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APPLICATIONS OF LOOP GROUPS AND STANDARD
MODULES TO JACOBIANS AND THETA FUNCTIONS OF
ISOSPECTRAL CURVES

WILLI SCHWARZ

Let L(z) be an element of M,(C[z,27!]). In this work we
study the structure of isospectral curves given by f(z,)) =0,
f(z,)) = det(L(z) — A), their Jacobians and the relationship be-
tween standard modules and the corresponding theta func-
tions. We assume that f(z,)) is irreducible and nonsingular
for f(z,A)=0and z € C*.

The element L(z) will be called good, if the centralizers
€+ (L) of L(z) in M,(C[z]) (resp. M,(C[z7'])) are the integral
closure of C[z,2PL] (resp. M,(C[z71,279L])) in M,(C[z,271]).
The class of curves we analyze include nonsingular curves and
the isospectral curve of the periodic Toda lattice. The latter
curve is represented by a “tridiagonal” matrix L(z).

The Jacobian variety is expressed as a quotient of certain
centralizers of L(z) which are computed in a completion M, (A,)
of M,(C[z,271]). If we assume further that L(z) is an element
of SL,(C[z,27']) then the basic module of the universal cen-
tral extension S'Zn(Aw) of SL,(A,) is employed to define a
function O. This function O is defined in terms of represen-
tative functions on the “Lie theoretic” Jacobian and satisfies
the functional equation of theta functions.

Introduction.

The relationship between completely integrable Hamiltonian systems, Kac-
Moody Lie algebras and curve theory were studied systematically by M.
Adler and P. van Moerbeke in [1], [2]. The main idea of their method is to
associate to such a Hamiltonian system a Lax matrix differential equation

of the form

dL _

= =L, M(D)*] = [Z, M(L)"]
where L is an element of a loop algebra § = g ® Clz,27!] and M(L) is a
function of L. The associated isospectral curve X is obtained as projective
completion of the quasi-affine curve

X% = {(2,)) € C* x C| det (L(z) — \) = 0}
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The corresponding Lax equation of a completely integrable Hamiltonian sys-
tem becomes linear on the Jacobian variety of the curve X . For those sys-
tems which are of relevance in physics, such as the periodic Toda system,
the Euler-Arnold spinning top and the Neumann problem, the isospectral
curves are hyperelliptic.

Certain classical integrable Hamiltonian systems which arise in mechanics
or geometry, for instance the motion of a particle on an ellipsoid under a
central force or the geodesic flow on an ellipsoid, were solved directly by J.
Moser [15]. The solutions are expressed in terms of hyperelliptic theta func-
tions on the Jacobian variety of the related hyperelliptic isospectral curve.
The Jacobian variety is obtained as a quotient-space of an isospectral man-
ifold. Its linear structure defined by the Hamiltonian vector fields of the
integrals of the flow agrees with the linear structure as given by Abel’s theo-
rem. These ideas were developed further by D. Mumford in [18] to construct
families of Jacobian varieties using dynamical systems.

Classical and quantum mechanical systems of Toda lattice type were stud-
ied in detail by R. Goodman and N. Wallach in a series of papers [6], [7],
[8]. In the case of the generalized periodic Toda lattice the solution is cal-
culated in terms of representative functions of standard modules of a Ba-
nach Lie group G,. The group G, is obtained as a central extension of
the connected and simply-connected loop group G,, of the completion g, of
the Kac-Moody algebra g. To obtain explicit solutions the representative
functions on standard modules defined by highest weight vectors are com-
puted along certain one-parameter subgroups of G.. These functions define
a system of non-linear ordinary differential equations. In the special case
of §Z2( R) this system of ordinary differential was solved explicitly and the
solution described in terms of theta functions.

In this work we combine the Kac-Moody Lie algebra approach to Hamilto-
nian systems with the method of representative functions of standard mod-
ules to obtain our main results. The related Lax equation of an integrable
Hamiltonian system

L (2, M) = 12, M(1) ]
with L € M,(Clz,27!]) implies that M(L)* — M (L)~ is contained in the
centralizer of L in M, (C[z, z7']). Taking this fact into account we consider
various centralizers of L in a certain loop algebra and its associated loop
group.

Suppose L € M,(Clz,2z7']), L(z) = ¥i__,¢;2 is such that its char-
acteristic polynomial f(z, ) is irreducible and the isospectral curve X, is
nonsingular for z € C*. The calculation of centralizers will be done in a
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completion M, (A,) of the loop algebra M,(C|[z,27']). The completion is
defined by the absolute convergence of weighted series of Fourier coefficients
for certain weights w. These weights satisfy for some o, 1 < o < 2, the
inequalities

Cyexp(t|k|"/?) < w(k) < M. exp(e|k|)

for all t,e > 0,k € Z and some positive constants C;, M,.

Let €% (L) denote the centralizer of L in M,(A,) and €% resp. €¥ the
centralizers of L in the respective completions of M, (C[z]) and M, (C[z7]).
We prove that if the curve X is nonsingular or if L is “tridiagonal” (i.e. L
is tridiagonal with an entry in the upper right corner and in the lower left
corner) that the respective centralizers € 4(L) in M, (Cl[z]) resp. M, (C[z"'])
are the integral closure of C[z, 2P L] resp. of Clz7!,279L] in M,(Clz, z™']).
We consider C[z,2PL] and C[z™!,27%L] to be contained in M,(Clz,2z7']).
The element L € M,(C[z,27']) will be called good if it satisfies this addi-
tional condition.

If C¥(L) denote the analogue of the centralizers € ¥ (L) in the loop group
GL,(A,) we define

A={Veerl)|e eC¥L)C(L)}.

We will prove that the Jacobian variety of the desingularized curve X7,
Jac(X7}), is isomorphic to

Jac(Xp) = €*(L)/ €2 (L) + €X(L)/A/ €2(L) + €¥(L)

if L is good.

Suppose now that L € sl,(4,). Let (L(Xo),m»,) denote the basic module
of the universal central extension SL,(A,) of SL,(A,). If vy denotes the
highest weight vector of L()\o) we define the function  on

c¥(L)/C¥(L) + €Y (L)
in terms of representative functions as
(W) = e 2M)(r, (exp W )vo, Vo) ro -

The term o(W) is defined to be (W) = w(W,,W_) where w is the cocyle
defining the Lie algebra extension and W = W, +W;,+W_ is the decomposi-
tion of W corresponding to sl,(2C[2]) + sl ,,(C) + sL,,(z7'C[z7!]). Here (, ),
denotes the contravariant, positive-definite Hermitian form on L(),). We
show that the function 6 is a theta function on the “Lie theoretic” Jacobian
of Xj.
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Most of the material contained in this work is essentially the author’s
doctoral thesis given at Rutgers. He wishes to thank his thesis advisor,
Nolan Wallach, for help and guidance. Discussions with Roe Goodman were
also very helpful.

1. Concepts from the Theory of Nonsingular Projective Curves.

The purpose of this chapter is to develop notation from the theory of non-
singular projective curves.

1.1. Nonsingular Projective Curves and Jacobian Varieties.

The term projective curve will denote an irreducible algebraic set in P*(C)
of complex dimension one, with the induced topology. Most of the projective
curves in this work will be given as the zero set of an irreducible homoge-
neous polynomial f, f € Clzo, z1, 2], in P?(C).

Set
X ={PePO) | f(P) =0}

The projective curve X is said to be nonsingular, if for any P € X

af of of
E)x—o( )s 55:( ), %(P) # 0.

However, there will be cases when the general definition (cf. Hartshorne
[12], p. 31) will be necessary.

The simplicial homology groups of a nonsingular projective curve X are
described as follows. Since X is connected, Ho(X, Z) = Z . H (X, Z ) is the
free group on the generators [a;],[b;], 7=1,...,9. Thus Hy(X, Z) = Z*.
The second homology is isomorphic to the integers, Hy(X, Z ) = Z, since X
is compact.

The integer g is called the genus of the nonsingular projective curve X.

The generators [a;], [b;] of H;1(X, Z ) can be chosen, so that the following
intersection properites are satisfied (see Farkas—Kra [4], p. 54).
abem b =0 TFE
T =k
aj-ak=0=bj-bk.

Any basis {a1,... ,a,,b,... b} of Hi(X, Z) with these intersection prop-
erties will be called a canoncial homology basis for X.
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Let {wi,... ,w,} be the unique basis for the space of holomorphic differ-
entials with the property
/ Wk = Ojk-
.

J

Furthermore, for this basis, the matrix Q = (Q,;) with

ij=/ Wi
b.

3

is symmetric with positive definite imaginary part.

The matrix (I,Q) is called the period matrix of the holomorphic 1-forms
on X.

Suppose X is an irreducible nonsingular projective curve. Define A =
A(Q2) to be the lattice

Z°+ Q- Z°.
The complex torus
Jac(X) =C'/A

is called the Jacobian variety of X.

An equivalent definition is obtained by using sheaves (cf. Gunning [11]).
Let

0> Z —o0x 20y =0

be the short exact sequence of sheaves on X. Here Z denotes the constant
sheaf, ox the structure sheaf, and 0% the sheaf of invertible elements of ox
under multiplication. The map

Ox—)O}

is given by the exponential map. The cohomology sequence of this short
exact sequence is

0— HY(X,Z)— H'(X,0x) » H(X,0%) = H*(X, Z) — 0.
The sheaf theoretic Jacobian variety of X is defined as
Jacgpeaf(X) = H'(X,0x) /| H(X, Z)
which is the kernel of the map
HY(X,0%) —» H¥(X, Z).
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1.2. Theta Functions.

This section contains a definition of theta functions as given by Lang [13]
and by Mumford [17].

Let V be a complex vector space of dimension n. Suppose A is a lattice
in V, so that the factor group V/A is a complex torus. A function © on
V is called a theta function with respect to A, if it is a quotient of entire
functions, not identically zero, and

O(u+ z) = 2"HEVHWI Q(z), allue A,z eV

where £ is C — linear in z. No further assumptions are made about £ and J.
If © is a theta function with respect to A then one can prove (cf. Lang
[13], p. 58) that

(1) J(u+v) — J(u) — J(v)=£L(u,v) (mod Z)
(2) £(u,v) ={(v,u) (mod Z)
(3) (z,u+v) ={(z,u) + {(z,v) (mod Z).

Then ¢ can be extended to a function ¢(z,y) on V x V, which is C - linear
in z and R - linear in y. J can be chosen in such a way that the function

K(u) = J(u) — %Z(u, u)

is Z - linear, and can be extended to an R - linear function on V.
In terms of £ and K, the relation defining a theta function can now be
rewritten as

@(U + 33) — e27ri[£(:c,u)+%l(u,u)+K(u)] @(.’L‘)

2. Affine Lie Algebras and Loop Groups.

In this chapter we introduce some concepts from the theory of affine Lie
algebras and loop groups. We use the notation of Goodman — Wallach [7]
and recall some of their results.

2.1. Affine Preliminaries.
Let g be a simple, finite-dimensional Lie algebra over C. Set
§=9®cClz,z7"],
which we consider as a subspace of the smooth maps from S, the circle, to

g.
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g is a Lie algebra under pointwise commutator.
Let B be the Killing form on g, and define a skew-symmetric bilinear form
w on g by

W(X,Y) = % /021r B (%X (¢®),Y (eie)) e

for any X,Y € g.
Then w is a 2-cocycle on g, which gives rise to a central extension of §
denoted by g:
0-C—>g—g—0.
As a vector space we write § = g @ C ¢, with commutation relations
[X +ac,Y +bc] = [X,Y]; + w(X,Y)e,

for X,Y € g, a,b€ C. Here [, |; denotes the bracket in g, and c is central.
The extended Lie algebra §° is defined to be

gF#=goCd
with
ld,d] =0, [d,x@zk]zz%(x®zk)=km®zk, r€g, ke Z
or
[d, X (e¥)] = =5 (X (¢°)), X €§

From the Killing form B on g, we obtain a bilinear form Bon g by integration
over S

B(X,Y) =/2"B(X (e°),Y (¢°)) dO, X,Y €3,

(Goodman - Wallach [8], p. 199). The form B on g can be extended to a
bilinear form B® on §° by setting

Bt(c,d) =1, B%(c,c) = B*(d,d) =0, B*(§,c)=0.

Be(g,d) =0, B*(X,Y)=B(X)Y), X,Y €§.
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Fix a Cartan subalgebra h C g, and let ® be the roots of h on g, where
g, denotes the a rootspace, @ € ®. Choose &+ a set of positi_ve roots
and a Chevalley basis {Ea}ace U {Ha; | 1 < j < £} for g, with E, € g,
H, = [E,,E_,] € hsuch that o(H,) = 2. Here a4, ... , o, denote the simple
roots in ®*. Put

‘—heCcoCd

[

If @ € A", extend « to Eby setting a(c) = a(d) = 0. Let v,d € (EC)* be
defined by

(k) =0, v(c) =1, v(d) =0,

() =0, 8(c)=0, 6(d)=1.

Let & be the highest root in ®*. Set ag = d—a& and H,, = —Hsz+ (&2,2)' (Here
(+,-) denotes the inner product on A" induced by B.) Denote by w; € h”,
1 < j < £ the basis dual to H,;, 1 < j < £. Define v; € (ﬁe)* by the duality

relations

‘Dj(Hak) = ks O S],k S e, &)](d) = O

XA € (A)* is called dominant integral if MH,,) € N = {0,1,2,...} for
j=0,...,¢ Every such element of (ﬁe)* is of the form nyw+. . . +n,w, +ad,
whre n; = A(H,,) and a = A\(d) € C.

Set ée = ﬁe @ f, where 7 is defined to be

n= Z g, ®g®zCle]

acdt

Given ) € (_ﬁe)*, extend A to be zero on 7, and form the induced §° - module
M(\) =U(g°) ®ygsy Cr,

where C, denotes the one-dimensional b~ - module with action z — Alz) -1,
and U(g®) resp. U (Ee) denote the universal enveloping algebra of §° resp.
b . Let L()\) be the quotient of M()\) by the maximal submodule of M(X)
which does not contain 1 ® 1. When )\ is dominant integral we shall call
L()) a standard module with highest weight A.

Fix a basis {u; | j = 1,... ,£} of g and let {v | j = 1,... ,£} be defined
by

B (uj,u*) = §j.
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Set p = 3 Y ce+ @ Then the operator

1 _ ¢ ‘
T= 3 Zu,-u] + Z Z(u, ® 27 %) (v ® 2*)
Jj=1 k>0 j=1
kEZ
acts on L()) with action
1 _ ()\0, )\0 + 2p)
AMe)+3|7 2A(e)+1 7’

where Ao = A,

2.2. Completions of g.
A function w: Z — (0,00) will be called a symmetric weight function if

(1) w(—k) =w(k)

(2) wk+¢) <wk)w(l), kleclZ.
Let A, be the space of functions

F(e®) = Zakeike
keZ
on S* such that
I f llw == laxlw(k) < oo.
kezZ

Then (A, | - ||») is a commutative Banach *-algebra under pointwise mul-
tiplication and *-operation given by complex conjugation. Since w(k) >
w(0)'/2, A, C C(S*,C) with continuous inclusion.

The symmetric weight w will be said to be of non-analytic type if

lim w(k)'* = 1.
k — oo

In this case the maximal ideal space of A, is S*. Hence if f € A, f #0on
S, then $ € A, (cf. Goodman-Wallach (7], p. 128).
Let X € g be given by

X = E a;pu;z®, z =€
gk

with {u;} a basis for g and u; = u} . Define

I X llo= 3 1 gz | w(b)
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Then || - ||, is a norm on g, and we denote the completion of § with respect

to |l - [lw g,
Suppose the symmetric weight w satisfies

w(k) >C | k|Y? ke Z
for some constant C > 0. If we define
| X +acllv=Il X |lw +]a|

for X € g, a € C, then the completion g, of g is a Banach Lie algebra and
given by g =g & Ce (cf. Goodman - Wallach [7] p- 83). For g C M,(C)
the completion g g, of g can also be described as

gw = {X € Mn(Aw) ’ X(z) € g, 2 (S Sl}

2.3. Completion of Standard Modules.

Suppose A is a dominant integral weight for ¢, and (L()), ) is the
corresponding standard §°-module with inner product (u,v)x. Denote by

H* the completion of L(\) in the norm || v |[x= (v, v)1/2. Let A be the

closure of
1
I ——— | T
+ <)\(c) n ;)

in H,. Define the powers A", r € R, by the spectral theorem, and set
— 1/o
o lleu= lexp (¢477) o]

for v € L(A), t > 1 and 0 > 1. Denote by S, the completion of L(\)
relative to this norm. Then

S

o

A
¢>o S

will be called the space of Gevrey vectors of order o for A.

2.4. The Group G,,.
Let fi,..., f. be polynomials on M, (C). Assume that

G=1{g€SL.(C) | fi(g) =0, j=1,... ,d}

is a connected and simply connected group with simple Lie algebra g. Also
assume that if g € G, then the conjugate-transpose g* € G. Set

SLy = SLa(Aw) = {9 € My(Au) | g7" € Ma(Ay), det(g) =1}
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for w a weight of non-analytic type. Then G, with

Gu = {9 € SLa(A0) | f5(9(2)) =0, j=1,... ,d, z€ 5"},
is a closed Banach Lie subgroup of SL,(A,) with Lie algebra

g, ={X e M,(A,) |dfj(X(2)) =0, j=1,... ,d, z€ S'}.

If Ao, A1, ... , A are the fundamental weights of g, set

As £
Sa =é SO'J? 7l"=®7'(')‘j.
=0 =0

]:‘.
Let G,, be the group generated by
{exp(n(X)) | X €g,}-

Let Z denote the center of G,,. Then Z is a closed Lie subgroup of G
with Lie algebra Cc. The identity component of Z is

Z° = {exp(tn(c)) | t € C}.

Assume there exists a 0, 1 < 0 < 2, such that the weight w satisfies the
inequality

C, exp(t|k|1/") < w(k) < M, exp(elk]|)

for all t > 0, € > 0 where C;, M, are positive constants. Then we have an
exact sequence of Lie group homomorphisms

152256, % a6, -1
whose differentials give the Lie algebra exact sequence
05 C =g Bg —0
(cf. Goodman-Wallach (7], p. 111).
3. Isospectral Curves and Their Jacobians.

3.1. Isospectral Curves.
Throughout this chapter we make the following assumptions:

3.1.1. There exists 0, 1 < 0 < 2, such that the symmetric weight w satisfies
the inequalities

Ciexp(t|k|'/7) < w(k) < M. exp(elk|)
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for all t,e > 0 with constants Cy, M, > 0.

Suppose L € §, § = M,(C) ®c Clz,z7"], is given by
q

L:L(z): 2 ijja ejEMn((C)a jz-pv“' 4, p+QZ1-

Jj=-p

2PL(z) and Lo (27') =

3.1.2. The characteristic polynomials of Lg(z ) =
LX) = det(Le(271) — A) are

—-qL(z), fO(za >‘) = det(LO(z) - )\) and foo(

irreducible.

Define the quasi-affine curve X® to be
X*={(2,A) € C xC| f(2,A) = det(L(z) — ) =0}.

Then X*° is irreducible. Let X, denote the corresponding projective curve
of X°. X is obtained by homogenizing

pt+aq

Lo(z) = A= ij_pzj -

and setting

pt+q
M(zg, z1,22) Zf P2 tPTITT pgptaT iy

To=2, L1 = A\, To =1.
The isospectral curve X is defined to be
X1, = {(z0, 71, 72) | det M (zo,z1,25) = 0} C P?(C).
Set

Xo = {(Z’A) eCxC l fO(sz) =0}7

Xoo ={(z71,2) €CxC| fu(z7",A) = 0}.
Then X* C X and we have the following maps

o X* = X, (2,A) = (z,2°))
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Yoo ! X = X, (271,2) = (271,279N).

We also assume
3.1.3. X, N X, is nonsingular or equivalently df (z,A)|x,nx., # 0.

If f(z,A) has singularities on X, denote by S the set of singular points
of X L

Theorem 3.1.4. Let L be as above. Then there exists a nonsingular model

X} of X and a projection map p: X; — X;. Set S' = p~!(S), then

p: X; -8 — Xp— S is biholomorphic.

Proof. (Cf. Serre [24], pp. 67/68.) O
In this chapter we will be analyzing two classes of curves:

3.1.5. X is nonsingular, i.e. S=0. Then X; = X

3.1.6. L is given by

L(z) = eo + élz + 8222,

eO = El,n.a
6 =371 (aEj i + B ) + Yiey 4 Ej 5,
e2 = En,la

M=l a; #0, 175 b # 0.

In Section 3.3 we will give a condition in terms of the a;’s,b;’s and d;’s
which guarantees the nonsingularity of X, N X, Xo N X C Xi.

We associate to X a line bundle E;, — X as follows: For z € X
define

Ep(z) = Ker (L(2(z)) — A(z)) .
Then we have

Theorem 3.1.7. If f(z, ) is nonsingular on Xy, then Er(z) is one-dimensional
for any x € X and the map

z — Ep(z)
is holomorphic from X to P*(C).

Proof. (a) Suppose 2, € C is such that L(zy) does not have simple spectrum.
If )y is a multiple eigenvalue of L(z), then by the nonsingularity of f(z, )
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we obtain
0 of
a_i(z’ Mizore) # 0, 53(2 Vi) = 0.
Define C} to be the generalized eigenspace of g
Cy, ={veC" | (L(z0) — Xo), =0, for some r € N}.

Assume there exist linearly independent vectors v;,v, € C} such that
L(z)vj = Aov;, j =1,2. Extend v;,v, to a basis {v;} of C*. Then

det (L(20) — A) = (A = Ao)® ®(N),

(L(z) — Xo)ug A oo o A(L(2) — Ao)vn = f(2,X0)v1 Ao A vy,

which yields f(z, Ao) = (2 — %)2g(z), contradicting 2£(z, A)|(z0.2,) # O

(b) Denote by A0 (M(zg,z1,z2)) the classical adjoint (cofactor matrix)
of M(zo,,,22) as in the definition of X, and let e;(z) = e;(zo,z1,2) be
the j-th column of A0 (M(zo, z1,z2)). If det M(zo,z;1,2z2) = 0 then by (a)
dim KerM (zo,z1,22) = 1 hence rankM (zg, z1,22) = n — 1. Consequently
there exists j, 1 < j < n, such that e;(z) # 0. Set

Ui ={z € X | ¢;(z) #0}.

Then‘LnJlUj = X and the map

]:
X, — PYC), z — ej(x)

is polynomial and homogeneous. On U; N U, we have e;(z) = g, xex(z) with
9;,x holomorphic. t

Theorem 3.1.8. Let L be as in 3.1.6. If x € Xo N X, then Er(x) is
one-dimensional and the map

r — EL (:13)
is rational from X to P*(C).

Proof. From 3.1.7 (a) it follows that Ey(z) is one-dimensional for z € Xy N
X oo, since XoN X, is nonsingular. Define ® on the Zariski-open set XN X,
as

2: XoNX, — PYC), z — ej(z) (see3.1.7(b)).
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If A C ®(X,N X)) NP(C) is closed, then ®~1(A) is closed, since ® is
polynomial and homogeneous. Thus @ is continuous in the Zariski-topology.
Suppose V C P*(C) isopen and r: V — C is a regular function on V,
i.e. for P € U C V, U open, there existhomogeneou s polynomials g, h of
the same degree, such that A is nowhere zero on U, and r = £ on U. Con-
sequently ro @ : (V) — C is regular. If z € ®~1(U), then there exists
Jy 1<j<n,sothat z € U; (3.1.7 (b)). Thusro® = ;’;Z—i and go®, hod
are homogeneous polynomials of the same degree.

Moreover, h o ® is nowhere zero on U; N @~}(V). Hence ® is a rational
map @ : X; — P*(C) (cf. Hartshorne [12], pp. 14-24). a

. Theorem 3.1.9. Suppose L is as in 3.1.6. Let ®: X, — P*(C), z —
Er(x) be the rational map in 3.1.8. Then the induced rational map @' :
X; — P*(C) is everywhere regular.

Proof. (Cf. Mumford [16], pp. 166/167.) g

3.2. The Algebraic Curve X; (Nonsingular Case).
Let L € g be given by

q
L=L(z) = Z 020, 6 e My(C), j=—p,...,q, p+q>1
j=-p
Theorem 3.2.1. Let L be as above. Suppose f(z,A) is nonsingular on X.
Then the genus of X1, g(X.), is equal to

9(X1) = gnln = 1)(p+a) ~n+1.

Proof. (a) We may replace L(z) by Lo(z). Let p, : X; — P! be the
projection map corresponding to z, so that p,(z,\) = z. Then degp;, = 1.
By Hurwitz formula (cf. Farkas — Kra [4] p. 18) we have

29(X1)—-2=n(2y-2)+B=-2n+B,

since the genus of P!, «(P!) = 0. To establish the result we observe that the
total branch number, B, is given by

B=> > {mult(}) -1},

z€C AeSpecL(z)
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where SpecL(z) denotes the spectrum of L(z) and mult(A) the multiplicity
of \. We now use this observation to show that

B =n(n—1)(p +q).

(b) Suppose A € M,(C). Define Q(A) by det(adA — tI) = t"Q(A) +
higher order terms in t.

Then Q(A) is polynomial and if A has eigenvalues A,... , A, counting
multiplicities, then

Q(4) = TT(\ = ).
J#k
Thus Q(tA) = t"»~YQ(A). Since there exists z, € C such that L(z) has
simple spectrum we have Q(L(z)) # 0 and

Q(L(2)) = Q(2**4, + lower order terms in z)
= 2" DI Q(¢g,) + lower order terms in 2.

If ¢, does not have simple spectrum, then if L(z,) does replace L(z) by
L(z + z) and consider L. ((z + 2)~') to obtain

deg Q(L(z)) = n(n —1)(p + ).

(c) Assume L(z) has a multiple eigenvalue for some 2z, € C. We assert
that

ord,,Q(L(2)) = Z {mult(\) — 1}.

AESpecL(zp)

We may assume z, = 0, otherwise we can replace L(z) by L(z + 2). Let
AL, --- , A, be the eigenvalues of L(0) counting multiplicities. If A € SpecL(0)
and r = mult(A), > 1, we have
aof . of

(1) £0,0) =JIu = %), 53(0,2) =0, ==(0,%) #0.
We may also assume A = 0, otherwise we can shift by —A. Then by the
Inverse Function Theorem f(z,A) defines z = z(A) in some disc in the A
parameter with z(0) = 0. We assert that ordgz(A\) = r. We have

o° o

_—_f(z) A)ko,o) = 01 § < Ty _B'_A—;

9Ns f(z’ A)I(o,o) # 0.

Then
d 0

0= af(za >‘)lx=0 = af(z()‘)v )‘)ZI(A)L\=0 + %f(z(/\)’ )‘)I,\=o
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giving 2'(0) = 0 by equation (1), and more generally
d’ s
0= S (5 N iama = e T, N Wy + 2 (), i
yielding 2(*)(0) = 0 for s < r. Thus
2(A) = a,A" + higher order terms in },

which gives A = A(z!/7), A(0) = 0, X(0) # 0, with A holomorphic in a
neighborhood of zero. If A;,... , A\, are the distinct eigenvalues of L(0) with
multiplicities i, ... , 74 respectively, then \; = X;(2'/7), 1 < j < k, with );
holomorphic near 0. This implies

k
z)) = [[ 27"V mg(z) , g(0) #0
j=1

with g(z) polynomial, since Q(L(z)) is polynomial. Thus
ordoQ(L(z) Z(r] -1).
j=1

Hence

> ord;,Q(L(2)) = deg Q(L(z)) = n(n —1)(p + g).

zo€C

3.3. The Isospectral Curve X, (Tridiagonal Case).
Let L(z) = £y + £,z + £52? be tridiagonal as in 3.1. Then

-dl - A aq e Z_l T
b1 d2 - A Qg o
27 'L(z)-A=| O by ds—X\ -
Qn—1
oz bo_y dp — A

The determinant of 27! L(z) — X is given by

f(z,A) = (=1)** ("1_-1 aj> z+ (ﬁ bj> z7t—P()\)
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where P()) is a polynomial of degree n with leading coefficient 1. Set A =
Hz;} a;, B = ) by b;. Then by assumption A # 0, B # 0 and the curve

Jj=1

X is defined by
Az+ Bz7' — P()\) = 0.

Equivalently,

1 7 _ _ 1
z(A)=ﬂ[P(A)i,/P(A> 4AB] P ey e el

Theorem 3.3.1. Let L be as above and suppose Xy, is nonsingular on Xy N
Xoo- Then the curve Xy, is hyperelliptic of genus g(X}) =n —1.

Proof. (Van Moerbeke-Mumford [14], pp. 125/126.) O

The assumption that X is nonsingular on X, N X, was added and is
necessary as the following example shows.

Consider the matrix:

-2 1 2!
Liz)-A=]1 =X 1
z 1 =)

Then f(z,)\) = =A%+ 3X + z + 2! and consequently f(z,A) is irreducible.
We have

3f -2 8f 2

_— = — P —— = — A

az(z,)\) 1—2772, 8)\(27,)\) 3% + 3,
which implies that (z,\) = (—1,1) and (2,A) = (1,—1) are singular points
of X;. Moreover, A=1= B and

PO —4=MA-12A+2)(A+1)2(A—2), P'(\) =3()\2 —1).

Thus P(\)? — 4 and P'(\) have a non-constant factor in common.
To allow singularities only on X, \ Xo N X, i.e. at z =0 or 27! =0, the
condition we need is as follows:

Set
f(z,)) = Az + Bz~' — P()).
Then
of _4_p,2 9F _ _p
az(z,)\)—A Bz ,a)\(z,)\)-— P'(N).
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If %f = 0, then z = :I:\/%. Hence the condition we obtain is, that the
polynomials

P()\) £ 2V AB, P'())
have no non-constant factor in common. If
R = R(P(\)? —4AB, P'()\))

denotes the resultant of P(\)? — 4AB and P'()), then the above condition
is equivalent to R # 0. The resultant is a polynomial in the

Q1y.v 81,0140 ybp_1,d1,... ,dy
(cf. van der Waerden [25], p. 108). The zeroset of R
Z(R) = {(a1,... y8n-1,b1, -+ ybp_1,d1,... ,d,) EC"? | R =0}
is an affine algebraic set of C3*~2 of codimension 1, the zeroset
Z(A,B) = {(ay,... y8n_1,b1, -+ ybp_1,d1,... ,d,) € C**? | AB =0}

has codimension 1 in C**~2. Therefore for (a;,...,@n_1,01, ..., bn_1,d1,...,d,)
in the complement of Z(R)UZ (A, B) we have the nonsingularity on XoNX.

3.4. Lie Theoretic Construction of the Jacobian Variety.

Let L satisfy 3.1.2 and 3.1.3. Denote by gw’+ resp. g_w’_ the completions
of M,(C[z]) resp. M,(C[z"']) with respect to the weight w. Let €*(L)
denote the centralizer of L in g . The centralizers of L in gw, 4 Tesp. gw’_
will be denoted €¥(L) resp. €¥(L).

Theorem 3.4.1. Let L be as above. Suppose f(z,)) is nonsingular on X
forallze€ S*. If M € €¥(L), then

M) = ¥ a4 ()
k=1

with cx(2) € Ay.

Proof. (a) Suppose (2o, o) € X, and dfj(;o,1,) #0. Then I, L(2), ...,L" Y(2)
is a basis of the centralizer of L(zy) in M,,(C).

Suppose L(z) is in Jordan canonical form. By 3.1.7 (a) we have
dimKer (L(z9) — Ao) = 1. Thus there exists exactly one Jordan block for the
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eigenvalue A\g of L(2p). If Ay,... , A, 1 <k < n, are the distinct eigenval-
ues of L(z,) with multiplicities 71,... , 7 respectively, then (notation as in
3.1.7 (a))

k

We note that if A € M,(C) commutes with L(2), then AC} C Cj, for
1 < j < k. Hence it is enough to consider the dimension of the centralizer of
L(z) on C} for 1 < j < k. Denote by L(20)|.. the restriction of L(z) to

ey
C%, . Since C} is a cyclic C [L(ZO)]Cn ]-module the centralizer of L(2)|.. is

j

isomorphic to

c| Ll | /m)

7

where m; denotes the minimal polynomial of L(z).. . Since degm; = r; it
’\J

follows
aimC (L) | /m) =10 15 <k,

Thus the dimension of the centralizer of L(z) in M, (C) equals 3_7_, r] =n.
The minimal polynomial of L(z) on C*, m(L(z)), is m(L(2)) = ]—[] L m;
Hence deg(m(L(z))) = n which implies I, L(z),... ,L™ *(z) are lmearly
independent.

(b) Suppose M(z) € €¥(L). Then, if f(z,A) =0, df(z,A) # 0, we
obtain M(2)A(IANL(z)A...AL"*(2)) =0 in A" M,,(C) for z € S*. Hence

(2) M(z) = ch (z)LF(2), ze S

(c) From the equation (2) one obtains
() INLG)A. . ALY Y2))) = (=D)¥(M(2)AIA. . .AL*(z)A.. . AL" " (2)).
The map
z = M(z)AIA...AL*Z)A...AL"(2)
from S* — A™M,(C) has coordinates in A,; the map

z =+ INL(Z)A...ANL"!(2)
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from S* — A"M,(C) has polynomial coordinates and is nowhere 0.
Set X;=X; N...ANX;,, with X;,...,X,2 a basis of M,,(C). Then

In?

IANLZ)A...AL"(z) = bi(2)X,, bs(2) € C[z,271],

INL(Z)A...AL™(2) - e (2) (IAL(2)A. . .AL™ Y (2)) = Y by (2)bs(2)ck(2)

and

IAL(Z)A. . AL 1(2) - (=1)¥(M(2)AIA. . .AL¥(2)A.. .AL™'(2)) =

= ZWQJ(Z%
with ®;(2) € A,. Now Y bs(2)bs(2) = 3 |bs(2)|? # 0, z € S*. Hence
_ ZW‘I’J(Z)
“B =@ <

O

From the proof of the theorem, it follows €*(L) and €¥(L) = €¥(L)N
g, . are abelian Lie algebras.

Zw,

Lemma 3.4.2. Let L be as above. If A € M,(C) is such that [A,L]; = 0,
then A=a-1I, a€C.

Proof. Let zy € C such that L(z,) has simple spectrum. We may assume
L(zp) is in diagonal form. Then A = diag(a,,... ,a,). Assume a = @, has
multiplicity r with1 <r<nanda=a; =... =a,. If z€ C, then

AL(z)e; = L(z)Ae; = L(z)ae; = aL(z)e;, 1<j <,

where e; is the j-th unit vector of C*. Hence L(z)e; is an eigenvector for
the eigenvalue a of A. This implies that

L(z)e; = au(z)er, 1< j<m
k=0

So

and det (L(z) — A) = det (A(z) — A) det (D(z) — A). This contradicts 3.1.2.
g
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Suppose M € g . Then M can be written as M = My + M, + M_ with
M. €zg, ., Mo € M (C)and M_€27'g _

Lemma 3.4.3. Suppose M € €*(L). Then M € €¥(L) + €¥(L) if and
only if there exist A, B € M, (C) such that M, — A, M_ — B € C€¥(L).

Proof. (a) The sufficiency is immediate.

(b) Let A, B € M,(C) such that M, — A,M_ — B € ¢*(L).

Then M = M, +My+M_, M, — A+ M_— B € €¥(L), which implies
My, + A+ B € €¥(L). Furthermore, M, — A+ (M, + A+ B) € €¥(L) and
M_—-Be c¥(L).

Thus M, —A+ (My+A+B)+M_-B=Mec cY¥(L)+ c¥(L). ]
Lemma 3.4.4. €Y (L) + €¥(L) is closed in €¥(L).

Proof. Let M; € €Y (L)+ €¥(L) be a sequence with lim; _, oo M; =M ing
By the previous lemma there exist A;,B; € M,(C) such that
(M;),—4;, (M;)_—B; € €*(L). Then [(M;), Ll; = [4;, Lls, [(M;)_, L]; =
[Bj,L); and by assumption (M;); — M., (M;)_ — M_ which implies
the convergence of the sequences [4;, L]; and [B;, L];. Since {[C,L]; | C €
M, (C)} is finite dimensional hence closed in g_w, it fallows -

[(Mj)+’L]Q = [Aj’L]Q - [A’ L]g’ Ae Mn(C)

[(M;)-, L]; = [B;, Ll = [B,Ll;, B € M,(C).

Since [A; — A, L]; — 0, one has by the above lemma A; — A — al, a € C.
Thus A, — A+ al. One obtains (M;), — A; = M, — A — al. Similarly,
(M;)-—B; — M_—B-bl, be C. Since €¥(L) is closed, it follows
M, —A—al,M_—B—bl € €¥(L). Thus M € €¥(L) + ¢*(L), by the
previous lemma. O

Set G, = GL,(A,). Denote by C?w,Jr resp. é’w,_ the subgroups

éw,+={geéw l Q=ngzm},

m>0

éw,_={g€éw l g=ngzm}.

m<0
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Let V,, + resp. Vw,_ be defined by

vW,+={g€éw,+ l g=I+ngzm},

m>0

Vw,—={g€éw,- I g=I+ngzm}-

m<0

By analogy with the definition of the centralizers €*(L), €¥(L) we define

C¥(L)={g€ G, | gLg™! = L},

C¥(L) = C*(L) N Gy s
Denote by V' — €Y the exponential map from g, — G, Define
A={vee“l) | e ecCc”L)CyL)}
Theorem 3.4.5. A is closed in €*(L).

In order to establish the theorem we show that C*(L) CY(L) is closed
in C*¥(L). From the following lemmas we will deduce the statement of the
theorem.

Lemma 3.4.6. Suppose g € C¥(L). Assume furthermore, g can be factored,
g = g_9ogs, with g_ € Vy_, go € GL,(C) and g, € V,,,. Then g €
C¥(L) C¥(L) if and only if there ezist a,b € GL,(C) such that g-'Lg_ =
a~'La and g, Lg;" = bLb™!.

Proof. (a) The sufficiency follows immediately.
(b) Let a,b € GL,(C) such that g-'Lg_ = a~'La and g, Lg7' = bLb™'.
Then

ag="(9-90g+)95 b = agod € C*(L).
Moreover,
g_a" (ageb) = g_gob € C*(L), b~'g, € C¥(L),

which implies
(9-90b)(b'g+) = g—gog+ € C¥(L) C¥(L). O
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Lemma 3.4.7. Let {g;}32, be a sequence in C¥(L) CY¥(L) such that

lim; , o g; = g eists and g € V,; _GL,(C)V,, .. Then g € C*(L) cy(L).

Proof. (a) By 3.4.6, g; € C*(L) C¥(L) if and only if there exist a;,b; €
GL,(C) such that (g;)7'L(g;)- = a; ' La;, (9;)+L(g;)7 = b;Lb;". From

(95)-(95)0(95)+ — 9-90g+,

' — g='. This implies (g;)="L(g;)_ =

it follows that (g;)- — g-, (g9;)=
a;j'La; — g~'Lg_.

(b) Since PM,,(C), the projective space of M,(C), is compact, [a,] has
a subsequence [a;,] in PM,,(C) which converges to [a], a € M,(C). For the
classical adjoint, 29(a;, ), we obtain [A0(a;,)] — [A0(a)] in PM,(C).

(c) Denote by g™ the finite dimensional subspace of §

q

g, = {Peéw | P(2) = ) 97, p; € Mu(©), j=—p,... ,q}-
j=-—p

The sequence [a; ' La;] converges in PgP?. Moreover, [0(a;)La;] converges

in Pg*? and it follows

[0(aj,)La;,] — [HAo(a)La] in ]P’g’;"’.
Hence,
[A0(a;)La;] — [A0(a)Lal in PG

(d) From [Ad(a)La] = [g='Lg-] (by (a) and (c)) it follows that there
exists o € C* such that a(g-'Lg_) = A0(a)La. We assert a € GL,(C). As-
sume not. Then det (ag=*Lg_) = a™det L = 0. Since det L is the coefficient
of A% in f(z,), det L = 0 yields a contradiction to the irreducibility of f.
We obtain &g~'Lg_ = a~'La, for & € C*.

(e) We assert & = 1. Consider

tr(adg~'Lg_) = & tr L = tr (a ' La) = tr L.

We may assume tr L # 0. Otherwise we can replace L by L +t- I for some
t € R, t>> 0, since L and L+t-I have the same centralizer. Thus & = 1%3nd
g-'Lg_ = a~'La. By the previous lemma it follows that g_a™! € C¥(L).
A similar argument shows b~'g, € C*(L). So we conclude from 3.4.6 that
g =9g-gog+ € C¥(L) CY¥(L). U
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Lemma 3.4.8. C*(L) C¥(L) is closed in C*(L).

Proof. Let g; — g, where g; € C*(L) C¥(L). Since C¥(L) is closed,
one obtains g € C¥(L). Then gg;' — 1, which implies that gg;' €
Vu,—GL,(C)V,, 4 for all j > N for some N € N. Moreover, since g € C*(L)

997" = (97)_a7" (as (97"),b5) 957 (657), € Var-CLn(©)Vurs,
for some a;,b; € CL,(C) by 3.4.6. Furthermore
-1 ~ ~ -1
gea; (aj (9}1)0 bj)_ Vu,-GLn(CQ)Vu,+ (9}1)+ b;
since GL,(C) normalizes V,,_ and V,,. From 3.4.7 we conclude
g € C¥(L) CY¥(L). O

Proof of Theorem 3.4.5. Let V; € A such that V; — V. Thene% — ¢
with e¥i € C*(L) C¥(L). Since C¥(L) C¥(L) is closed, it follows that
e’ € C¥(L) C¥(L). Hence V € A. O

Suppose L € §. Denote by € (L) the centralizer of L in § and by € (L)
resp. €_(L) the centralizer of L in § ® C[z] resp. § ® C[z~1]. In the sequel
we consider C[z, L] and C[z, L] to be contained in M, (C[z, z7']).

Lemma 3.4.9. Suppose L € § and that f(z,\) = det (L(z)—X) is irreducible.
Then € (L) resp. €_(L) is integral over C[z, L] resp. Clz™!, L.

Proof. Since f(z,\) is irreducible the set S of singular points of X C P?(C)
is a proper Zariski-closed subset of X, hence finite. Suppose z, € C is
such that I, Ly(2),-.. ,L§~*(20) are linearly independent. Then there exist
Ao, RN )/\n—l € Mn(C)* such that det ()‘j(Lg(ZO)))OSj,kSn—l 3& 0. Denote by
A(2) the matrix

= [A(L5(2))ogjesn—1] -
Set
U = {z € C|det(A(z)) # 0}.

Since det (A(z)) is a polynomial and det (A(z)) # 0, it follows that C — U is
finite. If z€ U, M € € (L), then

n—1

M(z) = ch(z)L’g(z), ch(z))\ Liz)), 7=0,...,n—1
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Hence if z € U, then
det (A(2))(co(2),- - s ca-1(2))T = AO(A(2)) (Ao (M (2)), ... , Xna (M (2)))T

Set u(z) = det (A(z))ck(2), K = 0,...,n — 1. Then ux(z) € C[z] since
A0(A(z)) and A;(M(z)) are polynomials on U. Now

det (A(2)) M(2) = 3 ()L (2)

on U, hence everywhere on C. Thus
M(z) € Clz, Ly] det (A(2)) 1.

Now C[z, Lo]det (A(z))~*I is a notherian C[z, Lo]-module with € (L) as
Clz, Ly ]-submodule. This implies € (L) is finitely generated over C[z, L],
hence integral.

A similar argument shows that € _(L) is integral over Clz™', L.

O
Suppose L € §. We will call L good if f(z,]A) is irreducible, X, N X,

is nonsingular and € (L) resp. € _(L) is the integral closure of C|z, Lo]

resp. Clz7!, L] in M, (Clz,27!]), in symbols € (L) = Clz, Lo], €_(L) =
Clz=1, L.

Theorem 3.4.10. Suppose L € g and also assume L is good. Then
H' (Xp,0x,) % €(L)/€_(L) + €4(D),
in particular dim( € (L)/ € _(L) + € (L)) = g(XL).

Proof. Denote by ' = {X|, X/ } the open, affine covering of X}, where
p(X3) = Xo and p(X.) = Xo. We view X as an analytic space and
the coherent sheaf ox: as coherent analytic sheaf and compute the coho-

mology group H' (Z 7,0 X'L) in the analytic category via Cech cohomology

with respect to the covering {'. GAGA (Serre [23]) then establishes the
isomorphism

H' (X}, 0x,) = H' (&,0x; ).
The Cech complex has two terms:
C® =T (X4,0x,) OT (XL, 0x, ),
C' =T (X5nX.,0x, ),
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where I' denotes the global section functor. Now

r (X('),Ox;‘) =0x; = Clz, Al/ (o)
r (Xéoa"X’L) =ox, = Clz,\/(f)

L (X3NXL,0x,) = oxpoxe = Tz, N/ (pixenxa

The map d: C° — C" is given by addition in C*. To compute H* (ﬂ’, 0 X},)
note that the image of d,Im d, is the set of all expressions k = ko + ko, with
ko € T (X, 0x; ) and ko € T (X4, 0x; )

Since L is good the following maps

v Clz, 274 M/ (pyixonx. = Clz, 278 L]/ (),
z vz, 2 52z, L,

7+:C[z’ )\]/(fo)lxo — C[z’LO]/(fo)a
2 = 2, A\ » Lg=2"L,

Y- Oz N/ (fo)ixee = Cl2, Lool/ (f00)s
27V 274 N = Ly =279L,

establish the isomorphisms
T (X450 XL, 0x;) = €(L), T (Xg,0x,) = € (L)
T (X§,0x;) 2= €4 (D).

Thus H* (u', oxi)

H' (,0x,) 2T (X5 N X, 0x,) /T (XL, o0x;)
>~ ¢(L)/ €_(L)+ ¢ (L).

+F(X’ 0 )
IX5nXe, O 7L 1xynxe,

O

Lemma 3.4.11. Suppose L € § and also assume that f(z, ) is irreducible
and Xo N X4 is nonsingular. If in addition dim( € (L)/ € _(L) + €, (L)) =
9(X}), then L is good.

Proof. Since X, N X is nonsingular we have the isomorphism

T (X4 N Xl,0x; ) =T (Xo N Xeo, 0x,) = €(L).
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From the irreducibility of f(z,\) we obtain that €, (L) resp. € _(L) is
integral over C[z, L] resp. C[z™!, L] and

(C[Z,Lo] Q €+(L) Q (C[Z,Lo].

Clz, L] € € _(L) C Clz, L],

Assume € (L) # Clz, Lo] or € _(L) # C[z7!, Loo]. Then €, (L), €_(L)
define a curve X; with

X’L—)XLE)XL

and C+(L) = 0%,s C—(L) = 0%..» f’(XO) = Xo, ﬁ(Xoo) = Xoo» XOOXOO =
X, N X... Thus

g(X}) = dim H" (X’L, aX,L) < dim H! (XL, %)
=dim(C(L)/C_(L) + € (L)).
(Cf. Serre [24], p. 73.) U
Theorem 3.4.12. Suppose L € g is as in 3.1.5 or 3.1.6. Then

dim(€¥(L)/ €Y (L) + €¥(L)) = g(X.) and

C¥(L)/C¥(L)+ €Y (L) = €(L)/ (L) + € (L).
In particular L is good.

Proof. (a) (nonsingular case). Consider L¢(z) = 2PL(z). Then the con-
dition on the nonsingularity of f(z,A) implies that I, Lo(2),...,L§ " (2)
are linearly independent for all z € C. For the same reason one has that

Loo(27Y),... , L% (27!) are linearly independent for all 2~ € C. From
the characterization of €*(L), €¥(L) (3.4.1) it follows if M € €*(L)

n—1
M(z) =Zc] )L (2), ¢;(2) € Ay
7=0

—712:1(2 a]kz + Za]kz +Za]kz)

1=0 \k<—I k>—1 k>m
for I, m € N. Thus the set

(ZLi(2)|1<j<n—1, —jp+1<k<jg—1}



LOOP GROUPS AND ISOSPECTRAL CURVES 491

provides a basis for €*(L)/ €Y (L) + €¥(L). A counting argument shows
that the dimension equals

. 1
ZJ(erq)—l 57— 1) +4q) —n+1=g(Xs).
(b) (tridiagonal case). Consider Lo(z) = £y + z¢; + 2%£,. For the proof
of the theorem in the tridiagonal case we will need the following scholia.
Scholium I. If0<j <n—2, then £olily =0 and £,05¢, = 0.

Proof. We assert that £yf!E,, = 0if j +r < n— 1. We prove this by
induction on j. If y = 0, then {E,,, = E1 ,F,, = 0, r < n. Assume the
inductive hypothesis for j. Then

elEr,n = ar—lEr—-l,n + drEr,n + brEr+1,n-
Thus
boliM E, = ar bl Er g+ d oL B, + b Lol Eriy .

Ifj+1+r<n,thenj+r—1<n, j+r<nandj+r+1<n. Thusthe
inductive hypothesis implies the result for j + 1. The Scholium is just the
assertion for r = 1.

By applying the anti-automorphism z — 7 one obtains £,/i¢, = 0 for

0<j<n-—2 O

Scholium II. If1 < j < n —1, then Li(z) = 27" 'M,(2), M;(z) €
B(z, M,(C)), i.e. M;(z) is polynomial.

Proof. This result is clear for j = 1. Assume that we have shown that
Li(z) = 227 M;(2) = 227 (Aj - +2A;5 +...)
and 4yA; ;1 = 0. We show that
Ly 2) =2 A+ 2T Ay + -
with lgA;41; =0for j+1<n-1

LT (2) = 6oL (2) + 26, LY (2) + 2°0, Lj(2)
=l (T A+ A+ )
+ 6 (A + 2T A+ )
by (T A+ PTPA ).
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Now ¢3A; ;1 = 0 by assumption. Thus
L3t (z) = 27 (Lo Ajj + b Aj 1) + 2T (G A+ LA 1) + ...
Hence
3) Ajpr = boAj; + 0 .
But then oA, ; = ¢ol1Aj ;1. Applying equation (3) to A;;_, we find
loAjr1j = LoliloAj1 -1+ LliA; 1 o
=bliA; 1 j—2.
We continue to apply equation (3) and finally get

bhAjpr; = Ll Ayy = Lol (010 + Loly)
=Ll + ol =0, if j+1<n—1

by Scholium I. The statement now follows. O

Scholium IIL.  If [I}2) b; # 0, £ # 0, then I,M;(0),... ,M,_1(0) are
linearly independent.

P’f'OOf. Since Mj+1 (0) = Aj-}-l,j and Aj-l-l,j = EOAM +£1A]"]’_1, 0 < J <n-— 2,
it is enough to show that I,4y, %14y, ... ,£7 24, are linearly independent. We
assert

J
bl = chElH—l,na 0<yj<n-—-2,
k=0

with ¢; = Hf;:l by. We proceed by induction. The result is obvious for j = 0.
Assume the inductive hypothesis for 5. Then

J
é{“éo =4 (Z{EO) =4 (Z CkEk+1,n>

k=0

Il
M“'

CkelEk+1,n

oo
(Rl
- o

Il
(]

EBryin +¢j(a;Ejn +dj1 Ejiyn + b1 Fjia0)

S

+ |l
- o

CkEk+1,n,

=~
Il
=)
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where ¢;,1 = ¢;b;41 = [[25) by. It follows that

€]+1 = j+2,n mod ((CEl n .+ (CEj+1,n)
which implies that £y, £, 4o, . .. ,£7 24, are linearly independent. Consequently
I,0y,0,4,... 07 2, are linearly independent. O

Consider Lo, (271) = 2724y + 274, + £,. By the same chain of arguments
one shows that LJ ( 1) = 27 M (27Y), with M;(27!) € Bz, M,(C)).
If in addition HJ —, a; #0, then I, M(0),... ,M,_,(0) are linearly indepen-
dent. The relation between M;(z) and M;(z~1) is as follows:

M,;(z71) =2/ (27Y) = 277! (z_Zij(z))
(4) =277 L(2) = 27971 (27T M (2))
=27 M;(z), 1<j<n-1.

If M(z) € €*(L), then by 3.4.1 and Scholium III

M(z) = ;V;:aj(z)Mj(z), (Mo(2) = I), o;(2) € Ay,
Write
a;(2) = of (2) + o5 ()
af(z):kmajkz, oy (2) = gaﬂcz
Then
gaf(Z)M( ) (L),

and if B(2) = Ypc_p @j s 2", then
Zﬁ] M;(z) + ao(2)I € C¥(L).

Thus

D=3 ey Mz)  mode¥(L)+ (L),
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So dim (€¥(L)/C¥(L)+ €%(L)) <n—1. Now

=1 k>0

¢$(L)={nz_:%~(z) 1(2) [ 73(2) = > vzt 7i(2) € Ay, 1 < j <m— 1}

CT(L):{HZ_:’YJ(Z) ( .’YJ Z'ijz 71(Z )EAw, ISan_l}-

Jj=1 k<0

> ¢z M;(2) € €¥(L) + €Y (L),

then by equation (4)

n—1

ZCJZ IMJ Z'YJ ) + Z(sj (z_l) z_zMj(z).

J=1

Socjz7! =7;(2)+0;(271)z72, 2 # 0. Thisimpliesc; = 0foralll < j <n-—1.
Thus dim (€¥(L)/€¥(L) + €¥(L)) =n — 1.
(c) From the proof of (a) and (b) it follows immediately that

C¢¥(L)/ € (L) + €Y(L) = C(L)/ € _(L) + € (L).

Theorem 3.4.13. Suppose L € g is good. Then
Jac(Xp) = €¥(L)/€¥(L)+ €Y(L) / A/ C¥(L) + €¥(L) = €“(L)/A.

Proof. We have (cf. Gunning [11], pp. 130, 152, 157)
Jac (X}) = H' (Xj,0x,) / H' (X}, Z).
Now H'! (Xi, UX:L) >~ H! (il’, OXL> by GAGA. The short exact sequence
O—)Z—)oX/L-%o;{,LeO
induces a surjective homomorphism
H! (u', oX:L) - H! (u',axi) J H (W, Z)
from which we obtain a surjective homomorphism (notation in 3.4.10).

I‘(X(’,ﬂX;o,oX/L) — H' (W,0x,) / H' (W, Z).
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The kernel K of this map consists of all functions k such that e*¥ = e*o ek
with ko € T (X, 0x; ) and ko, € T (X1, 0x;) . If A denotes the
XoNXoo

analogue of A in g, then (notation in 3.4.10) o

K /Imd=A/ ¢_(L)+ € (L)
Hence
“(L) / €2(L)+ ¢y(L) [ A/ €2(L) + €¢X(L)
(L) / €(L)+ €4(L) [ A/ €_(L) + €4(L)
T (X§N XY, 0x,) /Imd/ K /Tmd
r(
Hl

IR ﬂ

IR

IR

X§n Xl,0x;) [ K
(&,0x,) / H' (W, Z)
~ ! (X’L,oxi) JH (U, Z).

IR

Since by GAGA we also obtain H! (X’L,o}i) ~ H! (Ll’,oj{,L), we can
replace the exact sequence

0 — H'(W,Z) » H'(W,0x,) — H' (u’,o;(,L) — H2(W,Z) = 0
by the exact sequence
0 —» H' (W, Z) - H (X'L,oX,L) - H (X'L,o;(,L) — H'(W,Z) = 0.
It follows that Jac (X}) = H' (Xj,0x; ) / H (&, Z). Hence

Jac (X}) = €¥(L) / €¥(L)+ €¥(L) / A/ €¥“(L) + €*(L).
O

3.5. Theta Functions as Matrix Entries of the Standard Represen-
tations of the Basic Module.

In this section we want to employ the basic representation (L(Xg), m»,) of
SL,(A,) and the method of representative functions to obtain theta func-
tions. The map X — X —n~'tr(X) I is a continuous projection from
Mn(Aw) onto sl,(A,). Its restriction to the quotient €*(L) / €¥(L) +
€¥(L) is for L € M,(Ay), L(2) = X}__,¢;7°, injective, since A, - I C
C¥(L) + €¥(L). We thus may assume without loss of generality g =
s, (C), G = SL,, (C) and L € g. We suppose in addition that L is good.

-—n
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Another way to employ the basic representation is to induce it to M,,(A,)
by letting A,,-I act as O on L(Ag). On the level of the group we consider the
simply connected covering C*(SL,(C)) of GL,(C) and let C* Center(SL,(C))
act by 1 on the module. In order to obtain the same results one could also
use the construction of the universal central extension of GL,(C) and its
action on the dual determinant bundle of some Grassmanian manifold. For
details we refer to Pressley-Segal [19] and Segal-Wilson [22].

We use the notation exp for the exponential map from g, to G. and

e” for the exponential map from g, to G,. Let pr be the projection
pr: G‘w — é’w. We note that

pr: Vw)_G Vw,+ — Vw)_G Vw,+

is an analytic diffeomorphism with kernel {e** | ¢t € C}. Here, Vs de-
note the 1mages of Vw + in G,. OnV,_GV, + the exact sequence 1 —
c - G, —» G, — 1 splits and we denote by 1 the cross-section
P VM_G Vw,+ - Vw,_G Vw,+ (Wallach [Lecture Notes]).

Suppose V € A. Then eV can be represented as

e’ =g-(V)g+(V), 9+(V) € CL(L).
If eV = h_(V)h (V) with he(V) € C¥(L), then by 3.4. 2 h+(V)' g+ (V) =
al with al € G. Assume V' € g such that expV € V, -G Vw+ Then
exp V can be expressed as follows:
3.5.1. expV = (g_(V)gy(V)) e?V¢
where v is a function y: g~ — C.

Lemma 3.5.2. If X,Y € g and [X,Y]; =0, then

eXp(X) exp(Y) = exp(X + Y) e%w(X,Y)c.

Proof. Assume r,s € C are small. Since [X,Y]; =0
exp(rX) exp(sY) exp(—(rX + sY)) = e2(rX:s¥)e,

where ®(rX, sY) is a holomorphic function in r and s. Thus we may assume
that || X||w, ||Y || are small, such that we can apply the Campbell-Hausdroff
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formula. It follows

exp(X) exp(Y) =exp (X +Y + %[X , Y] + higher commuta,tors)
=exp (X +Y + %[X, Y]) ,

since ¢ is central and [X,Y]; = 0 by hypothesis. Now [X,Y] = [X,Y]; +
w(X,Y)c. Hence -

exp(X) exp(Y) = exp(X +Y) ef«(X:V)e,

Corollary. Under the assumption of the lemma
exp(X +Y) = exp(X) exp(Y) e 3=(¥:Y)e,
Suppose vy € L(\p) is a highest weight vector of the basic module L()).
Suppose W € €¥(L). Define the function ® as follows:
(W) = (my, (exp W)vg, Vo) a, -

Denote by Ad; resp. Ad; the adjoint representation of G, resp. G, on
g, fV €Aand W e €¥(L) then (notation as in 2.4.4)

Pr(Ad;_($(g+ (V)W) = Ady_(9:(V))W) = W.

Hence

3.5.3 Ad; (g (V)W) = W +algs (V), W)e,
where a(gy(V'), W) describes the lifting of the action to g, .
Lemma 3.5.4. Suppose V€ A, W € €¥(L). Then

SV +W)= e—%w(V,W)+7(V)+a(y+(V),W)q,(W)_

Proof.
<I)(‘/ + W) = <7r>\o (exp(V + W))’UOa UO)/\o
=e W), (exp(V))mr,(exp(W))vo, o), by 3.5.2
= e~ 310 (7, (h(g_ (V)94 (V) Trg(exp W )vo, o), by 3.5.1.
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If X € g, then (Xwvp,v0)s, = 0 which follows from the contravariance of
the form (, ), (cf. Garland [5], pp. 541-549) and the fact that h @ @ acts
trivially on Cuy. Since (, ), is positive definite (cf. Garland [5]) we conclude
Xwvo =0 for X € g. Hence, if g € G then guy = vy, since G is connected. We
also have gvy = vy for g € Vw,+. Thus from the contravariance of the form
(, )x, We obtain

e 3 WY, (9(g- (V)g+4 (V)))r, (exp W)vo, vo) g
= e~ 2P i (1(g+ (V)))Tag (exp W )vo, vo) g
— e 3 (VIW) (V) <7r,\0 (exp Ad; (zp(g+(V)))W) Uo,’UO>)\O
(GV,,+ acts by 1 on Cup)

= ¢~ 2w (VWH W) +ale+ (W) (1 (exp W )vg, Vo), by 3.5.3

_ 6-—%w(V,W)+7(W)+a(9+(V)’W)Q)(W),

Lemma 3.5.5. If 91,01 € Gu, X € §, and Ad; (pr(g;)X) =X, j=1,2,
then

a(glg%X) = a(ghX) + a(g27X)‘

Proof.
Ady (9192)X = Ad; (pr(g192)X) + (9192, X)c = X + (9192, X)e.
Also,
Ad; (9192)X = Ad; (91)(X + (g2, X)) = X + (g1, X)c + a(ga, X)e.
O
Suppose g € G, and X € g, Then
Ad; (9)X = Ad; (pr(9))X + (g, X)e.

Hence

B* (Ad,_(9)X,d) = B* (Ady_(pr(9))X + a(g, X)e, d)
B* (Ad;_(pr(g)X,d) + B*(alg, X)e, d)

a(g, X).

Il
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From the properties of B¢ it follows
Be (Adgw (9)X, d) = Be (X, Ad,_ (g)—ld)
=B (X,97'dg) .
Thus
alg, X) = B* (X,97"dg) .
fVeAand We €¥(L), then
o9+ (V), W) = B* (W, g4 (V) dg (V)

= o [T B (W) (0V) () 1500 V) () ) @0

T 2ms

which shows that the ambiguity in the definition of g, (V') by al, al €
G, a € C*, does not occur in the expression a(g,(V), W). Since the map

A — C:'U(L)/C*IHG
given by V. — ¢, (V) is a homomorphism, we obtain from 3.5.5.

Lemma 3.5.6. IfU,V € A and W € €¥(L), then

a(g4 (U +V), W) = a(g(U), W) + a(g4+(V), W).

Set 6(V,W) = (g9 (V),W). Then 3.5.4 can be restated as
DV + W) = e 2V WHEW) o(1).
Lemma 3.5.7. (1) IfV e ¢¥(L), We &€¥(L), then
BV + W) = et (W),
(2) IfVecev(L), We c¥(L), then
B(V 4+ W) = e W) o(W).

Proof. (a)  Since the cocycle w vanishes on § . and on g _ it follows
Y(V)=0for Ve C¥(L)or Ve C¥L).
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(b) Suppose V € €¥(L). We assert 6(V,W) = w(V,W). Since V €
C¥(L) it follows g, (V) = e¥. Moreover, g, (V)™! = eV and %g+(V) (e) =

") Ay (). Thus LV (e7) = (9, (V) (7)) " L.(V) (). Hence

1 o d i6 6
1 -1d

= o [ B (V) )  50V) (€)W () a6
=6V, W).
(c) Since §(V,W) =0 for V € €*(L), statement (2) follows. O
For any X € g with X = X, + Xo + X_, set
o(X) = w(X,, X_).

Since for any X,Y €§ , (X +Y); =X, +Y, and (X +Y)_ = X_+Y_
it follows by integration by parts

o X+Y)—o(X)—0o(V)=w(X; +Y,, X_+Y) —w(X,, X ) —w(Y,,Y)
=w(X,,Y) —w(X_,Y,).

Denote by

3.5.8. (X, Y)=0(X+Y)—0(X) —0o(Y).

Suppose W € €¥(L). Define the function © to be

3.5.9. OW) =e W) (W).
Lemma 3.5.10. Suppose W € €¥(L). IfV € €¥(L) or V € €*(L), then
OV +W)=0(W).

Proof. (a) Suppose W € €¥(L) and V € €¥(L). Then
BV + W) =etVW) o(W).
Thus

OV + W) =e 2V &V + W)
= e 2 (VAW +30 (VW) & ().
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We establish the formula by proving o(V + W) — w(V,W) = o(W). Since
the cocyle w vanishes on § . and %V+ (e) = a%V (e*) it follows

o(V+W)=w(V,W)=0(V+W)—-wlV,,W_)

Vi + W, W) —w(Vy, W)
Wy, Wo)
=o(W).

=W
= w

(b) To prove the formula for V € €*(L), one shows by a similar argu-
ment that o(V + W) + w(V,W) = o(W). 0

Define for V € A / €*(L) + €¥(L) and W € €*(L) / €*(L) + ¢*(L)
W, V) = = (VW) + w(V, W) = 26(V, W)]

and

V) = =l (V) - 29(V)]

The definition of the function (W, V') shows that it is C-linear in W, since
(V,W), w(V,W) and 6(V, W) are C-linear in W.

We are now ready to prove one of the main results of this work which
shows that the function © as defined in 3.5.9 is a theta function. This
generalizes a result of Goodman-Wallach who showed in the case of n = 2
and tridiagonal L that the matrix entries of the standard representations are
theta functions ( [8], pp. 211-213 - see also appendix).

Theorem 3.5.11.
Suppose V€ A/ €¥(L)+ C€Y(L) and W € c¥(L) /] €¥(L) + C¥(L). Then

@(V + W) — 621ri[£(W,V)+J(V)]@(w)'

Proof. This is the functional equation required in Lang’s definition of a theta
function ([13], Chapter 4, (1.2)).
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(by 3.5.9)
O + W) =e VW oV + W)
(by 3.5.4)
— = HAVAW)+w (VW) +6(V, W) +(V) (W)
(by 3.5.8)
= ¢ oM +o WV +a(VIWHS(VIW)+(V) §(W)
(by 3.5.9)

e~ HVW (VW) 25V W) =3 (V)=2v(V)] g(W)

— 2milt(V.W)+J(V)) o(W).

Appendix. The Case S’E(Z, R).

This section contains a calculation of the solution of the generalized periodic
Toda lattice in the case of ﬁ(Z, R). It was shown by Goodman and Wallach
that the solutions are given in terms of representative functions of standard
modules. The representative functions are expressed in terms of the original
Jacobi theta function. The calculation is taken from ([8], p. 211-213 — see
also references therein).
A) Let H denote the periodic Toda lattice system for 32(2, R):
1

1, _ _
H:Zp%+§(e 240+e 201)

with ¢o = — ¢q; for some constant -,

. 8H 1 o

q1 = apy = 21017 do = —q,
oH ,

s 27— p72¢0 _ o201

D1 o, e €

and
q(0) = —log <W> , ¢1(0) = —log (%) , ;1(0) =0.

Here k denotes a parameter in the range —1 < k < 1. Assume that L is-as
follows:

0 CO'Z-I+C1
Co-z2+C 0

L(z) = [
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with co = 2(1+ k), ¢y = :(1 - k).
Let ¢;(t) be defined by

#i(t) = (mx, exp(—tL)v;, v;)

for 7 =0,1.
The solution of the periodic Toda lattice is given by

.

mu)=qmm-rmg{

B) Define z, y and z as follows:

1 1
z=2"2(e" - "), y= 3 Py 2= 273 (e 4 1),

Then z, y and z satisfy the system of bilinear differential equations
T=-Y 2, Y=T-2, 2= —T" Y.

Given the above initial condition the solution of z, y and z are given in
terms of the Jacobi elliptic functions as

z =k cen(t, k), y =k sn(t, k), z = dn(t, k).

The coordinate functions of the Hamilitonian are then expressed as

dn(t,k) + k cn(t, k) }

ql(t)=q1(0)+10g{ Tk

p1(t) = 2k sn(t, k).

C) For the representative functions we have

$1(t) _ dn(t,k) +kcn(t,k)  dn(t,k) — k cn(t, k)
oe { e ) -

1+k 1-k%
The representative functions ¢;(t) also satisfy the differential equation
cidi(t) = ¢ (t) di(t) — [ ()],
from which we obtain

2(log ¢)" = dn® + k -dn - cn + 2(k* — 1)
2(log ¢,)" = dn® — k- dn - cn + 2(k* — 1).
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These equations can be integrated using complete elliptic integrals of the
first and second kind with modulus & to yield:
604 (ZL, dn(t,k) — k 2
bo(t)? = 4 (2K q) . n(t, k) cn(t, k) e2vt
04(0a q) 1-k

where ¢, 0 < ¢ < 1, is defined implicitely by

n—118
1—k2 = ﬁ {l__qz__i}
oot 1+q2n—l ?

and E, K, v are given by
K= / (1 - K?sin? 6) "% dp,

0
E=/2 (1— k?sin?6)? df,
0

_kK-1 E
8 4K’

v

Similarly one obtains for ¢, (¢)?

¢1 (t)2 _ 94 (%,Q) . dn(t,k) + k cn(t,k) e2vt2.

From infinite product expansions for
dn(t,k) £k en(t, k)

and from Jacobi’s infinite product expansions of theta functions we obtain
explicit expressions for ¢y(t), ¢1(t) in terms of theta functions. The formulas
for ¢;(t) are given as

LD
¢0(t) =€ t 94 (0,(]'21')
oo (3.2
hO=< (0.4%)
with u = It
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