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Abstract
We introduce a Lie algebra associated with a non-orientablesurface, which is an

analogue for the Goldman Lie algebra of an oriented surface.As an application, we
deduce an explicit formula of the Dehn twist along an annulussimple closed curve
on the surface as in Kawazumi–Kuno [4], [5] and Massuyeau–Turaev [7].

1. Introduction

In the study of oriented surfaces, the Goldman Lie algebra plays an important
role. Goldman [3] defined a Lie bracket on the freeZ-module with basis the set of
conjugacy classes in the fundamental group of an oriented surface. The bracket cor-
responds to the Poisson bracket of smooth functions on the representation space of
the fundamental group. This is called the Goldman Lie bialgebra. Turaev [8] found
that the Goldman Lie bialgebra has the structure of a Lie algebra, which is called the
Goldman–Turaev Lie algebra. Furthermore Turaev [8] showedthat the skein algebra of
links in the cylinder over an oriented surface quantizes theGoldman–Turaev Lie bial-
gebra on the surface. Gadgil [2] showed that a homotopy equivalence between compact
oriented surfaces with non-empty boundary is homotopic to ahomeomorphism if and
only if it commutes with the Goldman Lie bracket. Kawazumi and Kuno [4] found that
Goldman Lie algebra acts on the group ring of fundamental group and that the action
induces more detailed structures on the Goldman Lie algebra.

In Kawazumi–Kuno [4], [5] and Massuyeau–Turaev [7] the quantity (log(c))2
=2

gives the logarithm of the Dehn twist along a simple closed curve c on an oriented sur-
face. However, since on a non-orientable surface the local intersection number can be
defined only over fields whose characteristic is 2, it is impossible to define the quan-
tity on a non-orientable surface. In this paper, we introduce a Lie subalgebra of the
Goldman Lie algebra on the orientation cover with coefficients in a commutative ring
containing the rationalsQ and the action of the Lie subalgebra on the group ring of
fundamental group of the non-orientable surface. The action can be quantized in the
sense of Turaev [8]. As an application, we deduce an explicitformula of the Dehn
twists along an annulus simple closed curve on the surface asin Kawazumi and Kuno
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[4]. On a non-orientable surface, the annulus simple closedcurve Dehn twists generate
the subgroup of the mapping class group consisting of elements whose determinant of
the action on the first homology group is 1, as was proved by Lickorish [6].

We conclude the introduction by fixing our notation. LetI denote the unit interval
[0, 1] as usual. LetF denote a compact connected non-orientable surface with non-
empty boundary, andK a commutative associative ring containing the field of rationals
Q. We definepW QF ! F to be the orientation cover ofF as shown in Fig. 1. We fix
the curve segmentsÆ1, Æ2, : : : , Æn, Æ01, Æ02, : : : , Æ0n in QF as in Fig. 1 such thatp(Æi ) D p(Æ0i )

for all i D 1, 2, : : : , n. We fix an orientation of the surfaceQF . The surfacesFd and
Fu denote the left and right connected components ofQF n

Sn
iD1(Æi [ Æ

0

i ) in Fig. 1,
respectively. Forx0 2 F n

Sn
iD1 p(Æi ), the fiberp�1(x0) consists ofxu

0 2 Fu andxd
0 2 Fd.

We identify F n
Sn

iD1 p(Æi ) and Fu as oriented surfaces.

2. The action on the fundamental group

Let � D �1(F, x0) be the fundamental group ofF with basepointx0, and O� D
O�1( QF) the set of free homotopy classes of oriented loops inQF . K� denotes the group
ring of � over K , K O� the freeK -module with basisO� . Let � W QF ! QF be the unique
nontrivial covering transformation ofp. Representatives ofx 2 � and y 2 O� are called
in general position ifx[ p(y)[

�

Sn
iD1 p(Æi )

�

W I [ S1
[

�

Sn
iD1 I i

�

! F is an immersion
with at worst transverse double points. For continuous paths r , r 0 on F such that the
endpoint of r 0 coincides with the start point ofr , their productrr 0 means the path
traversingr 0 first, thenr .

DEFINITION 2.1 (see Kawazumi and Kuno [4] Definition 3.2.1.). Forx 2 � and
y 2 O� , we define the actionQ� (y)(x) D y(x) 2 K� by the following formula, where we
choose representatives ofx 2 � and y 2 O� in general position,

(1)

Q� (y)(x) D y(x) D
1

2

 

X

q2p(y\Fu)\x

"(q, p(y), x)xx0q(p(y))qxqx0

�

X

q2p(y\Fd)\x

"(q, p(y), x)xx0q(p(y))qxqx0

!

.

Here "(q, p(y), x) is the local intersection number ofp(y) and x at q in F n
Sn

iD1 p(Æi ), (p(y))q 2 �1(F, q) is the oriented based loopp(y) based atq, xx0q is the
path alongx from q to x0, and xqx0 is the path alongx from x0 to q.

Lemma 2.2. For any x2 � and y2 O� , the action y(x) 2 K� is well-defined.

This lemma immediately follows from Lemma 2.4 in this paper and [5] Propos-
ition 3.2.2. We can define the actionQ� by Lemma 2.4 but here we take this geometrical
definition.
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Fig. 1. The orientation cover ofF .
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REMARK 2.3. The actionQ� can be quantized in the sense of Turaev [8]. We
define the homeomorphism�W I ! I by �(t)D 1�t . We define the oriented 3-manifold
E by the quotient space ofQF � I under the equivalent relation, (Qx, t) � ( Qx0, t 0) if and
only if Qx D Qx0, t D t 0 or Qx D � ( Qx0), t D �(t 0). Let � be the quotient mapQF � I ! E.
The continuous mapq W E ! F , ( Qx, t) 7! p( Qx) is the I -bundle map. We define the
submanifold QE � E by � ( QF � ([0, 1=3] [ [2=3, 1]). The continuous mapQq W QE ! QF ,
( Qx, t) 7! Qx for t 2 [2=3, 1], (Qx, t) 7! � ( Qx) is the trivial [0, 1=3]-bundle. We denote the
Turaev skein algebra of oriented links inQE by A( QE) and the Turaev skein module of
oriented tangles from� (xu

0 , 0) to � (xu
0 , 1) in E by B(E, x0). For details, see Turaev [8].

The action Q� on K� of K O� can be quantized by the action onB(E, x0) of A( QE) in
the sense of Turaev [8].

We extend the actionQ� by linearity to a bilinear mapK O� � K� ! K� . Let [ , ]
be the Lie bracket in the Goldman Lie algebraK O� . We remark that the group ring
K� is not a K O� -module with the actionQ� , see Lemma 2.4 and Theorem 2.7. Here�
denotes the map (1=2)(id� � )W K O� ! K O� . Here we simply denote by� theQ-module
automorphism induced by� W QF ! QF .

For y, y1, y2 2 K O� and x, x1, x2 2 K� , it is easy to show the following

y(x1 � x2) D y(x1)x2C x1y(x2),

y(x) D �� (y)(x),

� ([y1, y2]) D �[� (y1), � (y2)],

�

2(y) D �(y).

Since

�([y1, �(y2)])

D [y1, �(y2)] � � ([y1, �(y2)])

D [y1, �(y2)] C [� (y1), � Æ �(y2)]

D [y1, �(y2)] C [� (y1), ��(y2)]

D [�(y1), �(y2)],

we have

[�(y1), �(y2)] D �([y1, �(y2)]) D �([�(y1), y2]) D �([�(y1), �(y2)]).

The following lemma is easy to prove but is essential.

Lemma 2.4. For r 2 � , let Qr be the lift of r to QF starting at xu0 . It is satisfies

that Qr 2 �1( QF , xu
0 ) or Qr 2 �1( QF , xu

0 , xd
0 ). For y 2 O� , we have

y(r ) D Q� (y)(r ) D p(� (�(y))(Qr )),
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where the action� is defined in Kawazumi and Kuno[4] Definition 3.2.1. Here we
simply denote by p theQ-module homomorphism induced by p.

The following lemma is proved by Lemma 2.4 and [4] Proposition 3.2.2.

Lemma 2.5. For a, b 2 O� and r 2 � , we have

a(b(r )) � b(a(r )) D ([�(a), b])(r ) D ([a, �(b)])(r ) D ([�(a), �(b)])(r ).

Proof. Let Qr be the lift of r to QF starting atxu
0 .

By Lemma 2.4 and [4] Proposition 3.2.2, we have

a(b(r )) � b(a(r )) D p(� (�(a))(� (�(b))(Qr )) � � (�(b))(� (�(a))(Qr ))

D p(� ([�(a), �(b)])( Qr ))

D p(� (�([�(a), b]))( Qr )) D ([�(a), b])(r ).

Lemma 2.6. �K O� � K O� is a Lie subalgebra of KO� .

Proof. It suffices to check the equation [�(a), �(b)] D �([�(a), �(b)]).

Theorem 2.7. K� is �K O�-module with Q� .

Proof. Fora, b 2 K O� , r 2 K� , we have

�(a)(�(b)(r )) � �(b)(�(a)(r )) D [�2(a), �2(b)](r ) D [�(a), �(b)](r ).

3. Completion

3.1. Completion of the Goldman Lie algebra. The groups� D �1(F, x0) and
Q� D �1( QF , xu

0 ) are free groups. LetK Q� be the group ring ofQ� over K . Let cW K Q� !
K O� be the forgetful map of the basepointxu

0 . Then c is surjective.
Let G be a free group of finite rank andK G the group ring ofG over K . Define

a K -algebra homomorphism augW K G! K by g 2 G 7! 1. We defineI 0G D K G and
I j G D (ker aug)j .

It is well-known that
T

1

jD0 I j G D 0. See, for example, Bourbaki [1] Exercise 4.6.

Furthermore we have
T

1

jD0c(I j
Q�)D 0 by Kawazumi and Kuno [5] Corollary 4.3.2. We

define the completed group ringbK G D lim
 �

i!1

K G=(I i G) and the completed Goldman

Lie algebrabK O� D lim
 �

i!1

K O�=(c(I i
Q� )C K1).

As is proved in [5] Theorem 4.1.1 and Lemma 2.4, we haveyi (x j ) 2 I iC j�2
� for

yi 2 c(I i
Q�) and x j 2 I j

� . Moreover we haveQ� (1)D 0. HencebK O� actsbK� continu-
ously as derivations.
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3.2. Dehn twist on unoriented surfaces. We orient S1
D R=Z as the quotient

of the lineR. We orient the annulusS1
� I as a product manifold.

Let t W S1
� I ! S1

� I be the (right handed) Dehn twist of an annulus given by the
formula S1

� I ! S1
� I , (s, t) 7! (sC t, t). An simple closed curve is called an annulus

simple closed curve if its tubular neighborhood is homeomorphic to an annulus. Let
A be an oriented tubular neighborhood of an annulus simple closed curve. We define
tA W F ! F by

tA(p) D

(

t(p) for p 2 A,

p for p 2 F n A.

We simply denote bytA the element of the mapping class group ofF represented
by tA.

We define log(tA) WbK� !bK� by

log(tA)(r ) D �
1

X

iD1

1

i
(1� tA)i (r ).

Here we denote bytA theQ-algebra automorphism induced bytA.
Annulus simple closed curves can be lifted to the orientation cover. Let l be a

simple closed curve in the surface. Ifp(l ) is simple, p(l ) is an annulus circle.

Theorem 3.1. Let r be an element ofQ� such that an embedding of S1 on F rep-
resents p(c(r )). Then p(c(r )) is an annulus simple closed curve. We orient the tubular
neighborhood U of c(r ) as a submanifold ofQF and the orientation of U induces that
on p(U ). We call the oriented annulus p(U ) of p(c(r )) A. We define the element L2

�

bK O� such that LD �(c((log(r ))2)). Here we denotelog(r ) D
P

1

iD1 �(1� r )i
=i 2bK Q� .

Then we have

(2) log(tA)( � ) D Q� (L)( � ) WbK� !bK� .

In other words, if we define eQ� (L)
D

P

1

kD0( Q� (L))k
=k!, then

tA D eQ� (L)
W

bK� !bK� .

Proof. We use Theorem 5.2.1 [5]. Notice that the following diagram is commu-
tative.

QF QF

F F .

 

!

tc(r )t�1
� (c(r ))

 

!

 

!

 

!

tA

�

Notice thattc(r ) and t
� (c(r )) are commutative.
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Let Qx be the lift of x 2 � to QF and we have

log(tA)(x) D p(log(tc(r )t
�1
� (c(r )))( Qx))

D p((log(tc(r )) � log(t
� (c(r ))))( Qx))

D p

��

�

�

c

�

1

2
(log(r ))2

��

� �

�

c

�

1

2
(log(� (r )))2

���

( Qx)

�

D Q� (�(c((log(r ))2)))(x).

Here we obtain log(tc(r )t�1
� (c(r )))( Qx) D (log(tc(r ))� log(t

� (c(r ))))( Qx) by the equation log((aC

1)(bC 1))D log(aC 1)C log(bC 1) where log(� C 1)D
P

1

iD1 �(��)i
=i 2 Q[[a, b]]

for � 2 aQ[[a, b]] C bQ[[a, b]] (see Remark 3.2).
Furthermore we have

eQ� (L)(x) D elog tA(x) D p(elog(tc(r )t�1
� (c(r )))( Qx)) D p(tc(r )t

�1
� (c(r )( Qx)) D tA(x).

REMARK 3.2. Since

log((aC 1)(bC 1))D
1

X

iD1

�1

i
(�a)i

C

1

X

iD1

�1

i
(�b)i

C

X

k�l�1

 

l
X

rD0

(�1)kCl�r

kC l � r

(kC l � r )!

(k � r )! (l � r )! r !

!

xk yl

C

X

k>l�1

 

l
X

rD0

(�1)kCl�r

kC l � r

(kC l � r )!

(k � r )! (l � r )! r !

!

xl yk,

and

l
X

rD0

(�1)kCl�r

kC l � r

(kC l � r )!

(k � r )! (l � r )! r !
D

(�1)i

j !

�

dl�1

dzl�1
(1� z)l zk�1

�

jzD1

D 0,

we have log((aC 1)(bC 1))D log(aC 1)C log(bC 1).

REMARK 3.3. For any embedding oriented annulusA in the surfaceF , there

exists r 2 Q� such thattA D eQ� (�(c((log(r ))2)))
W

bK� !bK� .
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