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Abstract
We introduce a Lie algebra associated with a non-orientabtéace, which is an
analogue for the Goldman Lie algebra of an oriented surfAsean application, we
deduce an explicit formula of the Dehn twist along an annsiasple closed curve
on the surface as in Kawazumi—Kuno [4], [5] and Massuyeawaéwu(7].

1. Introduction

In the study of oriented surfaces, the Goldman Lie algebegysplan important
role. Goldman [3] defined a Lie bracket on the fréemodule with basis the set of
conjugacy classes in the fundamental group of an orientefc®s The bracket cor-
responds to the Poisson bracket of smooth functions on theegentation space of
the fundamental group. This is called the Goldman Lie bialge Turaev [8] found
that the Goldman Lie bialgebra has the structure of a Lietayewhich is called the
Goldman-Turaev Lie algebra. Furthermore Turaev [8] shothatl the skein algebra of
links in the cylinder over an oriented surface quantizesGoéddman—Turaev Lie bial-
gebra on the surface. Gadgil [2] showed that a homotopy atrige between compact
oriented surfaces with non-empty boundary is homotopic twaeomorphism if and
only if it commutes with the Goldman Lie bracket. Kawazumdafuno [4] found that
Goldman Lie algebra acts on the group ring of fundamentaligrand that the action
induces more detailed structures on the Goldman Lie algebra

In Kawazumi—Kuno [4], [5] and Massuyeau—Turaev [7] the gitgnlog(c))?/2
gives the logarithm of the Dehn twist along a simple closedier on an oriented sur-
face. However, since on a non-orientable surface the lotatsection number can be
defined only over fields whose characteristic is 2, it is ingille to define the quan-
tity on a non-orientable surface. In this paper, we intredacLie subalgebra of the
Goldman Lie algebra on the orientation cover with coeffitseim a commutative ring
containing the rational® and the action of the Lie subalgebra on the group ring of
fundamental group of the non-orientable surface. The aatian be quantized in the
sense of Turaev [8]. As an application, we deduce an exdicinula of the Dehn
twists along an annulus simple closed curve on the surfade Kawazumi and Kuno
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[4]. On a non-orientable surface, the annulus simple classde Dehn twists generate
the subgroup of the mapping class group consisting of elesnghose determinant of
the action on the first homology group is 1, as was proved bdrish [6].

We conclude the introduction by fixing our notation. Letlenote the unit interval
[0, 1] as usual. LetF denote a compact connected non-orientable surface with non
empty boundary, ané&k a commutative associative ring containing the field of raie
Q. We definep: F — F to be the orientation cover df as shown in Fig. 1. We fix
the curve segment&, 8o, ...,68n,687,85,...,8, in F as in Fig. 1 such thap(s;) = p(s;)
for alli =1,2,...,n. We fix an orientation of the surfacé. The surfacesF? and
FU denote the left and right connected componentsFof (J,(5 U &) in Fig. 1,
respectively. Foxo € F\[J_; p(8), the fiber p~(xo) consists ofxy € F¥ andx{ € F9.
We identify F \ |J_, p(6i) and F! as oriented surfaces.

2. The action on the fundamental group

Let = = m1(F, xo) be the fundamental group df with basepointxy, and 7 =
#1(F) the set of free homotopy classes of oriented loop$ inK = denotes the group
ring of = over K, K# the freeK-module with basist. Let r: F — F be the unique
nontrivial covering transformation gb. Representatives of € 7 andy € 7 are called
in general position ifx U p(y) U (Ui, p(8i)): 1 UStU (UL, li) — F is an immersion
with at worst transverse double points. For continuous athr’ on F such that the
endpoint ofr’ coincides with the start point of, their productrr’ means the path
traversingr’ first, thenr.

DEFINITION 2.1 (see Kawazumi and Kuno [4] Definition 3.2.1.). Boe = and
y € 7, we define the actiod (y)(x) = y(x) € Kz by the following formula, where we
choose representatives gfe 7 andy € 7 in general position,

a(y)(x) = y(x) = %( > e pY), X)Xa(PY))aXax
qep(yNnFY)Nx

(1)
— Z e(q, p(y), X)Xxoq(p(y))qquo>'

gep(ynF9)nx

Here ¢(q, p(y), X) is the local intersection number gf(y) and x at q in F \
U, p@i), (P(Y))q € m1(F, g) is the oriented based loop(y) based afy, X.q is the
path alongx from g to Xg, and Xgy, is the path along from xg to g.

Lemma 2.2. For any xe = and ye 7, the action ¥x) € Kx is well-defined.

This lemma immediately follows from Lemma 2.4 in this papedd5] Propos-
ition 3.2.2. We can define the actighby Lemma 2.4 but here we take this geometrical
definition.
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REMARK 2.3. The actiond can be quantized in the sense of Turaev [8]. We
define the homeomorphispt | — | by p(t) = 1—t. We define the oriented 3-manifold
E by the quotient space df x | under the equivalent relationg,(t) ~ (X', t') if and
only if X =%, t=t or X =t(X), t =p(t). Let & be the quotient mag x | — E.
The continuous mag: E — F, (X, t) — p(X) is the I-bundle map. We define the
submanifoldE c E by £(F x ([0, 1/3] U [2/3, 1]). The continuous mafi: E — F,
(X,t) > X for t € [2/3, 1], (X, t) — t(X) is the trivial [0, I/3]-bundle. We denote the
Turaev skein algebra of oriented links B by A(E) and the Turaev skein module of
oriented tangles frong(xg,0) to £(xg, 1) in E by B(E, Xo). For details, see Turaev [8].
The actions on Kz of K# can be quantized by the action @{(E, x) of A(E) in
the sense of Turaev [8].

We extend the actio& by linearity to a bilinear mafKz x Kn — K. Let [, ]
be the Lie bracket in the Goldman Lie algebikar. We remark that the group ring
Kr is not aKz-module with the actiors, see Lemma 2.4 and Theorem 2.7. Hére
denotes the map (2)(id—1): K7 — K#z. Here we simply denote by the Q-module
automorphism induced by: F — F.

For vy, vi, ¥ € Kz and X, X3, X, € K, it is easy to show the following

V(X1 + X2) = Y(X1)X2 + X1Y(X2),

y(x) = —t(y)(X),
t([y1, Yo) = —[z(y1), =(¥2)],

6%(y) = 6(y).
Since
0([y1, 0(¥2)])
= [y1, 0(y2)] — t([y1, 0(¥2)])
= [y1, 0(¥2)] + [T(y1), T 0 O(¥2)]
= [y1, 0(y2)] + [T(y1), —0(y2)]
= [6(y1), O(y2)],
we have

[0(y1), 0(y2)] = 0([y1, 0(¥2)]) = 0([0(Y1), Y2]) = O([0(Y1), O(¥2)])-

The following lemma is easy to prove but is essential.

Lemma 2.4. Forr € x, let ¥ be the lift of r to F starting at %. It is satisfies
that F € m1(F, x§) or 7 € my(F, x4, xd). For y € #, we have

y(r) = a(y)(r) = pla@(¥)F),
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where the actiorr is defined in Kawazumi and Kurid] Definition 3.2.1 Here we
simply denote by p th@-module homomorphism induced by p.

The following lemma is proved by Lemma 2.4 and [4] Proposit&2.2.
Lemma 2.5. For a,be s and r e =, we have
a(b(r)) — b(a(r)) = ([6(a), b])(r) = ([a, 6(L)])(r) = ([6(a), O(L)])(r).

Proof. Letf be the lift ofr to F starting atx}.
By Lemma 2.4 and [4] Proposition 3.2.2, we have

a(b(r)) — b(a(r)) = plo(6(a))( (6(0))(F)) — o (B (b))(o (0(2))(F))
= p(a([6(a), 6(D)])(7))
= p(e(0([6(2), b)(F)) = ([6(2), b)(r). O

Lemma 2.6. K7 C K7z is a Lie subalgebra of k.
Proof. It suffices to check the equatiof(4), 6(b)] = 6([6(a), 6(b)]). O
Theorem 2.7. Kx is 6K#-module withs.

Proof. Fora,be Kz,r € Kz, we have
(@)@ b)(r)) — 0(b)(O(a)(r)) = [67(a), 6*D)I(r) = [6(a), H(B)](r). 0

3. Completion

3.1. Completion of the Goldman Lie algebra. The groupsr = m1(F, Xo) and
7 =m(F, xg) are free groups. LeK7 be the group ring ofr over K. Letc: Kz —
K7 be the forgetful map of the basepoix§. Thenc is surjective.

Let G be a free group of finite rank and G the group ring ofG over K. Define
a K-algebra homomorphism augt G — K by g € G — 1. We definel °G = KG and
I 1G = (ker aug).

It is well-known thatﬂ‘l?io I1G = 0. See, for example, Bourbaki [1] Exercise 4.6.
Furthermore we havé]j-’"zoc(l 17#) = 0 by Kawazumi and Kuno [5] Corollary 4.3.2. We

define the completed group riri@ = Limi_,ooKG/(I‘G) and the completed Goldman
Lie algebraK# = lim; K /(c(l' %) + K1),
As is proved in [5] Theorem 4.1.1 and Lemma 2.4, we hg\g;) € |'+1=2z for

y € ¢(I'7) and x; € 11. Moreover we haves(1) = 0. HenceK# acts Kz continu-
ously as derivations.
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3.2. Dehn twist on unoriented surfaces. We orientS' = R/Z as the quotient
of the lineR. We orient the annulu$' x | as a product manifold.

Lett: S'x1 — S'x | be the (right handed) Dehn twist of an annulus given by the
formula Stx | — Stx 1, (s,t) = (s+t,t). An simple closed curve is called an annulus
simple closed curve if its tubular neighborhood is homeghir to an annulus. Let
A be an oriented tubular neighborhood of an annulus simplsedicurve. We define
ta: F > F by

t for p e A,
ta(p) = (p) p
p for pe F\ A

We simply denote byta the element of the mapping class group Bfrepresented
by ta.
We define log(p): Kz — Kr by

090A)1) = — 3 Tt (1),
i=1

Here we denote by, the Q-algebra automorphism induced by.
Annulus simple closed curves can be lifted to the orientatiover. Letl be a
simple closed curve in the surface. pfl) is simple, p(l) is an annulus circle.

Theorem 3.1. Let r be an element of such that an embedding of n F rep-
resents fc(r)). Then fc(r)) is an annulus simple closed curve. We orient the tubular
neighborhood U of ¢) as a submanifold of and the orientation of U induces that
on p(U). We call the oriented annulus(ig) of p(c(r)) A. We define the elementd.

0K 7 such that L= 6(c((log(r))?). Here we denotdog(r) = °°, —(1—r)i/i € K.
Then we have

2 logta)(-) = 5(L)(-): Krr - K.
In other words if we define &1 = 3" (5(L))*/K!, then
tA = &(L)Z @ — @

Proof. We use Theorem 5.2.1 [5]. Notice that the followinggitam is commu-
tative.

~ ttidey ~
F (1) (())F
| o]
F—> F.

Notice thatty;y andt. ) are commutative.
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Let X be the lift of x € 7 to F and we have

log(ta)(x) = P(0g(ter)t; ey (X))
= p((log(ter)) — log(t: c(ry))) (X))

= p((#(<( 5000007) ) o (e( 50a012) ) ) )

= G(0(c((log () (X)-

Here we obtain Iogg(r)t;é(r)))(i) = (log(terry) —l0g(t-c(ry)))(X) by the equation logé(+
1)(b + 1)) = log(@a + 1) + log(b + 1) where logg + 1) = > 72, —(—x)'/i € Q[[a, b]]
for x € aQl[a, b]] + bQ[[a, b]] (see Remark 3.2).

Furthermore we have

() = 29400 = P E)(X) = Pllanti(K) = ta0). O

REMARK 3.2. Since

log(@+ 1) +1) =) _i—l(—a)i +> _i—l(—b)‘
i=1

i=1

|

D) (k1 =) "

+k;1<§k+|—r(k—f)!(l—r)!r!>xy
|

D (k1) K

" Z<Zk+|—r(k—r)!(|_r)!r!)xy,

k>I>1 \r=0

and

(D (k1 =) _(—1)i(d'-l a-221) -0

r:Ok+I—r(k—r)!(I—r)!r!_ it \dz-1 -

we have log@ + 1)(b + 1)) = log(a + 1) + log(b + 1).

REMARK 3.3. For any embedding oriented annuldsin the surfaceF, there
existsr € # such thatty = @090 : Kxz — K.
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