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APPLICATIONS OF LOOP GROUPS AND STANDARD
MODULES TO JACOBIANS AND THETA FUNCTIONS OF

ISOSPECTRAL CURVES

WlLLI SCHWARZ

Let L(z) be an element of Mn{€,[z,z~1]). In this work we
study the structure of isospectral curves given by /(z, λ) = 0,
f(z,\) — det(L(z) — λ), their Jacobians and the relationship be-
tween standard modules and the corresponding theta func-
tions. We assume that /(z, λ) is irreducible and nonsingular
for /(z,λ) = 0 and z G C \

The element L(z) will be called good, if the centralizers
€±(L) of L(z) in Mn(C[z]) (resp. Mn(<C[z-1))) are the integral
closure of C[z,zpL] (resp. Mn{C[z-1 ,z~qL))) in Mn(C[z,z~1]).
The class of curves we analyze include nonsingular curves and
the isospectral curve of the periodic Toda lattice. The latter
curve is represented by a "tridiagonal" matrix L(z).

The Jacobian variety is expressed as a quotient of certain
centralizers of L(z) which are computed in a completion Mn(Aw)
of Mn(C[2;,^~1]). If we assume further that L(z) is an element
of SLLn{C[z,z~1]) then the basic module of the universal cen-
tral extension SLn{Aw) of SLn{Aw) is employed to define a
function θ. This function θ is defined in terms of represen-
tative functions on the "Lie theoretic" Jacobian and satisfies
the functional equation of theta functions.

Introduction.

The relationship between completely integrable Hamiltonian systems, Kac-
Moody Lie algebras and curve theory were studied systematically by M.
Adler and P. van Moerbeke in [1], [2]. The main idea of their method is to
associate to such a Hamiltonian system a Lax matrix differential equation
of the form

where L is an element of a loop algebra g = g ® C[z,z~λ] and M(L) is a
function of L. The associated isospectral curve XL is obtained as projective
completion of the quasi-affine curve

χa = {(z, λ) e C* x C I det {L(z) - λ) = 0}.
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464 WILLI SCHWARZ

The corresponding Lax equation of a completely integrable Hamiltonian sys-
tem becomes linear on the Jacobian variety of the curve XL. For those sys-
tems which are of relevance in physics, such as the periodic Toda system,
the Euler-Arnold spinning top and the Neumann problem, the isospectral
curves are hyperelliptic.

Certain classical integrable Hamiltonian systems which arise in mechanics
or geometry, for instance the motion of a particle on an ellipsoid under a
central force or the geodesic flow on an ellipsoid, were solved directly by J.
Moser [15]. The solutions are expressed in terms of hyperelliptic theta func-
tions on the Jacobian variety of the related hyperelliptic isospectral curve.
The Jacobian variety is obtained as a quotient-space of an isospectral man-
ifold. Its linear structure defined by the Hamiltonian vector fields of the
integrals of the flow agrees with the linear structure as given by Abel's theo-
rem. These ideas were developed further by D. Mumford in [18] to construct
families of Jacobian varieties using dynamical systems.

Classical and quantum mechanical systems of Toda lattice type were stud-
ied in detail by R. Goodman and N. Wallach in a series of papers [6], [7],
[8]. In the case of the generalized periodic Toda lattice the solution is cal-
culated in terms of representative functions of standard modules of a Ba-
nach Lie group Gw. The group Gw is obtained as a central extension of
the connected and simply-connected loop group Gw of the completion g of
the Kac-Moody algebra g. To obtain explicit solutions the representative
functions on standard modules defined by highest weight vectors are com-
puted along certain one-parameter subgroups of Gw. These functions define
a system of non-linear ordinary differential equations. In the special case
of SL2( M) this system of ordinary differential was solved explicitly and the
solution described in terms of theta functions.

In this work we combine the Kac-Moody Lie algebra approach to Hamilto-
nian systems with the method of representative functions of standard mod-
ules to obtain our main results. The related Lax equation of an integrable
Hamiltonian system

with L G Mn(C[^,2:~1]) implies that M(L)+ — M(L)~ is contained in the
centralizer of L in Mn(C[z, z~1]). Taking this fact into account we consider
various centralizers of L in a certain loop algebra and its associated loop
group.

Suppose L G Mn(C[z,z~1}), L(z) = ΣQj=-p£jZj is such that its char-
acteristic polynomial f(z, λ) is irreducible and the isospectral curve XL is
nonsingular for z E C*. The calculation of centralizers will be done in a
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completion Mn(Aw) of the loop algebra Mn{C[z,z~1]). The completion is
defined by the absolute convergence of weighted series of Fourier coefficients
for certain weights w. These weights satisfy for some σ, 1 < σ < 2, the
inequalities

Ctexp(ί|fc|1/σ) < w(k) < M€exp(e|A;|)

for all t, e > 0, k G Z and some positive constants Cu M€.
Let £W(L) denote the centralizer of L in Mn(Aw) and C™ resp. C™ the

centralizers of L in the respective completions of Mn(C[z]) and Mn(C[z~x]).
We prove that if the curve XL is nonsingular or if L is "tridiagonal" (i.e. L
is tridiagonal with an entry in the upper right corner and in the lower left
corner) that the respective centralizers C±(£) inMn(C[;z]) resp. M n ( φ ~ ! ] )
are the integral closure of C[z,zpL] resp. of C[z~ι ,z~qL) in Mn(C[z, z"1]).
We consider C[z,zpL] and C[z~λ ,z~qL] to be contained in Mn(C[z, z~1]).
The element L G Mn(C[z, z'1]) will be called good if it satisfies this addi-
tional condition.

If C±(L) denote the analogue of the centralizers £±(L) in the loop group
GLn(Aw) we define

Λ = {V e £W{L) I ev € C™{L)C™(L)}.

We will prove that the Jacobian variety of the desingularized curve X'L,
Jac(X^), is isomorphic to

if L is good.
Suppose now that L E sln(Aw). Let (L(λo),τrλo) denote the basic module

of the universal central extension SLn(Aw) of SLn(Aw). If v0 denotes the
highest weight vector of L(λ0) we define the function θ on

in terms of representative functions as

Θ(W) = e-^w^πX

The term σ(W) is defined to be σ(W) = ω(W+, VF_) where ω is the cocyle
defining the Lie algebra extension and W = W+ + Wo + W- is the decomposi-
tion of W corresponding to sln(zC[z]) + s/n(C) + sln(

z~lc[z~1]) H e r e (> )λ0

denotes the contravariant, positive-definite Hermitian form on I/(λ0). We
show that the function θ is a theta function on the "Lie theoretic" Jacobian
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Most of the material contained in this work is essentially the author's
doctoral thesis given at Rutgers. He wishes to thank his thesis advisor,
Nolan Wallach, for help and guidance. Discussions with Roe Goodman were
also very helpful.

1. Concepts from the Theory of Nonsingular Projective Curves.

The purpose of this chapter is to develop notation from the theory of non-
singular projective curves.

1.1. Nonsingular Projective Curves and Jacobian Varieties.

The term projective curve will denote an irreducible algebraic set in Pn(C)
of complex dimension one, with the induced topology. Most of the projective
curves in this work will be given as the zero set of an irreducible homoge-
neous polynomial /, / G C[x0, Xi,x2], * n IP2(C).

Set

x = {PeΨ2(C) |/(p) = o}.

The projective curve X is said to be nonsingular, if for any P G X

However, there will be cases when the general definition (cf. Hartshorne
[12], p. 31) will be necessary.

The simplicial homology groups of a nonsingular projective curve X are
described as follows. Since X is connected, H0(X, Z ) = Z . Hλ(X, Z ) is the
free group on the generators [α,], [6,], j = 1,... ,g. Thus Hλ(X, Z ) = Z 2g.
The second homology is isomorphic to the integers, H2{X^ Z ) = Z , since X
is compact.

The integer g is called the genus of the nonsingular projective curve X.

The generators [α,], [bj] of Hλ(X, Z ) can be chosen, so that the following
intersection properites are satisfied (see Farkas-Kra [4], p. 54).

dj α& = 0 =

Any basis {αi,... , a9, bλ,... , bg} of Hλ(X, Z ) with these intersection prop-
erties will be called a canoncial homology basis for X.
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Let {α i , . . . yωg} be the unique basis for the space of holomorphic differ-
entials with the property

Jaj

Furthermore, for this basis, the matrix Ω = (Ω^) with

is symmetric with positive definite imaginary part.
The matrix (7, Ω) is called the period matrix of the holomorphic 1-forms

o n l .
Suppose X is an irreducible nonsingular projective curve. Define Λ =

Λ(Ω) to be the lattice

The complex torus

Jac(X)=CVΛ

is called the Jacobian variety of X.

An equivalent definition is obtained by using sheaves (cf. Gunning [11]).
Let

0 -» Z -> ox -> o^ -> 0

be the short exact sequence of sheaves on X. Here Z denotes the constant
sheaf, 0χ the structure sheaf, and o^ the sheaf of invertible elements of 0χ
under multiplication. The map

ox -+ o^

is given by the exponential map. The cohomology sequence of this short
exact sequence is

0 -> Hι(X, Z) -> H\X, θχ) -> H\X, o*x) -> H2(X, Z) -> 0.

The sheaf theoretic Jacobian variety of X is defined as

Jac s h e a f (X) = H\X,ox) I H\X, Z)

which is the kernel of the map
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1.2. Theta Functions.

This section contains a definition of theta functions as given by Lang [13]
and by Mumford [17].

Let F b e a complex vector space of dimension n. Suppose Λ is a lattice
in V, so that the factor group V/A is a complex torus. A function Θ on
V is called a theta function with respect to Λ, if it is a quotient of entire
functions, not identically zero, and

Θ(U + X) = ^m*,u)+J{u)} Q(χ^ a U u e A j χ e y

where ί is C - linear in x. No further assumptions are made about ί and J.
If Θ is a theta function with respect to Λ then one can prove (cf. Lang

[13], p. 58) that

(1) J(u + υ)- J(u) - J(υ)=£(u, υ) (mod Z)

(2) ί(u,υ) =t(υ,u) (mod Z)

(3) t{x, u + v) =έ(x, u) + i(x, v) (mod Z).

Then ί can be extended to a function l(x, y) on V x V, which is C - linear
in x and M - linear my. J can be chosen in such a way that the function

K(u) = J(u)-~έ(u,u)

is Z - linear, and can be extended to an M. - linear function on V.
In terms of ί and if, the relation defining a theta function can now be

rewritten as

Θ{u + x) = e

2 * ) 1 l ) + ^ M + / f ( i i ) 1 θ(x).

2. Affine Lie Algebras and Loop Groups.

In this chapter we introduce some concepts from the theory of affine Lie
algebras and loop groups. We use the notation of Goodman - Wallach [7]
and recall some of their results.

2.1. Affine Preliminaries.

Let g be a simple, finite-dimensional Lie algebra over C. Set

which we consider as a subspace of the smooth maps from S1, the circle, to

9-
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g is a Lie algebra under pointwise commutator.
Let B be the Killing form on #, and define a skew-symmetric bilinear form

ω on g by

for any X, Y £ £.
Then ω is a 2-cocycle on p, which gives rise to a central extension of g

denoted by g:

As a vector space we write g = g © C c, with commutation relations

[X + αc, r + 6c] = [X, F ] £ + ω(X, Y)c,

for I , 7 G ^ , α,6 E C. Here [, ]$ denotes the bracket in £, and c is central.
The extended Lie algebra ge is defined to be

with

or

[d, c] = 0, [d, x ® ̂ ] = 2r— (x ®zk)=kx®zk, x e g, fc G Z

Prom the Killing form B on £, we obtain a bilinear form £? on g by integration
over S1:

B{X, Y) = / S (X (e i Θ), y (e iΘ)) dΘ, X, y 6 §,
Jo

(Goodman - Wallach [8], p. 199). The form B on g can be extended to a

bilinear form Be on £e by setting

Be(c,d) = l, B e ( c , c ) = S e ( d , d ) = 0 , £e(£,c) = 0.

Be(g1d)=0, Be(X,Y) = B(X,Y), X,YEg.
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Fix a Cart an subalgebra h C g, and let Φ be the roots of h on g, where
g denotes the a root space, a G Φ. Choose Φ + a set of positive roots
and a Chevalley basis {Ea}aeΦ U {Ha. | 1 < j < ί] for £, with Ea G g ,
i/α = [£?α, £Lα] G /ι such that a(Ha) = 2. Here α i , . . . , OLI denote the simple
roots in Φ + . Put

h = h Θ Cc 0 Cd.

If a G /ι*, extend α to h by setting α(c) = a(d) = 0. Let 7, δ G (4 )* be
defined by

7(Δ)=0, 7(c) = l, 7(rf)=0,

Λ) - 0, ί(c) = 0, δ(d) = 1.

Let ά be the highest root in Φ + . Set a0 = δ—ά and Hao = —Hά + j ^ . (Here

( , •) denotes the inner product on h* induced by B.) Denote by Uj G Λ*,

1 < j < I the basis dual to Haj, 1 < j < £. Define ώj G (h )* by the duality

relations

ώά{Hah) = δάk, 0<j,k<έ, ώj(d) = 0.

λ G (A')* is called dominant integral if X(Ha.) G N = {0,1,2,...} for

j = 0,... , L Every such element of (h )* is of the form n o ώ o + . . .

whre n^ = X(Ha.) and α = λ(d) G C.

Set b — h Θ n, where n is defined to be

Given λ G (Λ )*, extend λ to be zero on n, and form the induced ge - module

bwhere CΛ denotes the one-dimensional b - module with action x —)• X(x) 1,

and U(ge) resp. U(h ) denote the universal enveloping algebra of ge resp.

b . Let L(λ) be the quotient of M(λ) by the maximal submodule of M(λ)

which does not contain 1 ® 1. When λ is dominant integral we shall call

L(X) a standard module with highest weight λ.

Fix a basis {UJ | j = 1, . . . ,£} of g and let {uj \ j — 1,... , ̂ } be defined

by

B{uj,uk) =δjk.
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Set p = \ ΣaeΦ+ ex. Then the operator

2 u

acts on L(λ) with action

[λ(c) + |J T = ~a+ 2λ(c) + l / ?

where λ0 = Aĵ ,.

2.2. Completions of #.

A function w : Z -> (0, oo) will be called a symmetric weight function if

(1) w{-k) =w{k)

(2)w(k + i) <w\k)w{ί), k,ie Z .

Let Aw be the space of functions

jkθ

on S1 such that

Then (A^, || H )̂ is a commutative Banach *-algebra under pointwise mul-
tiplication and *-operation given by complex conjugation. Since w(k) >
tϋ(0) 1 / 2, Aw C C(Sι,C) with continuous inclusion.

The symmetric weight w will be said to be of non-analytic type if

lim w(k)1/k = 1.
A; — y oo

In this case the maximal ideal space of Aw is S1. Hence if / G AW1 f Φ 0 on
S1, then ^ G i w (cf. Goodman-Wallach [7], p. 128).

Let X E j b e given by

with {UJ} a basis for g and Wj = tx̂  . Define

ii x ιu= Σ i Ωi * i
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Then || || w is a norm on g, and we denote the completion of g with respect

to || \\w gw.

Suppose the symmetric weight w satisfies

w(k) >C\k | 1 / 2 , k E Z

for some constant C > 0. If we define

for X E g, a E C, then the completion g of g is a Banach Lie algebra and
given b y " ^ = g_w Θ Cc (cf. Goodman -~Wallach [7] p. 83). For £ C Mn(C)
the completion g of ^ can also be described as

—W —

lw = {X e Mn(Aw) I X(z) eg, ze S1}.

2.3. Completion of Standard Modules.

Suppose λ is a dominant integral weight for <?e, and (I/(λ),τrλ) is the

corresponding standard ^e-module with inner product (u,v)\. Denote by

Hλ the completion of L(λ) in the norm || v | | λ = (v,v)\'2. Let A be the

closure of

in Hx. Define the powers AΓ', r E K, by the spectral theorem, and set

for v E L(λ), t > 1 and σ > 1. Denote by S£ t the completion of
relative to this norm. Then

Qλ _ Π Qλ
*>o

will be called the space of Gevrey vectors of order σ for A.

2.4. The Group Gw.

Let / i , . . . , / t t be polynomials on Mn(C). Assume that

G = {geSLn(Q\fj(g)=0, j = l , . . . , d }

is a connected and simply connected group with simple Lie algebra g. Also
assume that if g E G, then the conjugate-transpose #* E G. Set

5 L n - SLn(Aw) = {ge Mn(Aw) \ g~ι E Mn(Aw), det (p) - 1}
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for w a weight of non-analytic type. Then Gw, with

Gw = {gβ SLn(Aw) I fά(g{z)) = 0, j = 1,... ,d, z G S1},

is a closed Banach Lie subgroup of SLn(Aw) with Lie algebra

gw = {XEMn(Aw)\dfj(X(z))=0, j = l, . . . ,d, * G S1}.

If λ0, λi,... , λ̂  are the fundamental weights of g, set

Let G^ be the group generated by

{exp(π(X)) I X egj.

Let Z denote the center of Gw. Then Z is a closed Lie subgroup of Gw

with Lie algebra Cc. The identity component of Z is

Z° = {exp(*π(c)) | ί G C}.

Assume there exists a σ, 1 < σ < 2, such that the weight w satisfies the
inequality

Ct exp(t\k\1/σ) < w(k) < Meexp(e|fc|)

for all t > 0, e > 0 where C t,Me are positive constants. Then we have an

exact sequence of Lie group homomorphisms

—> Z —>• ( j r ^ —>• ( j r ^ —> 1

whose differentials give the Lie algebra exact sequence

(cf. Goodman-Wallach [7], p. 111).

3. Isospectral Curves and Their Jacobians.

3.1. Isospectral Curves.
Throughout this chapter we make the following assumptions:

3.1.1. There exists σ, 1 < σ < 2, such that the symmetric weight w satisfies
the inequalities

Ctexp(t\k\1/σ) < w(k) < Mcexp(e|A;|)
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for all t, e > 0 with constants Ct, Mt > 0.

Suppose Leg, g — Mn(C) ®c C[z, z~λ\-> i s given by

Q

j=-p

3.1.2. The characteristic polynomials of L0(z) — zpL(z) and Loo(z~ι) =
z~qL(z), fo(z,λ) = det(L0(z) — λ) and /o o(^~ 1,λ) = det(Loo(z~1) — λ) are
irreducible.

Define the quasi-aίfine curve Xa to be

Xa = {(z, λ) E C* x C I / ( * , λ) - det(L(z) - \) = 0}.

Then Xa is irreducible. Let XL denote the corresponding projective curve
of Xa. XL is obtained by homogenizing

i=o

and setting

^ TT \ r̂ f

The isospectral curve XL is defined to be

XL — {(^05^15^2) I dβt M(XQ) Xι, X2) = 0} C P (C).

Set

^00 = {ί*-1, λ) E C x C I /oo^- 1 , λ) = 0}.

Then Xa C XL and we have the following maps
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We also assume

3.1.3. Xo ΠXOO 25 nonsingular or equivalently df(z,\)\χQnXoo φ 0.

If f(z, λ) has singularities on XL, denote by S the set of singular points
ofX L .

T h e o r e m 3.1.4. Let L be as above. Then there exists a nonsingular model
X'L of XL and a projection map p : X'L —> XL- Set S' = p~1(S), then
p : X'L — Sf —> XL — S is biholomorphic.

Proof. (Cf. Serre [24], pp. 67/68.) D

In this chapter we will be analyzing two classes of curves:

3.1.5. XL is nonsingular, i.e. S = 0. Then X'L — XL

3.1.6. L is given by

Π ^ / α ^ O , Π"=iX&i Φ 0.

In Section 3.3 we will give a condition in terms of the α/s, 6 '̂s and d^s
which guarantees the nonsingularity of XQ Π XQQ, XO Π XQO C XL

We associate to X/, a line bundle ϋk -> XL as follows: For x E XL

define

Then we have

T h e o r e m 3.1.7. If f(z, λ) i5 nonsingular on XL, then EL{x) is one-dimensional

for any x G XL o,nd the map

x -> EL{x)

is holomorphic from XL to Pn(C).

Proof, (a) Suppose z0 G C is such that L(z0) does not have simple spectrum.
If λ0 is a multiple eigenvalue of L(zo)j then by the nonsingularity of f(z, λ)
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we obtain

~^-(Zϊ λ)|(20,λ0) Φ 05 ^ τ ( Z > λ)|(z0,λ0) = 0
OZ OΛ

Define OJo to be the generalized eigenspace of λ0

C^o = {v e Cn I (L(zQ) - λ0)^ = 0, for some r G N}.

Assume there exist linearly independent vectors Vχ,υ2 £ C^o such that
L(zo)vj — λoVj, j = 1,2. Extend Vι,v2 to a basis {VJ} of C71. Then

d e t ( L ( * o ) - λ ) = ( λ - λ o ) 2 Φ(λ),

(L(z) - λ o ) v i Λ . . . Λ (L(z) — λ o ) υ n = f(z, X0)v1 Λ . . . Λ v n ,

which yields /(z, λ0) = (z — zo)
2g(z): contradicting ff (^, λ)|(Zθjλo) φ 0.

(b) Denote by 2td (M(xo,Xι,x2)) the classical adjoint (cofactor matrix)
of M(xo,Xι,x2) as in the definition of XL and let βj{x) — ej(xQ,X\,x2) be
the j-th column of 2tD (M(xo,xux2)). If detM(^ θ 5 ^i ,^2) = 0 then by (a)
dim KerM(xo,xx,x2) = 1 hence rankM(^ 0,^i,^2) = n — 1. Consequently
there exists j , 1 < j < n, such that βj(x) φ 0. Set

Then U Uj — XL and the map
3=1

XL -+ Pn(C), x -> e i(rr)

is polynomial and homogeneous. On Uj Π Uk we have e^rr) = gjikek(x) with
^ ? Λ holomorphic. D

Theorem 3.1.8. Let L be as in 3.1.6. If x e Xo Π X^, then EL(x) is
one-dimensional and the map

x -> EL(x)

is rational from XL to Pn(C).

Proof. Prom 3.1.7 (a) it follows that EL(x) is one-dimensional for x E X.Q Π
Xoo, since X0ΠXoo is nonsingular. Define Φ on the Zariski-open set XQ
as

Φ XoΠXoo -> Pn(C), 2; ^ e, (x) (see 3.1.7(b)).
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If A C Φ(X0 Π Xoo) Π Pn(C) is closed, then Φ " 1 ^ ) is closed, since Φ is
polynomial and homogeneous. Thus Φ is continuous in the Zariski-topology.
Suppose V C Pn(C) is open and r : V -> C is a regular function on V,
i.e. for P G U C V, U open, there existhomogeneou s polynomials #, h of
the same degree, such that h is nowhere zero on t/, and r = ^ on ?7. Con-
sequently r o Φ : Φ~1(Vr) —)• C is regular. If # G Φ~"1(ί7), then there exists
h 1 < i < rc, so that a; G E/, (3.1.7 (b)). Thus r o Φ = £§§ and # o Φ, ftoφ
are homogeneous polynomials of the same degree.

Moreover, h o Φ is nowhere zero on Uj Π Φ~ 1 (F). Hence Φ is a rational
map Φ : XL -> Pn(C) (cf. Hartshorne [12], pp. 14-24). D

Theorem 3.1.9. Suppose L is as in 3.1.6. Let Φ : XL ->• Pn(C), x -)-
EL(x) be the rational map in 3.1.8. ΓΛen ίΛe induced rational map Φ' :
X^ —> Pn(C) is everywhere regular.

Proof. (Cf. Mumford [16], pp. 166/167.) D

3.2. The Algebraic Curve XL (Nonsingular Case).

Let L G g be given by

L = L(z) = Σ lj*', t-i € M»(Q, j = - p , . . , g, p + q > 1.

Theorem 3.2.1. £e£ L 6e as above. Suppose f(z,X) is nonsingular on XL.
Then the genus of XL, g(XL), is equal to

g(XL) = -n(n - l)(p + q) ~ n + 1.

/. (a) We may replace L(z) by Lo(^). Let px : XL -^ P1 be the
projection map corresponding to z, so that P\{z, λ) = ^. Then degpi = 1.
By Hurwitz formula (cf. Farkas - Kra [4] p. 18) we have

2g(XL) - 2 = n(2j -2) + B = -2n + S,

since the genus of P 1 , 7(PX) = 0 . To establish the result we observe that the
total branch number, i?, is given by

B = Σ Σ ί m u l t ( λ ) - !>'
zeC XeSpecL(z)
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where Specif) denotes the spectrum of L(z) and mult(λ) the multiplicity
of λ. We now use this observation to show that

(b) Suppose A G Mn(C). Define Q(A) by det(adA - tl) = tnQ(A) +
higher order terms in t.

Then Q(A) is polynomial and if A has eigenvalues λ l 5 . . . , λn counting
multiplicities, then

Thus Q(tA) = tn{n~ι">Q{A). Since there exists z0 G C such that L(z0) has
simple spectrum we have Q(L(z)) ^ 0 and

Q(L(z)) = Q{zp+qίq + lower order terms in 2)
) + lower order terms in z.

If ^ does not have simple spectrum, then if L(z0) does replace L(z) by
L(z + z0) and consider L^^z + ̂ o)"1) to obtain

degQ(L(z))=n(n-l)(p + q).

(c) Assume L(20) has a multiple eigenvalue for some z0 G C. We assert
that

ord,0Q(L(*)) = Σ {mult(λ) - 1}.
XESpecL(zo)

We may assume z0 — 0, otherwise we can replace L(z) by L(^ + z0). Let
λi,... , λn be the eigenvalues of L(0) counting multiplicities. If λ G SpecL(O)
and r = mult(λ), r > 1, we have

(1) /(0, λ) = Π(λi - λ), | ^ ( 0 , λ) = 0, ^ ( 0 , λ) φ 0.

We may also assume λ = 0, otherwise we can shift by — λ. Then by the
Inverse Function Theorem f{z,X) defines z — z(X) in some disc in the λ
parameter with z(0) — 0. We assert that ord0^(λ) = r. We have

gs gr
-gχ^f(zi λ)l(o,o) = °> s < r> -gyf(z' λ)l(o,o) Φ °

Then

0 = 3 τ / ( ^ λ)u=o = ^ r / ( ^ ( λ ) ' λ )
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giving z'(0) = 0 by equation (1), and more generally

yielding z^(0) = 0 for s < r. Thus

z(X) = α rλ
r + higher order terms in λ,

which gives λ = \{zλ'r), λ(0) = 0, λ'(0) φ 0, with λ holomorphic in a
neighborhood of zero. If λi,... , A* are the distinct eigenvalues of L(0) with
multiplicities r i 5 . . . ,rk respectively, then λ̂  = λ̂  ̂ 1 ^ ) , 1 < j < k, with λj
holomorphic near 0. This implies

, g(0)
3=1

with g(z) polynomial, since Q(L(z)) is polynomial. Thus

3=1

Hence

ord,0Q(L(^)) = deg Q(L(z)) = n(n - l)(p + q).
zoec

3.3. The Isospectral Curve XL (Tridiagonal Case).

Let L(z) = i0 + tiz + t2z
1 be tridiagonal as in 3.1. Then

z~λL{z) - λ =

d\ — λ

0 b2 d3 - λ

- λ

The determinant of z ιL(z) — λ is given by

\n+l
fn-1 fn-1

<3=1 <3=1

D
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where P(X) is a polynomial of degree n with leading coefficient 1. Set A =
UnZl a>j, B = Π^i 1 bj. Then by assumption A φ 0, B φ 0 and the curve
XL is defined by

Az + Bz'1 - P(λ) = 0.

Equivalently,

*(λ) = -ί- \P(X) ±
2^L

Theorem 3.3.1. Zeί L δe as aftove and suppose XL is nonsingular on Xo Π
XOQ. Then the curve XL is hyperelliptic of genus g{X'L) = n — 1.

Proof. (Van Moerbeke-Mumford [14], pp. 125/126.) D

The assumption that XL is nonsingular on Xo Π X^ was added and is
necessary as the following example shows.

Consider the matrix:

L(z) -λ =

- 1-λ 1 z
1 -λ 1
z 1 -λ.

Then f(z, λ) = —λ3 + 3λ + z + z~ι and consequently f(z, λ) is irreducible.
We have

which implies that (z,λ) = (—1,1) and (z,\) = (1,-1) are singular points
of XL. Moreover, Λ = 1 = B and

P(λ)2 - 4 - (λ - l)2(λ + 2)(λ + l)2(λ - 2), P'{\) = 3(λ2 - 1).

Thus P{\)2 — 4 and P'(λ) have a non-constant factor in common.
To allow singularities only on XL \XOΓ\ XOO, i.e. at z = 0 or z~ι = 0, the

condition we need is as follows:
Set

Then

|£(z, λ) = A - B*-2, !£(*, λ) = -P'(λ).
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If |£ = 0, then z — ± Λ / ^ Hence the condition we obtain is, that the
polynomials

P(λ) ± 2>/AB, P'(X)

have no non-constant factor in common. If

R = R(P(X)2 - 4AB, P'(λ))

denotes the resultant of P(λ)2 — AAB and P'(λ), then the above condition
is equivalent to R φ 0. The resultant is a polynomial in the

α i , . . . , α n _ i , &i,... , 6n_i, d,χ,... , d n

(cf. van der Waerden [25], p. 108). The zeroset of R

is an affine algebraic set of C3n~2 of codimension 1, the zeroset

) = {(α 1 , . . . ,α n . 1 Λ,---,*n-i ,d i ,- .- ,* . )eC? n - 2 | AB = 0}

has codimension 1 i n C 3 n ~ 2 . Therefore for ( α l 7 . . .,α n_i,ί>i, . . . ,6 n _ 1 ,d

in the complement of Z(R)UZ(A, B) we have the nonsingularity on

3.4. Lie Theoretic Construction of the Jacobian Variety.

Let L satisfy 3.1.2 and 3.1.3. Denote by g resp. g _ the completions
of Mn(C[z]) resp. Mn(C[z-1)) with respect to the weight w. Let <CW(L)
denote the centralizer of L in a . The centralizers of L in g , resp. a
will be denoted C^(L) resp. C^(L).

Theorem 3.4.1. Let L be as above. Suppose /(z, λ) is nonsingular on
for all zeS1. If M G CW(L), then

n-l

k=l

with Ck(z) G Aw.

Proof, (a) Suppose {z0, X0)eXL and dfι(zoAo) ^0. Then /, L(z0), ...,Ln~ι{z0)
is a basis of the centralizer of L(z0) in Mn(C).

Suppose L(z0) is in Jordan canonical form. By 3.1.7 (a) we have
dimKer (L(zQ) — λ0) = 1. Thus there exists exactly one Jordan block for the
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eigenvalue λ0 of L(z0). If λ 1 ? . . . , λfc, 1 < k < n, are the distinct eigenval-
ues of L(z0) with multiplicities r l 5 . . . ,rfc respectively, then (notation as in
3.1.7 (a))

C n = Θ C£., dim (C£.) = τ\, , 1 < j < k.

We note that if A G Mn(C) commutes with L(^o), then ACζ C C". for
1 < j ' ̂  A;. Hence it is enough to consider the dimension of the centralizer of
L(z0) on C^ for 1 < j < k. Denote by L(^ 0 ) | c n the restriction of L(z0) to

CJ . Since C^ is a cyclic C L(2:0)|cn -module the centralizer of L(zo)\cτι is
L λ i J xi

isomorphic to

where πij denotes the minimal polynomial of L(zo)\cn . Since degra^ = Tj it

follows

dimC \L(zo)lcn ] /(rrtj) - r i ? 1 < j < k.

Thus the dimension of the centralizer of L(z0) in Mn(C) equals Σ"=1 TJ = n.

The minimal polynomial of L(z0) on C71, m(L(z0)), is m(L(zo)) — Πj=i m j

Hence deg(m(I/(2:o))) = n which implies I,L(z0),... ,Ln~~ι(z0) are linearly

independent.

(b) Suppose M(z) G £ W (L) . Then, if f{z,λ) - 0, d/(^,λ) ^ 0, we
obtain M(z)Λ(IΛL(z) A...ΛL"-1^)) = 0 in Λ n + 1 M n (C) for ̂  G S 1. Hence

(2) M(^)=£c f c(2 ?)L f c(^)1 zeSK
k=0

(c) From the equation (2) one obtains

ck{z){I/\{L{z)Λ. ..ΛLn-ι{z))) = (-\)h{M{z)ΛlΛ. ,.ΛLk{z)Λ.. .Mn-\

The map

z -+ M(z)ΛlΛ...ΛLk(z)Λ...ΛLn-1(z)

from S1 -> ΛnMn(C) has coordinates in Aw\ the map

z
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from S1 -» ΛnMn(C) has polynomial coordinates and is nowhere 0.
Set Xj = Xh Λ...Λ Xjn, with I l r . . , I n 2 a basis of Mn(C). Then

IΛL(Z) Λ... ALn-\z) = Σbj{z)Xj, bj(z) E C^z" 1 ] ,

IAL(Z)Λ. . .AL^(z) ck(z){lAL(z)A. ..ALn-\z)) =

and

1 ^) {-ΐ)k{M{z)AlA.. .ΛLk(z)Λ.. .AL^^

w i t h Φ j ( * ) E A w . N o w Σ & J ( * ) M * ) = Σ \bj(z)\2 / 0 , z 6 5 1 . H e n c e

D

Prom the proof of the theorem, it follows CW(L) and <££(£) = CW(L) Π
gw are abelian Lie algebras.

Lemma 3.4.2. £e£ L be as above. If A E Mn(C) w 5ί/cΛ that [A,L]§ = 0,
A = α /, α E C.

/ Let 2:0 E C such that JL(Z0) has simple spectrum. We may assume
L(z0) is in diagonal form. Then A = diag(α l 7... ,αn). Assume α = αx has
multiplicity r with 1 < r < n and a — ax = ... = α r. If £ E C, then

AL(z)ej = L{z)Aβj = L{z)aβj = aL{z)e^ 1 < j < r,

where ê  is the j-th unit vector of C71. Hence I/(^)e^ is an eigenvector for
the eigenvalue α of A. This implies that

fc=0

So

0 D(z)\

and det (L(z) - λ) = det (Λ(^) - λ) det (D(z) - λ). This contradicts 3.1.2.

D
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Suppose M G g . Then M can be written as M — M + + M o 4- M_ with
M + G 2?£w , M o G Mn(C) and M_ G - z " 1 ^ _•

Lemma 3.4.3. Suppose Me £W{L). Then M G C%(L) + £™{L) if and
only if there exist A,B G Mn(C) racΛ ίΛαί M+- A, M_ - B e £W{L).

Proof, (a) The sufficiency is immediate.
(b) Let A, B G Mn(C) such that M + - A , M _ - ΰ G CW(L).
Then M = M+ + Mo + M_, M + - i + M _ - B E C^(^), which implies

Mo + i + ΰ G Cω(L). Furthermore, M+ - A + (Mo + A 4- 5) G £ + (£) and
M_-B G £™(L).

+A + B) + M_ -B = M e £%(L) + C^(L). D

Lemma 3.4.4. C^(L) + C^(L) 25 do^ed m C

Proo/. Let M j G £^(L) + Cϋ!(L) be a sequence with lim^ . . o o M ^ M i n ^ .
By the previous lemma there exist Aj,Bj G Mn(C) such that
(MjU-A^ [Mj)^-Bj G C"(L). T h e n K M ^ , ! ] ^ [ ^ , % [ ( M , ) . ^ ] ^
[βj,L]5 and by assumption (MJ ) + ->• M+, (M;)_ -> M_ which implies
the convergence of the sequences [Aj,L]~g and [Bj,L]g. Since {[C,L]^ | C G
Mn(C)} is finite dimensional hence closed in g , it follows

+, % = [^ , % -> μ, L]£, A e Mn(C)

Since [Aj — A, L}~g -> 0, one has by the above lemma Aj— A -> α/, α G C.
Thus Aj -» A -Γα/. One obtains (Mj)+ — A^ -> M + — A — al. Similarly,
(Mj )- - Sj -> M_ - B - 6/, 6 G C Since CW(L) is closed, it follows
M+-A-aI,M_-B-bIe £W(L). Thus M G C (̂L) + C.(L), by the
previous lemma. D

Set Gw = GLn(Aw). Denote by GWi+ resp. GWt- the subgroups

GwΛ = <g eGw I g m > 0

m < 0
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Let VWj+ resp. VWi- be defined by

VWt+ = \ge Gw,+ I g = 1 +
m > 0

I m<0 J

By analogy with the definition of the centralizers £W(L), C±(£) we define

CΓ°{L) = {geGw \ gig-1 = L},

Denote by V —> ev the exponential map from g -> Gw. Define

Λ = {V 6 CW(L) I e v G CT^(L) qf!(L)}.

Theorem 3.4.5. Λ is closed in £W{L).

In order to establish the theorem we show that C™(L) C+(L) is closed
in CW(L). Prom the following lemmas we will deduce the statement of the
theorem.

L e m m a 3.4.6. Suppose g G CW(L). Assume furthermore, g can be factored,
g = g-gQg+, with g_ e K,,_, g0 € GLn(C) and g+ e VWt+. Then g G
C™{L) C™{L) if and only if there exist α,6 G GLn(C) such that gZιLg_ =
a~ιLa and g+Lg+x = bLb~λ.

Proof, (a) The sufficiency follows immediately.
(b) Let a,b e GLn(C) such that gZxLg- = a'1 La and g+Lg^1 = bLb'1.

Then

Moreover,

which implies

(g-gob)(b-1g+) = 9-9o9+ € C?(£) C»(L). D
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L e m m a 3.4.7. Let {gj}f=ι be a sequence in C™{L) C™(L) such that

lim, -+00^ = g exists and g G VWt-GLn(C)Vw,+ . Then g G C™(L) C™(L).

Proof, (a) By 3.4.6, gά G C™(L) C™{L) if and only if there exist a^b, G
GLn(C) such that {gj)ZιL(gά)_ = aJxLaά, (g^+^ί&Oΐ1 = bjLbJ1. From

it follows that (gj)~ —> g~, (gj)-1 —> flΊ1. This implies (gj)Z1L(gj)_ =
aJτLaj -> gZιLg_.

(b) Since PMn(C), the projective space of Mn(C), is compact, [α̂  ] has
a subsequence [ajk] in PMn(C) which converges to [α], α G Mn(C). For the
classical adjoint, 2U)(αifc), we obtain [2l5(αifc)] -> [2tD(α)] in PMn(C).

(c) Denote by ^p ' ς the finite dimensional subspace of g

eL\pW = Σ

The sequence [α^Loj ] converges in P^p'g. Moreover, [ίΆθ(aj)Laj] converges
in Ψg™ and it follows

[m(ajk)Lajk] -> [2to(α)Lα] in P £ *.

Hence,

^ L α ^ ] -> [2lD(α)Lα] in Pg™".

(d) From [2tD(α)Lα] = [ffl1^-] (by (a) and (c)) it follows that there
exists a G C* such that a(gI1Lg_) = 2lD(α)Lα. We assert α G GLn(C). As-
sume not. Then det (agI1Lg_) — αndet L = 0. Since det L is the coefficient
of λ° in f(z, λ), detL = 0 yields a contradiction to the irreducibility of /.
We obtain άgI1Lg_ — a'1 La, for ά G C*.

(e) We assert ά = 1. Consider

tΐ(άgZ1Lg_) — a trL = tr (α"~1Lα) = trL.

We may assume trL φ 0. Otherwise we can replace L by L + t / for some
ί E R, ί >> 0, since L and L+t I have the same centralizer. Thus a = lltnd
gZιLg_ = a~ιLa. By the previous lemma it follows that g~a~λ G CW(L).
A similar argument shows b~xg+ G CW(L). So we conclude from 3.4.6 that

C»(L)C?(L). D
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Lemma 3.4.8. C™{L) C%(L) is closed in CW{L).

Proof. Let g5 -»• g, where gό € C™(L) C%{L). Since CW(L) is closed,
one obtains g € CW(L). Then ggj1 -> 1, which implies that ggj1 6

,,+ for all j>N for some JV 6 N. Moreover, since # € CW{L)

99j X — [9j y aj l ( α i \9j λ) bj) gbj λ yyd ] t vW)-vruny^jvWi+,

for some a^bj E CLn(C) by 3.4.6. Furthermore

since GLn(C) normalizes Vw _ and K; i+. Prom 3.4.7 we conclude

o/ Theorem 3.4.5. Let ί̂  E Λ such that Vό -> F . Then ev* -> e v

with e^ <E C!?(L) C^(L). Since C!?(L) C%(L) is closed, it follows that
ev e C™{L) C%{L). Hence V β A. Ώ

Suppose L E g. Denote by £ (L) the centralizer of L in p and by C + (£)
resp. C _(L) the centralizer of L in g ® C[z] resp. £ ® C[^ - 1 ] . In the sequel
we consider C[z,L0] and C[z, L^] to be contained in Mn(C[z, z'1]).

L e m m a 3.4.9. Suppose Leg and that f(z, λ) = det {L(z)~λ) is irreducible.
Then C + (L) resp. C_(L) is integral over C[z,L0] resp. C ^ " 1 , ^ ] .

Proof. Since f(z, λ) is irreducible the set 5 of singular points of XL C P2(C)
is a proper Zariski-closed subset of XL, hence finite. Suppose z0 E C is
such that /, L0(z0),... , L%~ι(z0) are linearly independent. Then there exist
λ 0 , . . . ,λn-i € Mn(C)* such that det (λi(Lo(^o)))o<j,fc<n-i 7̂  0. Denote by
Λ(2r) the matrix

Mz) = [λj(Lo(z))o<j,k<n-i]

Set

Since det (Λ(z)) is a polynomial and det (Λ(z)) ψ 0, it follows that C — U is
finite. If z E U, Me C + (L), then
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Hence if z E {/, then

det Γ

Set IAΛ(Z) = det(A(z))ck(z), k = 0,... ,n - 1. Then 1^(2) E C[JZ] since
Wθ(A(z)) and λj(M (2)) are polynomials on U. Now

n - l

k=0

on U, hence everywhere on C. Thus

M(z) G C[z, LQ] det (A(z))~1I.

Now C[z, Lo] det (Λ(JZ))- 1 / is a notherian C[z, L0]-module with C + (L) as
C[z,L0]-submodule. This implies C + (L) is finitely generated over C[z,L0],
hence integral.

A similar argument shows that £_(L) is integral over C[z~λ, L^].

D

Suppose L E g. We will call L good if f(z,λ) is irreducible, Xo Π XQO
is nonsingular and C + (-L) resp. C_(L) is the integral closure of C[z, Lo]
resp. C ^ - ^ L Q Q ] in MnίC^,^" 1 ]) , in symbols C + (L) = C[z,L0], C_(L) =

Theorem 3.4.10. Suppose L £ g and also assume L is good. Then

in particular dim(C(L)/C_(L) + £

Proof. Denote by U; = {Xo^io} ^ n e open, affine covering of X'L, where

P(XQ) — Xo and p(X/

oς)) — X^. We view X'L as an analytic space and

the coherent sheaf ox> as coherent analytic sheaf and compute the coho-

mology group H1
 [ΊJ'L, θχ> J in the analytic category via Cech cohomology

with respect to the covering iί'. GAGA (Serre [23]) then establishes the

isomorphism

The Cech complex has two terms:
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where Γ denotes the global section functor. Now

Γ(x'o,oxί)=ox. = C[

= oxltnXίB = C[z,z-i,X}/(f}iXonXea.

The map d : C° -*• C1 is given by addition in C1. To compute H1 ίil', oxΛ

note that the image of d, Im d, is the set of all expressions k — k0 + k^ with
k0 € Γ (X^, oX L) and fcocEΓ fx'^, ox)

Since L is good the following maps

7 : C[z, z-1, λ ] / ( / ) | X o n X o o -> C[z, z-1,

7 + : φ , λ ] / ( / o ) | X o -> C[z,Lo]/(/o),

z ->• z , λ -^ L o = zp-L,

z" 1 -> z"1, λ

establish the isomorphisms

Thus/ί 1

D

L e m m a 3 .4 .11 . Suppose L e g and a/so assume that / ( z , λ ) is irreducible

and X0ΠXoo is nonsingular. If in addition dim( £(!>)/ C_(I<) + <£
^ ) ; ί/ien L is good.

Proof. Since Xo Π Xoo is nonsingular we have the isomorphism
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From the irreducibility of f(z,λ) we obtain that C + (L) resp. C_(L) is

integral over C[z,L0] resp. C[z~x, .Loo] and

C[z,Lo]C

Assume C + (L) ^ C[z,L0] or C_(L) 7̂  C ^ - 1 , ^ ] . Then C + (L),
define a curve XL with

and <£ + (£) ^ o * o , £ _ ( L ) ^ o ^ , p(X0) -
Xo Πloo. Thus

= dimiϊ 1 (X'L,OX,L) < dimH

(Cf. Serre [24], p. 73.) D

T h e o r e m 3.4.12. Suppose L E g is as in 3.1.5 or 3.1.6. Then

= g(X'L) and

/n particular L is good.

Proof, (a) (nonsingular case). Consider Lo(^) — zpL(z). Then the con-
dition on the nonsingularity of f(z, λ) implies that /, L o(^),. . ^ o ^ ί ^ )
are linearly independent for all z G C. For the same reason one has that
/, Loo(z~~1),... ,L^O~1(0~1) are linearly independent for all z~ι G C. From
the characterization of Cω(L), C±(L) (3.4.1) it follows if M G €W{L)

n-l

k>m

for /, m G N. Thus the set

{**#"(*) I 1 < i < n - 1, -jp + 1 < Λ < jq - 1}
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provides a basis for <ίw(L)/£^(L) + C™(L). A counting argument shows
that the dimension equals

n-l 1

Σθ'(p + ?) - 1) = ^n(n - l)(p + q) - n + 1 = g(XL).
j=ι Δ

(b) (tridiagonal case). Consider L0(z) = ί0 + zi\ + z2i2. For the proof
of the theorem in the tridiagonal case we will need the following scholia.

Scholium I. IfO<j<n-2, then ίo^Uo = 0 and i2(?xi2 = 0.

Proof. We assert that ίQί{Er^n = 0 i f j + r < n — l . We prove this by

induction on j . If j = 0, then ioEr^n = Eχ^nEr,n = 0, r < n. Assume the

inductive hypothesis for j . Then

Thus

If j + 1 + r < n, then j + r — 1 < n, j -\- r < n and j + r + 1 < n. Thus the
inductive hypothesis implies the result for j + 1. The Scholium is just the
assertion for r = 1.

By applying the anti-automorphism x —> xτ one obtains i<il\ii — 0 for
0 < j < n - 2. D

Scholium II. // 1 < j < n - 1, ίΛen L^(^) = zj-1Mj{z), Mά{z)
%$(z,Mn(C)), i.e. Mj(z) is polynomial.

Proof. This result is clear for j — 1. Assume that we have shown that

Ll(z) = z^M^z) = z^iAjj^ + ZAJJ + ...)

and ίoAjj-i = 0. We show that

U+1(z) = zjAJ+1J + zj+1Aj+hj+1 + ...

with £0Aj+1j = 0 for j + 1 < n — 1.

= £0Lί(z) + ^ L έ ( z ) + z2£2Lί(z)
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Now £0Ajj-ι = 0 by assumption. Thus

Hence

(3) Aj+1J = ioAjj + ^AM-L

But then ί0Aj+ιj = £0^i^.jj-i Applying equation (3) to AJJ-I we find

We continue to apply equation (3) and finally get

- V Γ ^ o + ^o^Γ24«i = 0, if j + 1 < n - 1

by Scholium I. The statement now follows. D

Scholium III. 1/Π"=ί &j ^ 0, 4, ^ 0, ίΛen ^M^O), . . . ,Mn_i(0) are
linearly independent.

Proof. Since M i+i(0) = ^+i, j and Aj+lij = l o ^ + M j j - i , 0 < j < n - 2 ,
it is enough to show that /,£o^i^o, ,̂ Γ~2^o are linearly independent. We
assert

ltn, 0 < j < n - 2 ,
k=0

with Cj — Πί=i &Λ We proceed by induction. The result is obvious for j = 0.
Assume the inductive hypothesis for j . Then

k=0

1,n + bj+1Ej+2,n)

k=0
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where Cj+χ = Cjbj+ι = Π U i f̂c ^ follows that

t{+1 = £ j + 2 , n mod (CEi.n + . . . + C E j + 1 , n )

which implies that l§, î̂ o? ->^\ 2^o are linearly independent. Consequently
/, i0, ί\i§,... , £^~2^o are linearly independent. D

Consider Loo(z~1) = 2r~2£0 + z"1-^. -I- ί>2- By the same chain of arguments

one shows that L^z'1) = z"j+1Mj(z~1), with M,-^"1) G © ( J Z " 1 , Mn(C)).

If in addition H]Iι dj Φ 0, then /, M(0) , . . . , Mn_i(0) are linearly indepen-

dent. The relation between Mj(z) and M^^^"1) is as follows:

If M{z) G £W{L), then by 3.4.1 and Scholium III

n- l

^0*) = Σaj(z)Mj{z), {M0(z) = /), αj(z) G Au,.

Write

Then

n - l

3=0

and if β(z) = ΣA.<_2 Oί^kz
k^ then

n - l

Thus

n - l
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So dim {<εw{L)/<tw_(L)+ £"(£)) < n - 1. Now

Thus if

then by equation (4)

δj (z-1) z-2M0(z).

So CjZ~ι =7j(2)+ίj(2~1)2""2, ^7^0. This implies 9 - 0 for all 1 < j < n-1.
Thus dim (CW(L)/£™(L) + £%(L)) =n-l.

(c) Prom the proof of (a) and (b) it follows immediately that

+ ( )
D

Theorem 3.4.13. Suppose L G £ is good. Then

Jac(X[) ^ £W(L)/£™(L) + C^(L) / A/CU(L) + C^(L) - £W(L)/A.

Proof. We have (cf. Gunning [11], pp. 130, 152, 157)

Jac (X'L) * H1 (x'L,oxί) I H1 {XI Z ).

Now if1 (X'L,OXA = i ϊ 1 (W,θχA by GAGA. The short exact sequence

0 -> Z —> OX'L Λ ô / —»• 0

induces a surjective homomorphism

H1 (il',ox L) -> i ί 1 ( i l ' ,o^) / tf1 (ίl1, Z)

from which we obtain a surjective homomorphism (notation in 3.4.10).

->• ^ ( l ί ' . o x - ) / i ϊ 1 ^ ' , z ) .
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The kernel K of this map consists of all functions k such that ek = eh° eko°,
with k0 E Γ (X^ ox> ) and k^ E Γ (x^, 0χ* ) . If A denotes the

analogue of Λ in £, then (notation in 3.4.10)

K / / ()

Hence

£"(£) / Cϋ(L) + C?(L) / Λ /

C + (L) / A / C.(L

/Imd/K/lmd

Since by GAGA we also obtain H1 (x'L,o*x,^) = H1 ( a ; , o ^ ) , we can
replace the exact sequence

0 -> ff^il', Z) -> ^ ( i l ' ^ x ^ ) -> ^ ( i l ' ^ ^ ) -> # 2 ( i l ' , Z) -^ 0

by the exact sequence

0 -> tfiU Z) -> ^ ( X ^ o ^ ) -> ^ ( ^ , 0 ^ ) -> Hι(ίX',Z) -+ 0.

It follows that Jac (JΓ£) ^ H1 (x'L, oxί) / H1 (ίl', Z). Hence

Jac (X'L) S CW(L) / Cϋ(L) + C^(L) / A / CW_{L) + C^(L).

D

3.5. Theta Functions as Matrix Entries of the Standard Represen-
tations of the Basic Module.

In this section we want to employ the basic representation (L(λo),πλo) of
SLn(Aw) and the method of representative functions to obtain theta func-
tions. The map X —> X — n~Hτ (X) I is a continuous projection from
Mn(Aw) onto sln(Aw). Its restriction to the quotient CW(L) / £™{L)' + '
£™(L) is for L E Mn{Aw), L{z) = ΣJ=-P V'> injective, since Aw I C
Cίϋ(L) + C+ (!')• We thus may assume without loss of generality g =
s£n(C), G = SLn(C) and Leg. We suppose in addition that L is good.
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Another way to employ the basic representation is to induce it to Mn(Aw)
by letting Aw / act as O on L(λ0). On the level of the group we consider the
simply connected covering C* (SLn(C)) of GLn{C) and let C* Center(SXn(C))
act by 1 on the module. In order to obtain the same results one could also
use the construction of the universal central extension of GLn(C) and its
action on the dual determinant bundle of some Grassmanian manifold. For
details we refer to Pressley-Segal [19] and Segal-Wilson [22].

We use the notation exp for the exponential map from g to Gw and

ex for the exponential map from g to Gw. Let pr be the projection

pr : Gw —> Gw. We note that

is an analytic diffeomorphism with kernel {etc | t G C}. Here, VWj± de-
note the images of VWy± in Gw. On VW^G VWi+ the exact sequence 1 -»
C* -> Gw -> Gw —> 1 splits and we denote by φ the cross-section
φ : K,,_G VWi+ -> Vw-G VWi+ (Wallach [Lecture Notes]).

Suppose V G Λ. Then ev can be represented as

ev=g_(V)g+(V), g±(V)eC%(L).

If ev = h-(V)h+(V) with h±(V) G C|(L), then by 3.4.2 h+{V)-λg+{V) =
α/ with α/ G G. Assume V E g_ such that expF G VWt-G Vw,+. Then
exp 1/ can be expressed as follows:

3.5.1. expV = ψ(g_(V)g+(V)) eΊ{v)c

where 7 is a function 7 : g -> C.

Lemma 3.5.2. If X,Y e g_w and [X,Y]g = 0, then

exp(X) exp(y) = exp(X + Y) e^XΎ)c.

Proof. Assume r, s G C are small. Since [X, Y]§ — 0

exp(rX) exp{sY) exp(-(rX + sY)) - e φ ( r X ' s y ) c ,

where Φ(rX, sY) is a holomorphic function in r and 5. Thus we may assume
that ||-X"||tt;, H^ΊL are small, such that we can apply the Campbell-Hausdroίf
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formula. It follows

exp(X) exp(Y) = exp ί X + Y + -[X, Y] + higher commutators 1
\ 2 /

since c is central and [X, Y]} = 0 by hypothesis. Now [X, Y] — [X,
ω(X,Y)c. Hence

exp(X) exp(y) - exp(X + Y) e^
x'γ)c.

Ώ

Corollary. Under the assumption of the lemma

exp(X + Y)= exp(X) exp(Y) e-?ω{X γ)c.

Suppose v0 € L(λ0) is a highest weight vector of the basic module L(λ0).
Suppose W € CW{L). Define the function Φ as follows:

HW) = (πXo(expW)v0,υ0)Xΰ.

Denote by Ad$ resp. Ad^ the adjoint representation of Gw resp. Gw on
g_w. If V E Λ and W G CW(L) then (notation as in 2.4.4)

Pτ(AdL(φ(g+(V))W)) = AdL(g+(V))W) = W.

Hence

3.5.3 Ad

where a(g+(V), W) describes the lifting of the action to £ .

Lemma 3.5.4. Suppose V G Λ, We €W(L). Then

φ(V + W) = e~iω^w)+Ί(v)+ai9+{v)'w)Φ(W).

Proof.

φ(V + W) = (τrλo (exp(y + W))v0, v0)χ0

= e-^v'wHπλ0(exp(V))πXo(exP(W))υ0,v0)λ0 by 3.5.2
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If X G g, then (Xvo,Vo)χo — 0 which follows from the contravariance of

the form (, ) λ o (cf. Garland [5], pp. 541-549) and the fact that A θ n acts

trivially on Cυ0. Since (, ) λ o is positive definite (cf. Garland [5]) we conclude

Xv0 — 0 for X G g. Hence, if g G G then gυ0 = υ0, since G is connected. We

also have gv0 = v0 for g G Vw,+. Thus from the contravariance of the form

(, ) λ o we obtain

(τrλ0 (expAdL(φ(g+(V)))w) v0,

(GVWt+ acts by 1 on Cυ0)

^ b y 3_5_

D

Lemma 3.5.5. If gU9ι € Gw, X G £ω and AdL{pr(gj)X) = X, j = 1,2,

Proo/.

Ad^(^c/ 2 )X = Ad^(pr(5^ 2 )X) + a(g1g2,X)c = X + a(g1g2,X)c.

Also,

Ad^foίfe)* - Ad^ίί/Oί-Y + a{g2,X)c) =X + a(guX)c + a(g2,X)c.

D

Suppose g E Gw and X G £ . Then

Ad^ (g)X = Ad L (pr(ί/))X + αfo, X)c.

Hence

d5 (pi(g))X + a(g,X)c,d)
—xv /

diw(pτ(g))X, d) + 5 e (α( ? , X)c, d)

= a(g,X).
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Prom the properties of Be it follows

Be (AdL(g)X,d) = Be (x,Ad^( 5 )- χ

= Be(X,g-1dg).

Thus

a(g,X)=Be(X,g-1dg).

If V E Λ and W € €W(L), then

a(g+(V),W)=Be(W,g+(V)-1dg+(V))

which shows that the ambiguity in the definition of g+(V) by α/, al E
G, a G C*, does not occur in the expression α(<7+(F), W). Since the map

Λ ^ C

given by V —>• 5+(V) is a homomorphism, we obtain from 3.5.5.

Lemma 3.5.6. // U, V € Λ and W G €W(L), then

a(g+(U + V),W) = a(g+(U),W) + a(g+(V),W).

Set ί(V, W) = α(ί?+(F),VF). Then 3.5.4 can be restated as

Lemma 3.5.7. (1) IfVe C^{L), We <tw{L), then

Φ(V + W) = e*ωiv'w) Φ(W).

(2) IfVe CΊiL), W e C"(L), ί/ιen

W) = e-τω{v'w) Φ(W).

Proof, (a) Since the cocycle ω vanishes on g and on j it follows

Ί{V) = 0 for V e C^(L) or V E £™{L).
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(b) Suppose V G Cχ(L). We assert δ(V,W) = ω(V,W). Since V G

€%(L) it follows g+(V) = ev. Moreover, g+iVy1 = e~v and ^g+(V) {eiθ) =

ev('")£v (e«). Thus ^V (eiθ) = (g+(V) (e^))"1 £g+(V) (e«). Hence

{ ) ίθ {eiθ)'w {eiθ

= δ(V,W).

(c) Since <J(V, W) = 0 for V G C™(L), statement (2) follows. D

For any X G g with X = X+ + Xo + X_, set

Since for any X, Y G gw, (X + Y)+ = X+ + Y+ and (X + Y)_ = X_ + Y_
it follows by integration by parts

σ(X + Y) - σ(X) - σ(Y) = ω(X+ + Y+) Z_ + Y_) - ω(X+, X_) - ω(Y+,y_

= α;(A'+,Y_)-α;(jy_,Y+).

Denote by

3.5.8. (X, Y) = σ(X + Y) - σ(X) - σ(Y).

Suppose W G £ω(L). Define the function θ to be

3.5.9. Θ(W) = e~iσ{w) Φ(W).

Lemma 3.5.10. Suppose W G €.W(L). IfVe £^(L) or V G C^(L), ί/ien

Proo/. (a) Suppose W G CW(L) and V G €£(£). Then

Thus

Q(V + W) = e~ϊσ{v+w) Φ{V + W)
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We establish the formula by proving σ(V + W) — ω(V, W) = σ(W). Since

the cocyle ω vanishes on gw and 4-V+ (eiθ) = 4-V (eiθ) it follows

σ(V + W)- ω(V, W) = σ{V + W)- ω(V+, WJ)

= ω(V+ + W+, WJ) - ω(V+, WJ)

= σ{W).

(b) To prove the formula for V E C!f(L), one shows by a similar argu-
ment that σ{V + W) +ω{V,W) = σ{W). D

Define for V G Λ / Cϋ(L) + £%(L) and W € €W(L) / £ϋ(L) -I- C™(L)

£(W, F) = --^[(V, W) + ω(V, W) - 2δ(V, W)]

and

The definition of the function i(W, V) shows that it is C-linear in W, since
(V, W), ω{V, W) and ί(V, W) are C-linear in W.

We are now ready to prove one of the main results of this work which
shows that the function Θ as defined in 3.5.9 is a theta function. This
generalizes a result of Goodman-Wallach who showed in the case of n = 2
and tridiagonal L that the matrix entries of the standard representations are
theta functions ( [8], pp. 211-213 - see also appendix).

Theorem 3.5.11.
Suppose V E Λ / £ ! ( L ) + C%(L) andW G <CW{L) / £™{L) + £™{L). Then

W) = e

27ΐi

Proof. This is the functional equation required in Lang's definition of a theta
function ([13], Chapter 4, (1.2)).
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(by 3.5.9)

Θ(V + W) = e-*σ{v+w) Φ(V + W)

(by 3.5.4)

(by 3.5.8)

(by 3.5.9)
= e-ϊ[(V,W)+ω(V,W)-2δ(V,W)]-±[σ(V)-2Ί(V))

D
= e2πi[l(V,W)+J(V))

Appendix. The Case SX(2, R).

This section contains a calculation of the solution of the generalized periodic
Toda lattice in the case of SX(2, R). It was shown by Goodman and Wallach
that the solutions are given in terms of representative functions of standard
modules. The representative functions are expressed in terms of the original
Jacobi theta function. The calculation is taken from ([8], p. 211-213 - see
also references therein).

A) Let H denote the periodic Toda lattice system for 5L(2, R):

with q0 = 7 — qx for some constant 7,

dH 1

• - d H

dqi

and

= - log ( ! ± ? 1 ) , qi (0) = - log ( i - ^ ) , Pl (0) = 0.

Here k denotes a parameter in the range — 1 < k < 1. Assume that L is^as

follows:
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With Co = | ( 1 + fc), C! = | ( l - * ? ) .
Let φi(t) be defined by

Φi(t) = (7rλ<exp(-tL)r; i,ι; i)λ ί

for i = 0,1.
The solution of the periodic Toda lattice is given by

B) Define x, y and 2 as follows:

a? = 2 - i ( e " * - e ~ ? 1 ) , y = - Pi, 2 = 2~i(e-"° + e~9l)

Then £, y a n d 2 satisfy the system of bilinear differential equations

i = -y - z, y = x z, z = -x-y.

Given the above initial condition the solution of x, y and z are given in
terms of the Jacobi elliptic functions as

x = k cn(t, fc), y = k sn(ί, A;), z = dn(t, k).

The coordinate functions of the Hamilitonian are then expressed as

dn(t,k)+kcn(t,k)
qi(t) - 9 l (0) + log

= 2A; sn{t,k).

C) For the representative functions we have

φi (t) Ί dn(t, k) + k cn(t, k) dn(t, k) — k cn(t, k)
_____ y — _ β

The representative functions φi(t) also satisfy the differential equation

from which we obtain

2(logφo)" = dn2 + k-dn-cn + 2{k2 - 1)

2(log^i)" = dn2-k-dn-cn + 2{k2 - 1).
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These equations can be integrated using complete elliptic integrals of the
first and second kind with modulus k to yield:

_ Ms*,g) dn(t,k)-kcn(t,k) 2υt2
- 04(O,g) ' 1-fc

where q, 0 < q < 1, is defined implicitely by

Λ 2 n - 1 >> 8

and E, K, v are given by

K= ί2 (l-k2sin2θyhdθ
Jo

= / ( l- fe 2 s in 2 ^) f dθ,
Jo

E

fc2-!

Similarly one obtains for <^>i(ί)2

φi{t) ~imq) ΓΓk e

Prom infinite product expansions for

dn(t,k) ± A; cn(t,k)

and from Jacobi's infinite product expansions of theta functions we obtain
explicit expressions for φo(t),φι(t) in terms of theta functions. The formulas
for φi(t) are given as

ώ(t)
Θ4(θ,qi)

" " *(o,«»)

with u — j£.
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