective or injective H°(g).

Together with Main Theorem A we shall prove the following higher di-

mensional version:

Main Theorem B. For any real numbers C > 0, a > 0 and any integer
r > 1 there are integers D, L, T > 0 such that whenever we choose integers
n > 1; d > max(.D, an1/1*), and a multidegree I = (Z l 5 . . . ln), then one of the
following holds:

either T(n,d,r,I) > Cdr

or I is related (with respect to d) to some (/ l 5... lτ) with 1 < U < L.

Proof of the Main Theorems. We shall prove the last part of Main Theorem

A at the end of this section. Now we concentrate only on Main Theorem

B and the curve case of Main Theorem A. Let V C F n + r be a complete

intersection variety of multidegree I = (lu.. .ln).

First we prove the theorems under the extra assumption that lλ < l2 <

• ln < d/2. Main Theorem B follows immediately from Theorem 2 below

once we realize that

H°(V,Ov(x))=Alul2...lnGn+r(x)

for all x. Similarly, Main Theorem A follows at once from Theorem 3.
Next, the second Observation above proves these theorems with the weaker

extra hypothesis that all U < d.

Fix C, a as in Main Theorem B, and r (set r = l for Main Theorem A). The
above special case of Main Theorem B gives us constants L, D, T. Increasing
D if necessary, we can assume D > 2L + 1. I claim, that both theorems are
true without the extra hypothesis, and we can take these modified D, L, T
in Main Theorem B. Moreover, I prove the last part of Main Theorem A.

Choose n, d as in the theorems, and let / = (Z 1 ? . . . lm) be a multidegree
which is a counterexample (m = n except for the last part of Main Theorem
A, where m = n — 1). Let I = (Z 1 ? . . . lh) be the multidegree obtained from /
by omitting all U > d: and let f = r + n — h.

Let /* = (ZJ,... Z**) be any sequence that we get from I by adding arbi-
trarily n* — ή new degrees such that I* < d for all i (n < n* < m). The
above Observation said that

Γ(m,d,r,Z) = Γ(n,d,f,ί) > Γ(n*,d,r,Z*)

for all such Z*. However Z* satisfies the extra hypothesis, so both Main
Theorem B and the first part of Main Theorem A apply to Z*.
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If Z was a counterexample to Main Theorem B then at least one Ẑ  > d.
Choose n* = n. We get for all i that either Z* < L or d — I* < L. However
we can choose at least one Z* arbitrarily, we can set Z* = L + 1 > L. This is
a contradiction, because d — I* > D — (L + 1) > L.

If Z was a counterexample to the last part of Main Theorem A then m =
n — 1, choose n* = n — 1. Then we get a new complete intersection surface on
a general X, so we can assume at the beginning that each U < d. We repeat
the previous construction with n* = n, so we get Z* = (Zl3 Z2,... ln-ι,l^) with
Z* chosen arbitrarily. All these Z* have to be on the lists of Main Theorem
A. So either Z* < 5 or d — Z* < 5. Therefore d < 9, and there are very few
choices for Z. One can check Lemma Γ for all of them (by computer), and
one gets no counterexample.

If Z was a counterexample to the rest of Main Theorem A then at least
one U > d, so we can choose n* = n — 1. This gives a counterexample to
the last part of Main Theorem A, and we proved that it is impossible. This
proves the theorem.

Proof of the Corollaries. We shall fix a dimension r and a multidegree
I = (ίi,... L) with k > 2 for all i. We shall vary n, d. If V C F n + r is
a complete intersection variety of dimension r and multidegree I ~ Z, then
clearly dimH°(V, Oy(d)) depends only on d and Z, but not on n. Let P(d)
denote the Hubert polynomial of F, deg(P) = r and the leading coefficient
is just deg(y)/r! = (ΠϋLi U)l^ There is a d0 depending on m, r and ϊ such
that dimH°(V, Όv(d)) > P{d) for all d > d0. In fact for odd r we can take
do = 0, for even r we can choose d0 = Σ™ x U — (m + r + 2). It is clear
also that dimiϊo(V,CV(l)) = m + r + 1. Hence for d > d0 the inequality
(Γ) becomes

771

Γ(n, d,r, Z) > P(d) - (n - ra)(m + r + 1) - ] Γ F°(F, OV{U))

= P(d) - (m + r + l)n + W

where W is a constant depending only on m, r and Z. Solving this inequality,
for any constant C < (1/H) ΠHi U o n e c a n find an integer 7 such that for
d> d0 one gets

Γ(n,d,r,Z) > Cdr whenever d > n 1 / r

We shall use this inequality for C = 0. First we prove Corollary B. In-
creasing 7 we can drop the condition d> d0. This proves the first statement.
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Main Theorem B gives us a constant D and a finite list of Z-s such that the
multidegree of every r-dimensional nontrivial complete intersection subva-
riety of a general X of degree d > max(J9,en1/r) is related to one / on
the list. For some ί on this list, the above computation might give β < e.
Choosing a D > D we can achieve βn1/r + 7 < en1/1* for all such Z, whenever
βn1lτ + 7 > D, so we can exclude them from the list. So we have to find only
those ί that has β > e. We observe that {UZi h)/(m+2) > 2m/(m+2) > 1/e
for large enough m so there is only finitely many choice of I and β. Now set
r = 1 and e = 1/3. It is enough to calculate the β for all I with m < 5, and
it can be done easily. This proves Corollary B.

Now we prove that Main Theorem A implies Corollary A. We prove the
last statement, then inequality (Γ) gives us immediately the first two. The
Observations tell us that it is enough to exclude the counterexamples of the
following kind. Let I = (Z1?... lm) be a sequence different from (2), with
2 < h < - - < lm < d/2, such that for some m < n < d — 2 a general
X c F n + 1 of degree d contains a curve with multidegree related to I. If
d > 6 then Main Theorem A implies that I has to be on one of the lists in
Main Theorem A. If d < 5 then U = 2, and n < 3, so again I is on the lists.
If / is one of the sequences

(3), (2,2), (4), (2,3), (2,2,2), (3,3) or (2,2,3),
then the inequality (Γ) gives us these upper bounds for d:

Since n > m and d > 21 i, it is easy to deduce, that in all cases d < n + 3.
This is a contradiction, so this proves Corollary A.

Now we turn to the question of existence. The following lemma will be
very useful during the proof of Proposition C and Proposition D.

Lemma C. Let C be a smooth curve of genus p and let L l 5 . . . Ln, E be
line bundles on C. Let define t{ — min{degLi — p, degL i + 1 — p — 1},
Ti - min{t,,p- 1}, and δ = {degE - Σti degL* + (n - l)(p - 1)). In
this lemma g will denote a homomorphism g : 0f=1 Li —> E. Assume that
δ < 0 and the following conditions hold:

(a) n > 3, deg Lγ > 2p — 1 and deg L{ > 2p for 2 < i < n,

Then there is a homomorphism g such that H°(g) : φ ^ = 1 H°(Li) —> H°(E)
is surjectiυe. We can find g with injectiυe H°(g) ifn>3 and the following
condition holds:

(c) degE > Σti degL, - £?"/ Tj.
Condition (a) and δ > 0 together imply condition (c), hence the existence of
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a g with injective H°(g). If condition (a) holds and δ = 0 then there exists
a g such that H°(g) is an isomorphism. Assume now that p = 0 and the
following condition holds:

(d) - 1 < degLi < degE forl<i<n.
If δ > 0, δ = 0 or δ < 0 then there exists a g such that H°(g) is injective,
isomorphic or surjective.

Proof. We shall construct a subbundle ®™=i G% — ©H=i Li such that the
quotient bundle is just E. g will be the natural homomorphism. If we can
find this with Hι(Gi) = 0 for all i then our H°(g) must be surjective, and if
all H°(Gi) = 0 then we find an injective H°{g).

We shall construct Gi = Li(-Di) with some effective divisor Dii and the
inclusion homomorphism will map G{ into LiφLi+x < 0 " = 1 L^ The first
component of this homomorphism will be the natural inclusion Li(-Di) <
Li, and we shall construct the other component hi : Gi —> Lj+i later. This
construction gives an exact sequence

0 — > 0 G i — » 0 L 4 — > Q — > 0
t=l i = l

where Q is the quotient. We shall choose hi such that Q is locally free. Then
it is easy to see that

We shall choose Di such that we get Q ~ E.
We note that for a general line bundle M if deg M > p— 1 then H1 (M) = 0,

and if deg M < p — 1 then H°(M) = 0. If deg M > p + 1 and M is general,
then the linear system \M\ is nonempty and it has no fixed points.

First we do the construction of a surjective H°(g). We want to find
divisors D{ such that G{ is general, Hι(Gi) = 0, and O ( 0 ^ A ) - E.
We can easily find them if n — 1 > 2 and we can choose a sequence deg 6^,
i = 1... n — 1, such that degL* — deg G{> p (so we can choose general Gi),
degGi > p - 1 (so we shall get H1^) = 0), and degE = ΣΓ=i άegU -
ΣnjZl deg Gj (so we get Q ~ E at the end).

hi is a global section of L i + 1 ® Gfx. So to choose hi we have to find a
divisor iί^ G |Lj+i φ G " 1 ! - If we have also deg Hi = degL i+i— degG* > p+1
then we can choose Hi such that their support is disjoint from all Dj and alϊ
other Hj. Then it is easy to show that the cokernel of the homomorphism

ί = l
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is locally free. Putting together the inequalities for deg G; we get

p - 1 < άegGi < min{ deg Lτ - p, deg Li+1 - p - 1} = t{.

Comparing the upper and lower bounds, for degGj we get condition (a) of
the lemma. Substituting these bounds into the equality we get condition
(b), and the condition δ < 0. These are clearly sufficient conditions for the
existence of degG ,̂ hence for the existence of g with surjective H°(g).

Next we construct g with injective H°(g). One can prove the same way
as before, that this g exists, provided that n > 3 and there exists a sequence
degG* such that

d e g Gi < m i n { d e g L { - p , d e g L i + ι - p-l.p-l} ^T{

a n d
n

deg E = Σ d eS Li~

n—1

The condition (c) is satisfied iff this system has a solution sequence degG;.
Under condition (a) we get T; = p— 1; hence condition (c) is equivalent to

δ > 0. If (a) holds and δ — 0 then there is a g such that H°(g) is an injective
homomorphism between vectorspaces of the same dimension; hence it is an
isomorphism.

Assume now that p = 0 and (d) holds. If n = 1, then there is a natural
inclusion Lλ < E, and this induces an injective homomorphism on the global
sections, so the lemma is true in this case. On the other hand for n >
2 we number the Li so that deg(Lj) is nondecreasing. We do the same
construction as before, except that for every degree there is only one line
bundle, so the construction works for n — 2 as well. Moreover, T{ = — 1 in
this case, so (c) is equivalent to δ > 0. Therefore, by what we have proved
earlier, δ > 0 implies that there exists a g with injective H°(g). If δ — 0,
then this is an injective homomorphism between isomorphic vectorspaces, so
it must be an isomorphism.

So we need to deal only with the case δ < 0. We do again the same
construction as before, and again, it works for n > 2. The conditions we
need are the following: deg(Lj) > deg(Gi) (so Di is effective), deg(i?j) —
deg(Li+1) — deg(Gi) > 0 (so Hi is effective, we can always find Hi disjoint
from all Ό3 and all other H3), deg(G*) > - 1 (to make Hι{Gi) = 0), and
degi? = ΣίLi deg Li - Σ£Γi degG^. Putting this together, we need to find

satisfying

- 1 < deg(G ) < min(deg(Lί),deg(Li+1)) =
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and the previous equation for deg(E). This is possible to find if and only if
— 1 < degLj for all i, deg(Ln) < deg(l£), and δ < 0. This proves the lemma.

Proposition C. Let V C IPn+1 be a complete intersection curve of multi-
degree I = (/i,... ln), and d a degree such that d > U for all i and let

n

{V, Ov(li)) - dimtf0 (V, Ov(d)).

If V has genus 0, orifn>3 and the genus is 1 then — f (n, d, 1, /) = β. In
particular a general X contains interesting complete intersection subvarieties
of multidegree I iff β > 0. This happens when I is associated to (1), (2); (3)
or (2,2). This implies that Corollary A is sharp.

Ifd = 5 and I is related to (2,2,2) then again -f(n,d, 1,/) = β > 0. In
particular, a general quintic hypersurface contains a curve of multidegree I.
On a general quintic threefold the nontrivial complete intersection subvari-
eties are curves, they have multidegree (hj2,h) with 1 < U < 4, and all
such multidegrees occur.

Proof of Proposition C. By Lemma Γ we need only to construct in all cases
a g such that H°(g) is either surjective or injective.

First we solve the case where the genus p < 1. We claim that in this case
we can find the above homomorphism g such that H°(g) is either injective
or surjective. Set Li = O(li) and E = 0(d), clearly the normal bundle of V

If p = 0 then (d) of Lemma C is satisfied, hence our g exists. Assume now
p — l5 n > 3, and let /0 be (2,2) or (3) such that / ~ Zo Fix ίo> a n d v a rY
n, d. It is enough to prove that for every value of d there is an n = n 0 such
that we can find a g which gives an isomorphism H°(g). For other values of
n the normal bundle has less or more 0(1) components, one can restrict g,
or extend it arbitrarily. For each value of d one can find an n = n0 such that
δ = 0 in Lemma C. It is clear that (a) holds. Lemma C proves the existence
of g for n — n0, and our claim follows.

It is clear now that Corollary A is sharp for n > 3 . If d < 2n — 1 then a
general X contains a line, if d < | n + \ then a general X contains a plane
conic. If d < n + 2 then a general X contains genus 1 curves of multidegree
equivalent to (3) and (2,2). The case n < 2 is obvious from the Noether-
Lefschetz theorem.

Now let d = 5, / equivalent to (2,2,2) and V is a smooth complete inter-
section curve of multidegree /. Then V has genus 5 and degree 8. We need
only to prove that there exist a homomorphism

g : Ov(2)φθv(2)φθv(2) —> Ov{h)
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such that H°(g) is surjective. One can check, that conditions (a) and (b) of
Lemma C are satisfied, and δ = 0 in this case. Hence Lemma C implies the
map g exists; hence (Γ) becomes an equality. Then the Observations imply
that (Γ) is an equality for all I related to (2, 2,2).

We proved that all curves listed in the last part of Proposition Cexist on a
general quintic threefold. We see either from the inequality (Γ) or from the
Noether-Lefschetz theorem that there are no nontrivial complete intersection
surfaces on it. Hence there are no other curves on it (see the Observations).
This completes proof of the proposition.

Proposition D. Let V C IPn + 1 be a projectiυely normal curve of genus p

and degree I. Assume that H1 (Λ/y) = 0 where λίy is the normal bundle ofV

in P n + 1 . Let V be the component of the Hilbert scheme o / F n + 1 that contains

[V]. In this case we have

Γ(n, d, V)>dl-(n + 2)1 - (n - 3)(1 - p).

In particular, if

then a general hypersurface X of degree d does not contain any subscheme

that belongs to V.

Proof of Proposition D. From Lemma Γ we know, that

Γ(n, d, V) > dimtf0 (V, Oy(d)) - dimH0 (V,Λfv) > X (Ov(d)) - χ (λίv).

Clearly χ (Ov(d)) = Id - p + 1, and

= [(n + 2)1 - (n + 1)(1 - p)] + [3/9 - 3] = (n + 2)1 - (n - 2){p - 1).

Putting these together we get the required inequality.

Part Two.
In the rest of the paper we can forget about geometry. We shall study the

classes of functions Tn defined in the previous part. The proof consists of a
sequence of lemmas. Some of these lemmas have an a and a b version with
different constants. In many case the proof of the lemmas is a strait forward
computation, and we shall leave it to the reader. We shall prove only Lemma
7a and Lemma 7b because these are essential for the inductions.

L e m m a 1. For m >0, a > 0, I > k integers and F G Fm we have

- a)Gm(k) > F(k - a)Gm(l).
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In particular for I > 0 one gets

L e m m a 2a. For any choice of the integers Z > 3 ? r a > 0 , α < Z and any

function f E Tm we have f(a + l)> (2m - 2)/(α).

L e m m a 2b. For any choice of the integers I > 4, m > 0, a < I and any

function f E Tm we have f(a + l)> | f (2m - 2)/(α).

Lemma 3a. For any choice of the integers I > 4, m > 0, a < I and any

function f E Tm+i we have §fΔ 2/(α + /) > mA2f(a + 1).

Lemma 3b. For any choice of the integers I > 7, m > 0, a < I and any

function f E Tm+ι we have ^A2f(a + /) > mA2f(a + 1).

Lemma 4a. For any choice of the integers I > A, p > 0, q > 0, a < I and

any function f E ̂ >4-9+i we have

64
2 p Δ χ / ( α ) + qA2f(a + 1) < g ^

L e m m a 4 b . For any choice of the integers l>7,p>0, q>0, a<l and

any function f E *7>+<H-I we have

18
2pAJ(a) + qA2f(a + 1) < ^

Lemma 5. For any integer r > 1 there is an integer T > 0 such that for
any choice of the integers d>8,t>T, for any sequence 2 < lλ < l2 < lt

of integers and for any function f = Δ^.^-F, where F E Tt+r, we have
tdrf(3) < f(d).

Lemma 6. For any real number A > 0 and any integer r > 0 there are

integers L > 0 depending on A, r and D depending on r, L such that for any

choice of the integers I > L, d > D and for any function f = AiF where

F E TrΛ.λ we have Adrf(3) < f(d).

Definition. The type of a sequence 1 < h < - < ln is the pair (p, q) where
p is the number of those l{ that are equal to ln, and q is the number of those
U that are equal to ln — 1. If ln > 1 then the truncation of this sequence is
another sequence 1 < Lλ < < Ln with Li — min(ίi5 ln — 1).
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Clearly 1 < lλ < l2 < < ln-p-q < ln - 2, / n _ p _ g + i = ln-P-q+2 = • =

ln-V = /n — 1 a n d /n-p+l = ln-p+2 = ' ' ' = L Also WΘ liaVβ L; = Z; fθΓ
i < n — p and L^ = Zn — 1 for n—p + l<j<n.

L e m m a 7a. For any choice of the integer numbers n > I, I > 4, d > 21,

any sequence 1 < lχ < l2 < < ln

 = h and any function f E J°n+ι we

denote by ( L 1 ? . . . Ln) the truncation of (/i,... ln). Then we have

L i = l

Proof. The right hand side is an increasing function of d because

A1 [Ah..ΛJ(d) - ALl...LJ(d ~ 2)] = Δ1Δll...«./(d) - AxALχ...LJ{d - 2) >

> Δ1Δίl...,n/(d) - A^jJid - 2) > 0.

Hence it is enough to prove it for d = 2/. Let (p^q) be the type of the

sequence (Zi,...fn) Set F = Δ/1.../n_p_q/ G J^+g+i- It is easy to see that

ΔZ l... l n/ = Δ | n . p _ q + 1 . . . ί n F; Δ L l . . . L n / = Δ L n _ p _ 9 + 1 . . . L n F and for a; < / - 1 we

have

Δ l l... ln/(a:) = ΔL l . . .L n/( 3 :) = F(x).

In the sequence (Zr ι_ ί>_g+1, Z7l_p_9_f_2 . . . ln) the number / occurs p times and

the remaining q numbers are all / — 1. Therefore we can easily calculate

Δzn_p_g+1..7nF(x) and ALn_p_q+1...LnF(x) for any x < 21 using the fact that

— 0 f° r V < 0. Our inequality becomes

£"- £" F{U) -(p + q) \F(1 - 1) - (p + g)F(O)] <

- 2) + (p + 9)F(/ - 1) - ^ + ̂  F(0) | .

Using the fact that (p^q) = (ζ) + (̂ ) -I- pq we see that our inequality is the
sum of the following two:

< ^ \A2F{21) - PA1F(l) - qA2F(l + 1)]
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2pqF(0) < j |

Since f±\-pΔ1F(l)-qΔ2F{l + 1)1 > Γ-pΔiF(0-?Δ 2F(ί +1)1, the first

inequality follows from Lemma 4a if we set a = I. Lemma 1 implies that
F(l) > 3F(0); hence the left hand side of the second is negative, the right
hand side is positive. Therefore the lemma is proved.

Lemma 7b. For any choice of the integer numbers n > 1, / > 7, d > 21,
any sequence 1 < lχ < I2 < < ln — I and o,ny function f £ Tn+\ we
denote by (L 1 ? . . . Ln) the truncation of (/ l5... ln). Then we have

L*=l

Proof. We can copy the proof of Lemma 7a with the following changes. We
have to write | | everywhere in place of | | , and we have to use Lemma 4b
instead of Lemma 4a.

Theorem 1. For any choice of the integers m > I, 3 < lχ < < lm,
d > 2lm, and any function f £ Tm+ι we have

If we have 4 < l\ < < lm together with the above assumptions then we
have

Proof. First we note that the left hand side is independent of d and the right
hand side is monotonic. Hence we may assume that d = 2lm. We shall prove
the theorem by induction on lm. If lx = l2 = = lm = / then the inequality
becomes

mf(l) - m2/(0) < /(2i) - mf(l)

Lemma 2a tells us that 2m/(I) = (2(ra + 1) - 2) /(/) < /(2Z), and obviously
(m2 + (^))/(0) > 0, so the first inequality is true in this case. If / > 4 then
Lemma 2b tells us that 2mf(l) < §§/(2Z) < |f/(2Z), so the second inequality
is true as well. In particular we proved the first inequality for lm = 3, and
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the second for Zm = 4. Let Z > 4, assume that the theorem is true whenever
Zm < /, and we shall prove it for lm = I. Lemma 7a tells us that

.t=l

with a sequence lχ < Lλ < < Lm < I — 1. By our assumption we know
that

m

ΣΔi,..tJ(Ii)<Δ£l...iJ(2ί-2)

and the sum of the last two inequalities gives us the first inequality ofthe
theorem. If 4 < lλ then we have

and adding it to the previous one we get the second inequality of the theo-
rem.

Theorem 2. For any real numbers C > 0 ; a > 0 and any integer r > 1
there are integers D,L,T > 0 s?ic/i t/iαt whenever we choose integers n > 1,
d > max(i), αn 1 / / r ) ; a sequence 1 < lx < l2 < ln < d/2 and a function
f E Tn+r, we find either that lx — l2 = = ln-τ — 1 and U < L for all i,
or

(**) Cdr + ΣAh..U(h) <Ah..,J(d).

Proof. We set A = 65((7 + α~ r ), then Lemma 6 gives us integers Z), L
depending o n i , r . We can assume that D > 8. Lemma 5 gives us an integer
T, we can assume that T > A. We shall prove the theorem with this D,L,T.

Let n, d, Zi . . . Zn, / be as in the theorem, and assume, that we are not in
the first case, so either Zn_ τ > 2 or Zn > L. Let j be the largest index such
that lj < 3. If j < n then applying Theorem 1 to the function Δ^...^./ we
get

t=j+l
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If j = n, then the left hand side is 0; hence this inequality remains true. It
is easy to see that

J2 Ah...lnf(h)

hence in order to prove (**) we need only to establish

Adrf(3) < f(d).

This follows from Lemma 5 if ln > Zn_i > > Zn_τ > 2, and follows from
Lemma 6 if ln > L. So the theorem is proved.

Lemma 8. // / = AtF where F G T2 andt>7 then f(d) > df{l) + f(t)
for all d > 2t.

Lemma 9. Let F G T$ and choose integers a>Ί,b>2,c>2 and e > 2.

Then for all d>8 we have

2Aa,bF(l) < L [Δα,6F(d) - Aa^bF(d - 2)].

// in addition F G f 5 then for all d > 14 we have

2Δ α Λ c , e F(2) < ^ [Δ β A c , e F(d) - Δ β . 1 A β f β F ( ι i - 2)].

Lemma 10a. // / = A2^F for some F G ^ or f = AtF for some F G T2

and t > 3, then /(I) < ΔJ/(d) for all d>2.

Lemma 10b. If f = Atl^2MMM^ for s o m e F e ^ and every U>2 then
f{2)>A1f{d)foralld>A.

Theorem 3. Choose arbitrary integers n > 1, 1 < lχ < -— < ln,
d > max{2Zn, n + 1}, and any function f G ^>ι+i
• If d > 11 and the sequence I = (h^h - -In) is not equivalent to any of
the following sequences: (1), (2), (2,2), or (3), then the following inequality
holds:

• Ifd = 8,9,10 and I is not equivalent to (1), (2), (2,2), (3), (4), then again
(***) holds.
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• If d — 7 and I is not equivalent to (1), (2), (2,2), (3), (2,3), then again
(***) holds.
• For d = 6 and I is not equivalent to (1), (2), (2,2), (2,2,2), (3), (2,3),
(2,2,3), (3,3), then again (***) holds.

Proof. We shall prove the theorem in three steps. To start the inductions

I verified by computer the first few cases. Since (***) is linear in / it is

enough to check it for f(x) = G n + i ( z - T) for all 0 < T < Zn. I checked all

cases with d = n + l < l l and all cases with d = n + 1 = 2Zn = 12.

If Z is a sequence that is not equivalent to (1), (2), (2,2) and (3) then

the sequence of the k largest element of Z is not equivalent to these for all

k > 2. If ln > 4 then the truncation of Z is also not equivalent to the above

sequences. Let Z denote the increasing sequence (Z1? Z2 . . . ln) and assume that

Z is not equivalent to (1), (2), (2,2) and (3). If Zx > 3 then Theorem 1 proves

(***). So we assume Zx < 2 in the entire proof.

First step: We prove the theorem under the assumption that d = n + 1 =
2Zn > 6. The computer verified it for d = n + 1 = 2Zn < 12, we shall prove the
rest by induction on d — n + 1 = 2Zn. So we assume ln > 7 and d > 14. Let
L be the truncation of Z. We can apply Lemma 7b to n,d, to our sequences
I and L, and our function /, and we get

(2)

If Zn_! = 1 then Lemma 8 proves (***). So we assume that Zn_x > 2.

Case A: If Z2 < 2 then from the induction hypothesis for n — 2, cί — 2, the

sequence (L3, L4 . . . Ln) and function Ahι2f we get

Δ l l l a Δ L , . . . L n /(L 1 ) < Δ l l l 2ΔL a...L n/(<f - 2).
i = 3

We add (2) to this inequality, and use that Li = h, L2 = h- Then we get

(3) γ

+ -[AhhAh...ιJ(d) - Ahl2AL3...LJ(d-2)] <Δ l l l2Δί3... ln/(d).

On one hand, if Zx = Z2 = 1 then we apply the first half of Lemma 9 to the
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function F = Δ/l...ίn_2/ and get

Δi l laΔL,...L|,/(Z1) + AllhALs...LJ(l2)

< 2Aln,ln_1F(l)

< 1 [At^Fid) - A^^Fid - 2)]

< ^[Δ/ l / 2Δ l 3..,n/(d) -AllhAL3...LJ(d-2)].

On the other hand, if lχ < l2 = 2 then we apply the second half of Lemma 9
to the function F = Δ ί l... ίn_4/ and get

Ahl2AL3...LJ{h)+AhhAL3...LJ(l2)

< 2Alntln_lln_2ln_3F(2)

^ (ί0 - Δ ί n_1, ί n_ l / n_2 i n_3F(d - 2)]

^ - Δ / l l a Δ i 8 . . . j t n / ( d - 2 ) ] .

Hence in both cases we get

Δ ί l I aΔL,.. .L n/(/ 1)+Δ ί l / aΔ l i,.. .L n/(/ 2)

< ^[AhhAh..,J(d) -AhhAL3..xJ(d-2)}.

If we add (3) to this inequality, we get (***).

Case B: If l2 > 3 then we use Theorem 1 for n - 1, d - 2, the sequence
(L2, L3 ... Ln) and function Δjltf. This gives us the following inequality:

AhAL2...LJ{d-2).
i=2

If we add (2) to this inequality, we get

έΔ ί lΔ l a.../ l./(/ j)-
(4)

^ - AhAL2...LJ(d-2)\ < AhAι,...ιJ(d).

We apply the second half of Lemma 9 to F — ΔZl...jn_4/ and we get

AhAL2...Lj(li)<Aln,ln_lln_2ln_3F(2)

< 2Alntln_lln_2ln_3F(2)

< ^ [Aln,ln_lln_2ln_3F(d) - Aln_hln_lln_2ln_3F(d - 2)]

< L [AhAl2..,J(d) - AhAL2...LJ(d - 2)].
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Adding (4) to this inequality we get (***). We proved (***) in Case A and

Case B; hence the First step is completed.

Second step: we prove the theorem under the assumption that d — n +1 > 6.
We use induction on d. In the First step we proved it for d = 21n, the
computer verified this for d < 11 so now we assume that d > 2/n and
d = n + 1 > 12. From the induction hypothesis for n - 1, d — 1, and Ahf
we get

(5)
i=2

On one hand, if /i — 2 then we apply Lemma 10b to the function F =

Δh...ιn-5f- Then we get

On the other hand, if lλ — 1 then the sequence I is not equivalent to (2).
Hence either ln > 3 or ln — 1 = ln — 2. We can apply Lemma 10a and we
get again that

- AhAl9...lnf(d - 1).

Adding (5) to this inequality we get (***), so the Second step is completed.

Last step: finally we prove the theorem with no extra assumption.
Let L = (Li... Ld-i) be the following sequence. L{ = li+n_d+ι for d — n <
i < d — 1 and Lj = 1 for 1 < j < d — n. We choose a function F G T& such
that / = Δχ,1...£,d_n_1F = Δ^i^ . iF . By the Second step we can apply (***)
to F, d, and the sequence L . Then we get that

(d-n- l)ALl...Ld_1F(l) + Σ ALl...Ld_1F(Lι) < Δ t l...L d_ 1ί'(d).
i=d—n

If we drop the first term we get (***) for /, d and I since ALl.^Ld_1F —

Δz!..jn/ and U = Ld_n+i for all i. So we proved the theorem.

References

[1] E. Ballico, C. Ciliberto (eds.), Algebraic Curves and Protective Geometry, vol. 1389
of Lecture Notes, Springer-Verlag, New York, 1988.



294 ENDRE SZABO

[2] M.L. Green, Griffiths' infinitesimal invariant and the Abel-Jacobi map, J. of Differ-
ential Geometry, 29 (1989), 545-555.

[3] P. Griffith and J. Harris, On the Noether - Lefschetz Theorem and some Remarks
on Codimension Two Cycles, Math. Ann., 271 (1985), 31-51.

[4] E. Cattani, F. Gnillen, A. Kaplan, F. Puerta (eds.), Hodge Theory: Proceedings
of the U.S.-Spain Workshop Held in Saint Cugat (Barcelona), vol. 1246 of Lecture
Notes, Springer-Verlag, New York, 1987.

[5] T. Shioda, Algebraic Cycles on Hypersurfaces in ΨN, Algebraic Geometry, Sendai,
Adv. Stud. Pure Math., 10 (1987), 717-732.

[6] E. Ballico, F. Catanese, C. Ciliberto (eds.), Classification of Irregular Varieties,
Minimal Models and Abelien Varieties, vol. 1515 of Lecture Notes, Springer-Verlag,
New York, 1990.

[7] X. Wu, On a Conjecture of Griffiths-Harris Generalizing the Noether-Lefschetz

Theorem, Duke Mathematical Journal, 60 (1990), 465-472.

Received January 24, 1994.

UNIVERSITAT BAYREUTH

GRADUIRTENKOLLEG "KOMLEXE MANNIGFALTIGKEITEN"

UNIVERSITATSTTR. 30

95440 BAYREUTH, GERMANY




