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Abstract
Let k be an algebraic number field of finite degree &ndbe the maximal cyclo-

tomic extension ok. Let Ly and L, be the maximal unramified Galois extension and
the maximal unramified abelian extension lof respectively. We shall give some

remarks on the Galois groups Gal(’ks), Gal(Lk/ks) and Gal{x/k). One of the

remarks is concerned with non-solvable quotients of Gak..) whenk is the ra-
tionals, which strengthens our previous result.

Introduction

Let k be an algebraic number field of finite degree in a fixed algebstisure and
¢n denote a primitiven-th root of unity 6 > 1). Let k,, be the maximal cyclotomic
extension ofk, i.e., the field obtained by adjoining to all ¢, (n > 1). Let L, and
Ly be the maximal unramified Galois extension and the maximahmified abelian
extension ofk., respectively. By the maximality,., and Ly are both Galois extensions
of k.

According to the analogy between finite algebraic numbeddieind function fields
of one variable over finite constant fields, adjoining @llto a finite algebraic number
field is one of the substitutes of extending the finite cortstihd of the function field
to its algebraic closure. Therefore, the Galois group Gak.,) may be regarded as
an analogue of the algebraic fundamental group of a propeop#ngeometrically con-
nected curve over the algebraic closure of a finite field.

In this article, we shall give some remarks on the Galois psoGal(/kx),
Gal(Lk/ks) and Gal(/k).

It is known that the algebraic fundamental group of a smoatbngetrically con-
nected curve over an algebraically closed constant fieldttagollowing property (P)
except for some special cases (cf. e.g. Tamagawa [8]).

P) Every subgroup with finite index is centerfree.

This is one of the properties of algebraic fundamental gsoap “anabelian” alge-
braic varieties (cf. e.g. lhara—Nakamura [4]). Our first agknis that the Galois group
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Gal(Ly/k) also has this property. This will be given in §1.

We shall next consider the Galois grodp= Gal(k,/k) and X = Gal(Lk/K)-
Then, " acts naturally onX, i.e., X is a'-module. As a profinite abelian groupX is
isomorphic to the direct product of countable number of espifZ, the profinite com-
pletion of the additive group of rational integeZs This follows from a more general
result of Uchida [9] that the Galois group of the maximal umifeed solvable exten-
sion of k,, over k,, is isomorphic to the free prosolvable group on countablynitei
generators. However, the structure ¥fas al’-module does not seem to be well in-
vestigated. (Some partial and related results are obtdmédada [2].)

Our second remark is that is a faithful I'-module. It follows from this and our
first remark that the Galois group GhJ(/k) also has the property (P). This has been
pointed out by Akio Tamagawa. The proofs of these will be giue 8§2.

Our final remark is about the inverse Galois problem on GakK.). As noted
above, the maximal prosolvable quotient of Gal(k.,) is determined by Uchida, but
not too much seems to be known for its non-solvable quotidnt®ur previous paper
[1], when the ground fielk is the rationalsQ, we have shown that there exist in-
finitely many unramified Galois extensions ., having finite non-solvable group
PSWL(Z/p"Z) = SLy(Z/p'Z)/{£1} as the Galois group, wherg is any prime greater
than 3 andr is any positive integer. The method is to use thletorsion points of
certain elliptic curves ovef. It is not difficult to see that allp-power torsion points
of a single elliptic curve can not be used. Namely, by thathwmet profinite group
PSLy(Zp), which is not prosolvable, can not be realized as the Gajoisip of an
unramified extension ofQ.. (Z,: the ring of p-adic integers). Nevertheless, we can
strengthen the result as the following theorem.

Theorem 0.1. Let p>5 be a prime. Then there exists an unramified Galois ex-
tension F ofQ« such thatGal(F/Q.) is isomorphic to[N_; SLo(Zp), the direct
product of countable number of copies SEx(Z ).

We shall give the proof in 83. The arithmetic point of the griothat the Galois
group Gal(«/ks) is projective, which is also due to Uchida [9]. The groupdtetical
point of the proof is some properties of the group,@&,) due to Serre [6, 7]. Since
our results are based on and related to Uchida’s results, ha# summarize them
in 81.

1. A result of Uchida and its consequence

(11) It seems that fundamental results about the Galoisipgi@al(_y/ks) ob-
tained so far are the following theorem of Uchida.

Theorem 1.1([9]). (i) The cohomological dimension of the Galois group
Gal(L/ks) is less than or equal td.
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(i) The maximal prosolvable quotient of the Galois graBpl(L/ke) is isomorphic
to the free prosolvable group on countably infinite genemto

It is known that the cohomological dimension of a profinitewy G is less than or
equal to 1 if and only ifG is projective (cf. e.g. Serre [5, Chapter 1 5.9]). Recall
that a profinite groupG is called projective if for every surjective homomorphisth o
profinite groupse: E — H and for every surjective homomorphissn G — H, there
exists a homomorphisng: G — E such thaty = ay.

Actually, Uchida’s result is more general. For an algebmimnber field K, not
necessarily of finite degree over the rationals, Ket (resp.K) be the maximal un-
ramified Galois extension (resp. the maximal unramified @wadble extension) oK.
Uchida has given sufficient conditions on the ground fi&ldfor the Galois group
Gal(K'/K) to be projective and those for the Galois group ®&gl(/K) to be iso-
morphic to the free prosolvable group on countably infiniemerators. Since the field
ks satisfies both conditions, the above theorem follows.

(1-2) The following is a consequence of Theorem 1.1, combiwéh a lemma
of Tamagawa [8].

Proposition 1.2. The Galois groupGal(L/ks) has the property(P).

Proof. We first show that Gdl(/ks) itself is centerfree. By Lemma 1 in [8], it
suffices to show that, for every open subgroup of Galks), its maximal prok quo-
tient is centerfree for every prime numberTake an open subgroup of Gal(Ly/Ks).
Let U = Gal(Ly/K) with a finite extensiorK of ky. Then it is easy to see that there
exists a finite algebraic number fiek such thatk = F,, and thatLy is also the max-
imal unramified Galois extensiohr of F.. By Theorem 1.1 (i), the maximal prio-
quotient of U is isomorphic to the free prb-group on countably infinite generators,
and hence is centerfree. Thus, Cfal;(koo) is centerfree.

Now, as stated above, any open subgroup of IGaK..) is of the form Gall ¢ /F)
with a finite algebraic number fiel&. Hence, by the above arguments, it is centerfree.

O

2. The faithfulness of the cyclotomic Galois action

(2-1) The cyclotomic Galois groud” = Gal(k./k) acts naturally onX =
Gal(Lk/k-) and we have a homomorphism

p: T — Aut(X).

Then we have the following

Proposition 2.1. The homomorphismp is injective i.e,, X is a faithful ’-module.
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Before giving the proof, we shall verify the following colay.
Corollary 2.2. The Galois groupGal(L/k) has the propertyP).

Proof. We first verify that Gal(,/k) is centerfree. LetQ = Gal(Ly/k), G =
Gal(Ly/ks) and N = Gal(Ly/Ly), the commutator subgroup db. We claim that
the centralizerCqo(G) of G in Q is trivial. In fact, letw be an element ofCq(G)
so that we havengw™ = g for any elementy of G. Reducing this equation modulo
N, we see that the coset = »G, which is an element 0f2/G = T', acts trivially on
G/N = X. By Proposition 2.1, we havg = 1, i.e.,,w € G. SinceG is centerfree by
Proposition 1.2, we have = 1, i.e. Co(G) = {1}. In particular,2 is centerfree.

Now, similar to the case of Gdl{/k), it is easy to see that any open subgroup
of Q is of the form Gal[ ¢/F) with a finite algebraic number fiel&. Therefore, by
the above arguments, it is centerfree. ]

(2-2) In the rest of this section, we shall give the proof obprsition 2.1. First
we shall construct certain unramified abelian extensionsyofotomic fields.

Let p be a fixed prime andj be a power ofp: q = p" (r > 1). Let¢y be a
primitive g-th root of unity,e = [k(¢q) : K], and I'q = Galk(¢q)/K). Let py, ..., pg be
all prime ideals ofk(zq) lying above p. For eachi (1 <i =< g), fix a positive integer
s such that every element of k(¢y) satisfyinga = 1 modp; is locally ag-th power,
i.e., « is ag-th power in thep;-adic completion ofk(g).

Let m be an integral ideal ok(¢q) such thatp; dividesm (1 <i < g) and thatm
is invariant by the action of'y. By the density theorem, there exists a principal prime
ideal I = () of k(¢q) which is unramified in the extensiok(q)/Q, absolute degree
one, ande = 1 modm.

Letl; (=1), ..., [ be all prime ideals conjugate toover k. As [ is principal, all
l; are principal:; = (ai), o € k(Zg), 1 <i <e. We may assume thaty, ..., a. are
all algebraic integers conjugate tq over k.

For eacha;, 1 <i < e, fix a g-th root o;”® of ;. Let E be the field obtained
by adjoining tok(zgy) all ail/q, 1<i=<e ThenE is a Kummer extension ok(z)
with exponentq and is a Galois extension & The extensionE/k(¢q) is unramified
outsidepy, ..., pg I, - - -, le-

Lemma 2.3. (i) The prime idealg,,...,pq split completely in E. In particular
they are unramified in E.
(i) Letl =N Q and ¢ be a primitive I-th root of unity. Then the prime ideals of
k(¢q, &) lying abovels, . .., le are unramified in the extension(&)/k(¢q, &).

Proof. (i) Sincel belongs to the principal ray class modutg so do alllj (1 <
i <€), becausen is invariant by the action of'y. As p? divides m, we haveqa; =
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1 modp?j (1<i=e 1=<]j=g). From this it follows thatp,, ..., pq split completely
in E.

(i) We first note thal = 1 modq. Indeed, as the absolute degreel @§ one, so
is that of [N Q(&g), which is a prime ideal ofQ(¢y) lying abovel. This shows that
splits completely inQ(¢q) so thatl = 1 modg.

Now sincel, hence alll;, are unramified in the extensid(¢y)/Q, it follows that
Q&) Nk(¢g) = Q and everyl; is totally ramified ink(Zq, &)/k(¢q) with ramification
index| — 1. On the other hand, the ramification indexIpfin E/k(¢y) is obviouslyqg.
Sinceq divides| — 1 as noted above, (ii) follows by Abhyankar's lemma (cf. eCgr-
nell [3]). ]

(2-3) We shall next investigate cyclotomic Galois actiomstbe Galois group of
E over E N k.
Let us define the element (1 <i <€) of Gal(E/k(¢y)) by
5i(0)%) = gqoi* (j =),

() =o't (j #1).

Eachr; is of orderq and GalE/k(¢q)) is the direct product of the cyclic subgroup
generated byt (1 <i <e).

For eachr e T'y, we define its extensiod € Gal(E/K) in such a way tha&(ail/q) =
ajl/q if (o) =cj (1=1i,] =<¢). Let

x:Tq— (Z/9Z)"

denote the cyclotomic character, i.e.oif¢y) = §§ (0 €Ty, s€ Z), thenx(o) =smod
g. The following lemma will be easily verified.

Lemma 2.4. Assume that € I'y satisfieso () = «j. Then we havé 61 =
77, where x (o) = smodg.

Let K = ENky. As the extensiorK /k(¢y) is abelian, the commutator @ and
7 belongs to the subgroup GEI(K) of Gal(E/k(¢q)). Thus we have the following

Lemma 2.5. Assumptions being as inemma 24, rjsri—l belongs toGal(E/K).

The groupl'y acts naturally on the abelian group Galk(sy)) and, sinceK is a
Galois extension ok, on the subgroup G&{/K).

Lemma 2.6. The action ofl'q on Gal(E/K) is faithful.
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Proof. First, let us assume that> 2. Then the groud’y is cyclic. Leto be a
generator ofl'y and x (o) = smodqg. We may assume, renumbering if necessary, that

o(ay) = az, 0(a2) =g, ..., o0(xe) = 1.

Assume thav™ (m > 1) acts trivially on GalE/K). SincetSz* belongs to Gal/K)
by Lemma 2.5, we have

~m_s_—1l~—m _ _s_-1
T 0 =TT,

and hence,

(6126 ™36 Mt ™ = Syt

By Lemma 2.4, the left hand side isﬁﬁ;)(rn;jml), the index oft being regarded as
the residue class modula Thus we have
m+1 _ am _
tringmil =157 g
Since GalE/k(¢q)) is the direct product of the cyclic subgroup generatedrbyl <
i < e), this holds if and only ifm = 0 mode and s™ = 1 modq. Hence, we have
o™ =1.

We shall next assume that = 2. In the case thaly is cyclic, the proof in the
case ofp > 2 remains valid. Assume thd, is not cyclic and lele = 2 (t > 2). Then
I'q is the direct product of a cyclic subgroup, of order 27 and a cyclic subgroup
H, of order 2. Leto; and o, be generators oH; and H; respectively. SinceH; is
cyclic and is of index 2, we may assume, renumbering if nesgsshat

o1(o1) = oz, ..., 01(af) = a1, o1(of 1) = Afp2, ..., 01(de) = Af41,
where f = 2'=1. Thenoy(a;) belongs to the subsetr,q, ..., ae}, becausd’y acts
on the set{ay, ..., ae} transitively. We may also assume tha{{«;) = a1 and then

it is easy to see that

o2(02) = Agy2, ..., 02as) = e
Now, each element ofy is expressed uniquely as the following form:
o/'0) 0O<m< f,n=0,1)

Assume thab"o} acts trivially on Galg/K). Let x(01) = smodq. SincetSt;?
belongs to GaE/K) by Lemma 2.5, we have

(1) 6163 (311 )6, "6 ™ = Ty

If n =0, similarly as in the case thai > 2, the left hand side of (1) is

Sm+1 —gm

Tm+27m+1'
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the index ofr being regarded as the residue class modildf n = 1, the left hand
side of (1) is

_gm+l gm
Tt rm+2Tf+m+1

the index oft belongs to{ f +1,..., 2f}. Therefore, (1) holds if and only ih =0
andm = 0 mod f. Hence we have["o] = 1. [

(2-4) Now we shall complete the proof of Proposition 2.1.

Let p be a prime andy be a power ofp. Let E be the field defined in (2-2).
By Lemma 2.3,Ek,, is an unramified abelian extension kf, so thatk,, C Ek, C
Ly. Let Xg be the Galois group Gal{k./ks). Since Ek,, is a Galois extension of
k, Xg is also aI'-module, i.e.,Xg is a quotient of-module X. By Lemma 2.6,
the kernel of the action of' on Xg is Galks/k(¢y)). Therefore, Kep is contained
in Gal(kw/K(¢q)). Sinceq is an arbitrary power of an arbitrary prime, it follows that
Kerp = {1}, i.e., p is injective.

3. Proof of Theorem 0.1

(31) In this section, we shall give the proof of Theorem 0.1.
We first verify the following

Lemma 3.1. Let p> 5 be a prime and k be an unramified Galois extension of
Q« having PSLy(F,) as the Galois groupF,: the prime field of characteristic )p
Then the following assertions hold.

(i) There exists an unramified Galois extensionf Q. having SL»(F,) as the Galois
group such thaiQ., C k c k and that the restrictiorGal(k/Q..) — Gal(k/Q4) cor-
responds to the projectioBLy(Fp) — PSL(Fp).

(i) There exists an unramified Galois extension KQof havingSL,(Z,) as the Galois
group such thaQ,, C k c K, k being the extension given (i), and that the restriction
Gal(K /Q4) — Galk/Q.) corresponds tSL,(Z p) = SLa(Fp), the reduction modulo p.

Proof. By the assumption, there exists a surjective homphism
¢: GalLg/Qu) — PSL(Fp)

such that Ketp corresponds td.
Consider the surjective homomorphism SLy(IF,) — PSLy(Fp,). Then, by the pro-
jectivity of Gal(Lg/Q4) (Theorem 1.1 (i)), there exists a homomorphism

¥ Gal(Lg/Qu) — SLa(Fp)



328 M. ASADA

such thaty = ay. Theny is surjective, because no proper subgroup of(B) maps
onto PSIx(F,) (cf. e.g. Serre [6, Chapter IV 3.4 Lemma 2]). Then, the esitamk of
Qs corresponding to Key satisfies the condition (i).

Consider the surjective homomorphismSLy(Z ) — SL(Fp), the reduction mod-
ulo p. Again, there exists a homomorphism

w: GallLg/Qu) = Sla(Zp)

such thatyy =rw. Thenw is also surjective, because no proper subgroup of(Z})
maps onto Sk(F,) ([6, Chapter IV 3.4 Lemma 3]). Then, the extensién of Q.
corresponding to Kep satisfies the condition (ii). ]

(3-2) We need some group-theoretical lemmas.

Lemma 3.2. Let G be a non-abelian finite simple group and, &, ..., G,
(n > 1) be finite groups all isomorphic to G. Then every normal subgrof the direct
product G x G, x -+ x Gy, is of the form

Gi, xGj, x---xGj, (1<ii<iz<---<ix=n).
The proof of Lemma 3.2 is an exercise of group theory, and diénomitted.

Lemma 3.3. (i) Let p>5be a prime and H be a closed subgroupSif;(Zp)",
the direct product of n copies dLy(Zp) (n = 1). Assume that the image of H in
SLy(Fp)" by the reduction modulo p coincides wiBi,(F,)". Then H coincides with
SLy(Zp)".

(i) Let p>5 be a prime and H be a subgroup 8L,(F,)", the direct product of n
copies of SLy(Fp) (n > 1). Assume that the image of H RSLy(F,)" coincides with
PSL(Fp)". Then H coincides witfSLy(Fp)".

Proof. (i) If n=1, this is one of the lemmas quoted in the proof of Lemma 3.1
([6, Chapter IV 3.4 Lemma 3]). Ih = 2, this lemma follows from Lemma 10 in Serre
[7], where the case ofi = 2 is reduced to the case of= 1 by using projections to
each component of S(Z,) x SLy(Z,). In this reduction process, the points are that
the kernel of the reduction modulp: SLy(Z ) — SLy(Fp) is a pro{ group and that
SLy(F,) does not have non-trivial normal subgroups wikpower indices. Ifn > 3,
by decomposing SIZ,)" = SLo(Zp)" ! x SLo(Z;), SLa(Z;) x SLa(Zp)" 2, the same
method can also be applied and the lemma is proved by induction. We omit
the details.

(i) If n=1, again this is one of the lemmas quoted in the proof of Lemria 3
([6, Chapter IV 3.4 Lemma 2]). Ih > 2, the proof will be done, in the same way as
that of (i), by induction om, and hence is omitted. We note that, here, the points are
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that the kernel of the projection ${F,) — PSLy(Fp,) is a cyclic group of order 2 and
that PSIx(F,) does not have normal subgroups with index 2. O

(3-3) Now we shall prove Theorem 0.1. By the result of [1], rehexist un-
ramified Galois extensionk, (n > 1) of Q,, such that Gak,/Q.,) is isomorphic to
PSLy(Fp) and thatk, # km for n # m. Applying Lemma 3.1 tok = k,, we obtain
unramified Galois extensioris, and K,, of Q.. satisfying the following conditions:

(@) Qu C ki C kn C K.
(b) Gal(Kn/Qo) is isomorphic to Sk(Z ), k. andk, corresponding to the kernels of
homomorphisms SIZ ) — SLx(Fp) and Slx(Zp) — PSL(Fp) respectively.

Let F be the composite field of alK, (n > 1). ThenF is an unramified Galois
extension ofQ... We shall show that Ga{/Qx) is isomorphic to] [N_; SLa(Z ). For
that purpose, it suffices to show that

Gal(Ky - K,/Qu) is isomorphic to GaK1/Q4) x -+ x Gal(Kn/Qw)
for all n > 1.

(%)

We first verify that

) Galky - - - kn/Qo) Is isomorphic to GaK;/Qs) X - -+ x Galkn/Qs0)
for all n > 1.

This will be proved by induction om. For n = 1, this holds trivially. Assume that
this holds forn = m, so that Gak; ---kn/Qs) is isomorphic to PSKF,)™. As
Galkm+1/Qo) is simple, we havek; - - - kn N kmy1 = Qo OF kpy1. But Lemma 3.2
shows, in particular, that a Galois subextensionkof- - kn/Qq having PSL(Fp) as
the Galois group is one d§ (i =1, 2,..., m). Hence the latter cannot occur and it
follows that ¢)x holds forn = m + 1.

Now let H = Gal(K; - - - Kn/Q) and consider the commutative diagram

H ——— Gal(K1/Qu) x - - x Gal(Kn/Qus) = SLo(Zy)"

| |

Gallk - - - kn/Qu) —2— Galk1/Qu0) X - - - X Galkn/Qu) = PSLy(Fy)"

wherer; andr, are restrictions and vertical homomorphisms are projastio
Then, by &), rz is an isomorphism so that the image tdfin PSLy(F,)" coincides
with PSLy(F,)". Hence, by Lemma 3.3 (i) and (i}, is surjective, i.e., £) holds.

REMARK. In our previous paper [1], we have considered certain gebeionMg
of I:Q/QOO and have shown that the unramified Galois extengidlo/Mg (n > 1) has
also PSk(F,) as the Galois group and that they are mutually distinct.eHfl, is the
composite ofQ., and the maximal tamely ramified subextensibh of I:Q/Q. The
above arguments for determining the Galois grdtdican be also applied to the Galois
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group GalK;---KyMo/Mp). Hence we have that the extensiBiMy/My is unramified
and that it hag [Ny_; SL2(Zp) as the Galois group.

Further, lety be an element of Gal{o/M!) and 7 € Gal(Lo/M!) be any exten-
sion of y. Then, forn > 1, y transforms the fieldK, Mg to the subextensiofr(K,Mp)
of I:Q/M‘, which also has S}Z) as the Galois group. This may be different from
KnMp becauseK, Mo is not necessarily Galois ovev'. However,y(K,Mg) does not
coincide with K,Mg for any m # n.

To see this, first note that the subextensigiMy of K,Mg/My is Galois over
Mt (in fact Galois overQ) so thaty(k.Mg) = kaMo. Then, sincek,Mg N knMg =
Mo for m # n, by the same arguments for determining the Galois grblupve have
7(KnMg) N KMo = Mg. In particular, y (KnMg) # KnMo.
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