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THE CLOSED GEODESIC PROBLEM FOR
COMPACT RIEMANNIAN 2-ORBIFOLDS

JOSEPH E. BORZELLINO AND BENJAMIN G. LORICA

In this paper it is shown that any compact Riemannian
2—orbifold whose underlying space is a (compact) manifold
without boundary has at least one closed geodesic.

Introduction.

In this paper, we examine the question of the existence of a smooth closed
geodesic on Riemannian 2-orbifolds. Roughly speaking a Riemannian orbi-
fold is a metric space locally modelled on quotients of Riemannian manifolds
by finite groups of isometries. It turns out that Riemannian orbifolds inherit
a natural stratified length space structure and are sufficiently well-behaved
locally so that one may apply both techniques of Alexandrov geometry and
geometric analysis to extend standard results about Riemannian manifolds
to Riemannian orbifolds. The 2-orbifolds we consider in this paper are orb-
ifolds whose underlying space is a manifold without boundary. One can
think of such Riemannian orbifolds as 2-manifolds with some distinguished
singular cone points, whose neighborhoods are isometric to a quotient of the
2-disc with some metric by a cyclic group of finite order fixing the center
of the disc. The 2-orbifolds we consider fall into two categories which we
will handle with different techniques. The first case is when the underlying
space of the orbifold is simply connected (in the usual topological sense),
that is, the underlying space of the orbifold is the 2-sphere S?. This class of
orbifolds contains the set of all orientable bad 2-orbifolds, namely those that
do not arise as a quotient of S* with some metric by a finite group of isome-
tries acting properly discontinuously. These bad 2-orbifolds are examples of
what are commonly referred to as teardrops and footballs. The second class
of 2-orbifolds are those whose underlying space is not simply connected in
the usual sense. The basic reference for orbifolds is [T], while a more Rie-
mannian viewpoint is taken in [B1]. Many of the results on Riemannian
orbifolds that we will use have appeared in published form in [B2].

Before we state and discuss our results for Riemannian orbifolds, we would
like to recall the methods and ideas used to prove the classical theorem
of Fet and Lyusternik [FL]: On any compact Riemannian manifold there
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exists at least one closed geodesic. The essential tool in proving this result,
in an elementary way, is to develop a process of curve-shortening. This
process is commonly attributed to Birkhoff [Bi]. The idea here is, given a
continuous map of say the unit interval into our manifold M, to divide the
interval into small subintervals so that the endpoints of the curve restricted
to any subinterval have the property that there exists a unique minimal
geodesic connecting the two endpoints. That such a subdivision exists follows
from compactness of M, since then one finds a uniform lower bound on the
injectivity radius at any point of M. By replacing the given curve by the
minimal geodesic connecting such endpoints one constructs a new “broken”
geodesic homotopic to the original of length less than or equal to that of
the original. Now one iterates this process by joining those endpoints that
correspond to the midpoints of the previous subintervals with the minimal
geodesic connecting them. In this way one generates at each stage a new
broken geodesic of shorter length, which is homotopic to the original. It
is worth mentioning that if one is interested in applying this process to
closed curves, namely maps of S* = [0,1]/{0,1} into M that at each stage
this process yields a closed broken geodesic freely homotopic to the original.
Now by compactness, essentially the Arzela—Ascoli theorem, one can find
a subsequence of these broken geodesics which converge, and in fact will
converge to a geodesic. We refer to [K, Section 3.7] for the details.

An alternate approach to the Fet-Lyusternik theorem is to apply tech-
niques from the calculus of variations on Hilbert manifolds, see [S, Chapter 8].
If M is a closed Riemannian manifold, the space of H!(S*, M) curves is a
manifold modelled on a Hilbert space. The geodesics correspond precisely to
the critical points of an appropriate energy functional defined on the space
H'(S', M) . The energy functional satisfies the famous Palais—Smale com-
pactness condition, the main analytic tool needed in proving the existence
of critical points. While this approach has natural aesthetic advantages over
the polygonal approximation approach mentioned above, Bott [Bo] notes
that the use of global analysis does not appear to be essential for any aspect
of the geodesic problem on closed manifolds. The use of infinite dimen-
sional manifolds, however, is of fundamental importance in the study of
other geometric variational problems such as the study of minimal surfaces
and Yang-Mills theory.

Part of the proof of the main result of this paper requires that we work
on compact manifolds with boundary. It is not clear to the authors how ore
should choose to construct a suitable structure on H*(S*, M) in the case that
OM is non—empty. It is for this reason that we adopt an approach similar
in spirit to the polygonal approximation construction outlined above.

In trying to generalize the result of Fet and Lyusternik to Riemannian
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footballs one must overcome the following difficulty: there is not a uniform
lower bound on the injectivity radius at points in a compact Riemannian
orbifold. This follows from a result of the first author [B2, Proposition 15]
where it is shown, for example, that a minimal geodesic cannot enter and
leave the singular set. As a result the injectivity radius of a non-singular
point is bounded above by its distance to the singular set, and hence no
uniform bound is possible (unless of course the singular set is empty and M
is a Riemannian manifold). We now state our main result.

Theorem 1. Let O be a compact Riemannian 2-orbifold whose underlying
space is a (compact) manifold without boundary. Then O has at least one
closed geodesic.

Remark 2. Riemannian orbifolds carry the structure of a length space
(or inner metric space). By geodesic we mean a path in the orbifold which
is locally length minimizing. This agrees with the definition of geodesic for
general length spaces. When working with orbifolds, however, we should
point out that it is common to define a geodesic as a path that lifts locally
to a geodesic. These two notions are related but are not equivalent.

We would like to thank J. Hass for useful conversations regarding this
work. We would also like to thank P. Petersen for reading an earlier version
of this paper and suggesting improvements of the original results.

Review of the Curve—Shortening Process.

In this section, we let X denote a smooth compact Riemannian manifold
with (or without) boundary. Then there exists a real number i, such that
any two points p,q € X with d(p,q) < io can be joined by a unique minimal
geodesic which depends continuously on the two points.

We define a curve-shortening process along the lines of that described in
[GZ]. Let v : S* =[0,1]/{0,1} — X be a closed curve in X. Assume that
v is parametrized proportional to arclength. Denote by L the length of +.
Let m be an integer such that L/m < 4. Divide the curve <y into m equal
segments each of length L/m, by the division points go,¢1," " ,@m—1,qm-
Now replace each arc g;q;,, by the unique minimal geodesic g;g;;1 joining
g; to q;41 of length < 4. This replaces v by the m-sided closed geodesic

polygon

Y =0a UG Y- UGn_1Gm.

Note that the length of ' is strictly smaller than the length of y unless v =
v. Now take the m midpoints of the segments of 7'. Successive midpoints are
at distance < ¢y from each other and hence can be joined by a unique minimal
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geodesic. This produces a new m-sided geodesic polygon 4”. The process
described above is to be one iteration of the curve-shortening process. We
denote 4" as ®(y). Continuing inductively, we see that at each stage we
have produced a new curve homotopic to and of length not longer than the
curve of the previous stage.

The Non—Simply Connected Case.

We consider in this section the case when the underlying space of the orbifold
is not simply connected (in the usual sense). The argument presented here
is a modified version of an argument which originally appeared in the first
author’s Ph.D. thesis [B1].

As usual, we denote the singular set by X¥. Let C be a non-trivial free
homotopy class. Let £ = inf {L(c) | ¢ € C}. Then £ > 0, for if there exists
a sequence {c,} : [0,1] — O such that L(c,) = 0 with ¢, parametrized
proportional to arc length, then by the Arzela-Ascoli theorem some subse-
quence of {c,} converges to a continuous curve c. Since length is lower—
semicontinuous, we have L(c) = 0 which implies c is a constant path. But O
is locally simply connected, hence c,, ~ ¢ for large n which is a contradiction.
Thus, £ > 0. Now choose a sequence {c,} such that L(c,) < £+ . Then
as before, {c,} form an equicontinuous family with {c,(¢)} bounded. Hence
¢, — ¢ a continuous curve in C. We have L(c) < £ and hence by definition
of ¢, L(c) = ¢. We now show that c is a closed geodesic. If cNY = @,
then c is a closed geodesic, for otherwise it could be shortened locally. If
c¢NX # (), then ¢ cannot be minimal in any neighborhood of the singular set
which follows from [B2, Proposition 15]. Hence we can get a shorter curve
¢ ~ ¢ with ¢N'E = (), which contradicts construction of ¢. This completes
the proof in the non-simply connected case.

The Simply Connected Case.

We are considering the situation when the underlying space of O is the 2-
sphere S%. We will split our argument for this situation into two cases. The
first case will be where O has no more than two singular points (teardrops
and footballs) and the other when O has at least 3 singular points.

The Teardrop and Football case. Let O compact Riemannian 2-orbifold
with two or fewer singular points. Denote by p and g, the singular points
of O. If O has only one singular point p, choose ¢ to be any point of say
maximal distance from p. If O has no singular points, that is, O is a smooth
2-sphere, choose p and ¢ realizing the diameter of O. We will refer to p and ¢
as the singular points of O (whether or not they are truly singular). Denote
by X the singular set {p} U{q}. For 0 < § < d(p,q)/3 denote by O; the set of
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points z € O such that d(z,X) > §. Then O; is the manifold with boundary
S* x I. By [ABB, Theorem 5], every point in Os possesses a neighborhood
which is convex in the sense that any two points in the neighborhood may be
joined by a unique geodesic entirely contained in the neighborhood. In fact,
it is not hard to see that such a neighborhood may be chosen to be a metric
ball. Hence, by compactness there exists a positive real number 7¢onvex > 0,
the convexity radius, for which any metric ball of radius at most rcopvex is
convex.

Fix 6o = d(p,q)/3. Choose § small enough so that the boundary circles
zs and ys of O have length < T¢onvex, the convexity radius of Os,, and so
that ®§(zs) C B,(3d(p,q)) and ®}(ys) C B,(3d(p,q)), where &} denotes the
k-th iterate of the curve shortening process in Os. We also require that
is so small that the lengths L(z;) and L(y;) are non-increasing as 6 — 0.
Note that this can be done since neighborhoods of the singular points are
asymptotically Euclidean cones (or smooth Euclidean discs).

By applying curve shortening to zs, ys, we produce two closed geodesics
(in O5) z5 = To C B,,(%d(p, q)) and Y5 = Yoo C By(3d(p,q)). Now foliate
O —{p, q} by circles such that for §' < ¢ these foliating circles are exactly the
distance spheres from p and ¢. Using this foliation we can produce a path
F :[0,1] — AO;, where AO; denotes the loop space of O, with F(0) = x4,
and F(1) = y.. To see this, we construct the path F as follows: Start at
Too. Run the curve shortening process backwards to z5;. Now follow the
foliating circles until you reach ys;. Now apply curve shortening to go from
Y5 t0 Yoo. Also we have that

sup E(F(t)) <M < oo

where E denotes the energy functional on AO;s. It is easy to see that by
the construction of the path F that the constant M can be chosen to be
independent of 4.

Recall (see [Bo], for example) that there is a finite dimensional approx-
imation to the subset E~'[0,2M) C AO;s;. That is to say, there is a fi-
nite dimensional manifold Of homotopy equivalent to E~'[0,2M). In fact,
Of C Os x O5 x -+ x Og, and Oj contains all closed geodesics of energy
< 2M. In particular, we have that =, and y., are contained in Oj.

Since F : [0,1] = AO;, F(0) = 2o, F(1) = Yoo, and sup, E(F(t)) < M,
the set

Q= {r +[0,1] = 05 | T(0) = Zoo, T'(1) = Yoo, sUP E(I'(t) < M}

is non—empty. Define
cs = inf sup E(T'(2)).

TeQ g<i<1
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It follows that cs is a critical value for £ : Of — R. To see this, suppose
to the contrary that there exists € > 0 such that the set E~'[cs — ¢, ¢5 + €]
contains no critical points. Choose I'. € {2 such that

sup E(T.(t)) <cs +e.
0<t<1

Now apply the curve-shortening flow ®, to the path I'.(¢). By curve-
shortening flow we mean the continuous flow that can be constructed from
the discrete curve shortening process. This can be found in [Bo]. Observe
that for all ¢ € [0,1] there exists s(t) such that E(®)(L.(t))) < ¢s — ¢, and
also that @, fixes both z., and y., since they are already closed geodesics.
By compactness, we have that

sup s(t) =35 < o0
0<t<1
and thus
E(®:(T.(t)) <cs —e.

Moreover we have that ®; 0 I', € Q, but this contradicts the definition
of cs, so c¢s is a critical value. Let <; be the critical point associated
with the critical value c¢s. We have that E(v;) < M. It also follows by
the triangle inequality and the homotopic essentiality of -y; that the length
L(~vs) > min{convexity radius of Os,, 3d(p,q)}. In particular, the length of
vs is bounded below by a constant independent of 4.

If as 6 — 0, s lies entirely within the interior int(QO;) for any fixed stage
0 then we are done as then ~y; is a closed geodesic which lies entirely outside
the singular set. If this does not happen then we may assume that for all 4,
gs € 75 N 00s. Without loss of generality we may assume that ¢s — ¢ € %,
and that y; — v and that g € 7. By results in [AA] and [ABB], we know
that 7, is differentiable at gs. Thus, the tangent vectors ¥s and —<s; make
an angle of 7 at ¢s. Suppose that the angle of the curve v, at q is < 7.
Then it must follow that the tangential (to d0;) components of the second
derivatives

[[tan(Vs,7s)|| — oo

as d — 0, but this contradicts the length minimizing property of vs at gs.
See [ABB]. Hence the angle of the curve v, at ¢ must be m, and this a
contradiction unless ¢ is non-singular.

If ¢ is non-singular, we show that in fact -y, is a geodesic. The only
problem is that -y, might not be minimizing across ¢. If this is the case,
choose points u,v on 7, which straddle q and are close to q. Let L(u,v)
denote the length of the segment along <y, joining v to v. Then since 7, is
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not minimal, there exists a minimal geodesic ¢ joining u to v. Assume that
o lies in O;, and choose € > 0 such that L(u,v) = L(o) + € = d(u,v) +¢.
Now choose § < §, such that d(us,u) < €/4, d(vs,v) < €/4 and such that
|L(u,v) — d(us,vs)| < €/4, where us, vs; are points on ;. Then we have

d(us,vs) < d(ug,u) + d(u,v) + d(v,vs) < % + L(u,v) — ¢

€ €
< '2' + d(U5,’05) + Z —e< d(’lm,’l),;)
which is a contradiction, and hence -y, must have been minimal through gq.
Thus, in either case, we have produced the desired closed geodesic of
positive length. The proof is now complete for the simply connected case
with two or fewer singular points.

The Case of More Than Two Singular Points. In this situation we are
assuming that our orbifold O is the 2-sphere with more than two singular
points. We will use the notation of the previous section. Let the singular set
be ¥ = {py,...,p,} with n > 3. Let 7o = 1 min{d(p;,p;),s # j} For d <o
we have that Os = D? — U, <;<n_1 Bp:(6), where D? is the 2-disc, and By, (d)
denotes the metric d-ball centered at p;. In particular, the fundamental
group 7;(O;s) is the free group on n — 1 generators {a,...,a,_1}. Let
v € [a1a5"'] € m(O;s). Let 5 be the limit of the curve-shortening process
applied to 7 in O;. Since 7 is not homotopically trivial, the length of +; is
> 0. We claim that the length L(vys) of 75 is bounded below as § — 0. If this
is not the case, then it follows that for § small enough that s C By, (370),
for otherwise 5 would be entirely contained in some convex ball of Os, and
hence homotopically trivial. Also, if y; C B,,( %ro), then it must follow that
7y is freely homotopic to a!* for some m, which is a contradiction. Thus, the
length of -y, is bounded below as § — 0. By arguing as in (the end of) the
previous section, we can conclude that for some § > 0, s must have been a
closed geodesic missing the boundary of Os, and hence is a closed geodesic
in O. This completes the proof of the simply connected case, and hence
finishes the proof of Theorem 1.

References

[AA] R. Alexander and S. Alexander, Geodesics in Riemannian Manifolds With Bound-
ary, Indiana U. Math J., 30 (1981), 481-488.
[ABB] S. Alexander, I. Berg and R. Bishop, The Riemannian Obstacle Problem, Illinois J.
Math., 31 (1987), 167-184.
[B1] J. Borzellino, Riemannian Geometry of Orbifolds, Ph.D thesis, University of Cali-
fornia, Los Angeles 1992.

[B2] , Orbifolds of Mazimal Diameter, Indiana U. Math. J., 42 (1993), 37-53.




46

JOSEPH E. BORZELLINO AND BENJAMIN G. LORICA

G.D. Birkhoff, Dynamical Systems with Two Degrees of Freedom, Trans. Amer.
Math. Soc., 18 (1917), 199-300.

R. Bott, Lectures on Morse Theory, Old and New, Bull. of the AMS, 7(2) (1982),
331-358.

A. Fet and L. Lyusternik, Variational Problems on Closed Manifolds, Dokl. Akad.
Nauk. SSSR, 81 (1951), 17-18 [Russian].

H. Gluck and W. Ziller, Ezistence of Periodic Motions of Conservative Systems, in
Seminar on Minimal Submanifolds, Princeton Univ. Press, Princeton 1983.

W. Klingenberg, Riemannian Geometry, Walter deGruyter, New York 1982.

J.T. Schwartz, Nonlinear Functional Analysis, with an additional chapter by H.
Karcher, Gordon and Breach, 1969.

W. Thurston, The Geometry and Topology of 8-Manifolds, Lecture Notes, Princeton
University Math. Dept., 1978.

Received April 13, 1994.

UNIVERSITY OF CALIFORNIA
Los ANGELEs, CA 90095-1555
E-mail address: borzelli@math.ucla.edu

AND

INSTITUTE FOR MATHEMATICAL SCIENCES AND APPLICATIONS
CALIFORNIA STATE UNIVERSITY, MONTEREY BAY

SEASIDE, CA 93955-8001

E-mail address: ben_lorica@qmbridge.calstate.edu





