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Abstract

The self-similar solutions to the mean curvature flow havenbéefined and stud-
ied on the Euclidean space. In this paper we propose a geneaéihent of the self-
similar solutions to the mean curvature flow on Riemannianecmanifolds. As a
typical result we extend the well-known result of Huiskeroatbthe asymptotic be-
havior for the singularities of the mean curvature flows. W a&xtend results on
special Lagrangian submanifolds @f to the toric Calabi-Yau cones over Sasaki—
Einstein manifolds.

1. Introduction

Let F: M x [0, T) — V be a smooth family of immersions of an-dimensional
manifold M into a Riemannian manifold\, ) of dimensionm + k. F is called a
mean curvature flow if it satisfies

1) %(p, t) = H(p) forall (p,t)eMx[0,T)

where H; is the mean curvature of the immersiéig:= F(-,t): M — V.
WhenV is the Euclidean spad®@™** there is a well-studied important class of solu-
tions of (1), that is, self-similar solutions. They are inmsiensF: M — R™ satisfying

) H=aAFt

where A is a constant andr+ denotes the normal part of the position vectr The
solution of (2) is called shrinking, stationary (or minimalr expanding depending on
whetheri <0, 2 =0 or A > 0.

The purpose of this paper is to extend the definition of théssedilar solutions
from the case wherV is the Euclidean spaces to the case whéris a Riemannian
cone manifold. Let i, g) be ann-dimensional Riemannian manifold. We define the
Riemannian cone manifoldC(N),q) over (N,g) by C(N) = NxR* and§ = dr?+r?g
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wherer is the standard coordinate &*. If F: M — C(N) is an immersion we define
the position vectorF of F at pe M by

d
®) F(p) = r(F(p)5- € TepC(N).
Then the self-similar solution is defined as
(4) H=aF'

where A is a constant and_:) L denotes the normal part of the position vec%r In
this paper we propose a general treatment of the self-girséutions to the mean
curvature flows on Riemannian cone manifolds. As a typicslilteve extend the well-
known result of Huisken about the asymptotic behavior fer smgularities of the mean
curvature flows. In [9] Huisken introduced the rescalinghtéque and the monotonic-
ity formula for the mean curvature flow of hypersurfaces irclilean space. Also in
[9], using the monotonicity formula, Huisken proved thattlie mean curvature flow
has the type | singularity then there exists a smoothly cg@re subsequence of the
rescaling such that its limit satisfies the self-similarusioin equation. In this paper we
extend those techniques and consequences to Riemannianntamifolds and an ini-
tial date manifold. We also give a construction of self-&misolutions on Riemannian
cone manifolds.

Let us recall the definition of type | singularity and its gaolic rescaling. Let
M be a manifold and\(, §) a Riemannian manifold. Suppose: M x [0, T) - V is
a mean curvature flow with maximal timé < oo of existence of the solution. One
says thatF develops a singularity of Type | as— T if there exists a constar@ > 0
such that

C
suglly|> < —— forall te][0,T),
M T-—t

where I} is the second fundamental form with respect to the immersianM — V.
Otherwise one says th&t develops a singularity of Type II.

Let M be a manifold and@(N), §) the Riemannian cone manifold over a Riemann-
ian manifold (\N,g). Take a constarit > 0. For a mapF: M x[0,T) — C(N), we define
the parabolic rescaling df of scalei as follows;

F*: M x [-A%T, 0) = C(N);

F(p.s) = (”N(F(p’ T %)) i (F(p’ T+ %)))

wheremy: C(N) = N x RT — N is the standard projection.
When the singularity does not occur at the apex of the conecaneshow that the
parabolic rescaling of type | singularity gives rise to af-sehilar solution as shown
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by Huisken. However when the singularity occurs at the apexnsed some more
conditions. Thus we are lead to the following definition opeyl. singularity.

DEerFINITION 1.1. LetM be a manifold andN, g) a Riemannian manifold. Sup-
poseF: M x [0, T) - C(N) is a mean curvature flow witih < co. We say thatF
develops a singularity of type, lif the following three conditions are satisfied:

(a) F develops a singularity of type | as— T,

(b) r(F(p)) — O for somepe M ast - T and

(€) Ky(T —1t) < minyr?(R) < Ky(T —t) for all t € [0, T) where K; and K, are
positive constants.

Examples of typed singularities are given in Example 6.1.

Theorem 1.2. Let M be an m-dimensional compact manifold andNg the
Riemannian cone manifold over an n-dimensional Riemanniamifold (N, g). Let
F: Mx[0,T) — C(N) be a mean curvature floyand assume that F develops a tylge
singularity at T. Thenfor any increasing sequendg.; }°; of the scales of parabolic
rescaling such thak; — oo as i — oo, there exist a subsequen¢g; };°, and a se-

quence it — T such that the sequence of rescaled mean curvature{ﬂ'f_a',.\\k‘/\‘/}ﬁo=1 with

S, = )\iz’k(tik — T) converges to a self-similar solution°F M., — C(N) to the mean
curvature flow.

The proof of this theorem is not substantially differentnfrdHuisken’s original
proof. But the merit of the idea to study on cones will be tha @btain examples
of more non-trivial topology. In facN =~ {r = 1} in C(N) is already a self-shrinker.
Thus, any compact manifold can be a self-shrinker in somenRmian cone manifold.
It is also possible to study special Lagrangian submarsfaldd Lagrangian self-similar
solutions in Calabi—Yau cones over Sasaki—Einstein mhisfoA Sasaki manifoldN is
by definition an odd dimensional Riemannian manifold whoseedC(N) is a Kahler
manifold. If the Kahler cone manifold is toric then the Sasadanifold is said to be
toric. It is proven in [4] and [2] that a Sasaki—Einstein me®xists on a toric Sasaki
manifold obtained from a toric diagram. A typical exampleniken N is the standard
sphere of real dimensionn2+ 1. Then its cone iC™! — {o}. It is natural to expect
that we can extend results on special Lagrangian submdsifm self-similar solutions
on C™*! to these toric Calabi-Yau cones of height 1. In Theorem 7.Xovestruct ex-
amples of complete special Lagrangian manifolds on torital@aYau cones using the
ideas of [6] and [11]. This construction includes the exasapjiven in Theorem 3.1
in 111.3 of Harvey—Lawson [7]. Further construction of exples of special Lagrangians
and Lagrangian self-similar solutions are given in thedthauthor's subsequent paper
[15], in which it is shown that, for any positive integgr there are toric Calabi-Yau 3-
dimensional cones including Lagrangian self-shrinkeffedmorphic to % x S' where
¥4 is a compact orientable surface of germis
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In Section 8 we also study the infinitesimal deformations pécéal Lagrangian
cone C(X) € C(N) over a Legendrian submanifold in a Sasaki—Einstein manifold
N. We show that the parameter spéies) of those infinitesimal deformations is iso-
morphic to

Ker(Ay — 2n) = {p € C™(X); Asp = 2ng¢},

see Theorem 8.6. This is also proved by Lemma 3.1 of [14]patih the proof in this
paper is different from [14].

This paper is organized as follows. In Section 2 we show forefgal formulas on
mean curvature flows in Riemannian cone manifolds. In Secdiave show the finite
time blowup of the mean curvature from a compact manifolde@rbm 3.1). Section 4
is devoted to the proof of the monotonicity formula (Theorér). In Section 5 we see
that the type | singularity is preserved under parabolicaksg. In Section 6 we see
that we obtain a self-similar solution by parabolic resuglat a type J singularity. In
Section 7 we construct special Lagrangians in toric Ca¥hi-cones. In Section 8 we
study the infinitesimal deformations of special Lagrangianes in Calabi-Yau cones.

2. Self-similar solutions to the mean curvature flows on Riemnnian cone
manifolds

Let F: M — V be an immersion of am-dimensional manifoldM into anm + k-
dimensional Riemannian manifold/(g). Thus the differentialF.,: TxM — TV
is injective for everyx € M, and we have a natural orthogonal decomposition of the
vector bundle

FFTV)=TMa TM

where T*tM — M is the normal bundle. Denote by (resp. T) the projection
L: F*(TV) = T+M (resp.T: F*(TV) — TM). The second fundamental form Il of
the immersionF: M — V is a section of the vector bundlB*M ® (®?T*M) defined
by (X, Y) = (Ve F«(Y))* for X, Y € T(TM). HereV is the Levi-Civita connec-
tion of (V, §). The mean curvature vector field of F: M — V is a section ofT+M
defined byH = trll, where the trace is taken with respect to the Riemanmeatric
g:= F*(g) on M.

For the actual computations one often needs local expressibthe mean curva-
ture vector. Letx,...,x™ andy?,...,y" be local coordinate charts aroumde U ¢ M
and F(p) e U’ C V such thatF|y: U — U’ is an embedding. Writé&*(x%, ..., xM) =
y*(F(x%, ..., x™M). Then we have the induced metric

dF aFP

gj = a1 9] Jup)

whereg = §,5dy* ®dy’ is the Riemannian metric od’ C V. Here we use the indices
i, j, K, ... to denote the coordinates dd ande, B, ¥, ... to denote the coordinates
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on V. The coefficientsH® of the mean curvature vector field

ad
H=H*
ay*
are given by the Gaul}’ formula
i [ 9%F© aF« - OFPIFY
5 HY =g —— — Tk « ———— ).
®) (ax'axJ Uaxk P axi gx )

Next we consider a smooth family of immersioRs M x (a,b) — V. Namely, for
every timet in (a,b) C R, F;: M — V given by p— F(p, t) is an immersion. We
denote byg; the Riemannian metri¢*(g) over M. For a fixed timety in (a, b), the
variation vector field {F/dt)(-,t), considered as a section Bf TV, is decomposed as

oF
E(-,to)zviﬁ-vg

where v (p) and v are respectively the sections &f-M and T M.

We denote by!, div;, Il; and H; respectively the Levi-Civita connection oM(g;),
the divergence with respect tp, the second fundamental form and the mean curvature
vector field of the immersiorr: M — V.

Then following proposition is well-known as the “first vati@ formula”.

Proposition 2.1. For every p in M two tangent vectors XY at p and a com-
pactly supported integrable function f on,Mve have

dt

a(X, Y) = 9o (VEl, Y) + Gi(X, Vvl ) = 2g(11, (X, Y), v (p)),

t=to

/ f dug =/ F (diveg(v]) — G, v2) dlvg, .
t=tp M M

d
dt

Let F: M x[0,T) — V be evolving by mean curvature flow with initial condition
Fo: M — V:

aF
©) ﬁ(p, t) = H(p) for all (p,t)e M x [0, T),
F(p, 0)= Fo(p) for all pe M.

Applying the first variation formula in Proposition 2.1 toetlmean curvature flows,
we obtain following well-known properties for mean curvaiflows.
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Proposition 2.2. If F: M x[0,T) — V is a mean curvature flow then the follow-
ing equation holds.

@ =

Vdet(@)ij) = —IHy|3v/det(@r);))-

t=to

If M is compact we also have

Volg (M) :—/M | Hi, |3 dug, -

t=tp
Proof. Because we consider the mean curvature flgw= H;, and therefore

T _
v, =0
and

ve(p) = Hy,(p).

It then follows from Proposition 2.1 that

d
dt t:to(gt)ij = —2G((I1,)ij , Hep)-

Then the first formula (7) follows from the well-known fornaufor the derivative of
the determinant. To prove second formula, simply fet= 1 on M in the first varia-
tion formula. O

Recall that, for ann-dimensional Riemannian manifold\( g), we define the
Riemannian cone manifold>(N),g) over (N,g) by C(N) = NxR* andg = dr?+r?g
wherer is the standard coordinate &". Note thatC(N) does not contain the apex.

The most typical example of a cone is the case wheris the standard sphere
S" in R"™1. In this case the cone IR"*! — {0}. For a mapF: M — R"*!, one
can consider the position vector &f(p) for p € M, and using it, one can define self-
similar solutions

H=xF"t

where is a constant.
We can extend this idea to maps into Riemannian cone masifddmely, for a

smooth mapF: M — C(N) and p in M, we define the position vectoF of F at
pe M by

F (D) = r(F(P) - € TeCIN).
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With respect to the bundle decomposition of

F*TepC(N) = ToM @ Tpilvl,

we decomposel_:) (p) as

F(p)=F(p+ Fp).
Then we can define self-similar solutions by
H=21FL.

For a Riemannian cone manifol@(N), ) over ann-dimensional Riemannian mani-
fold (N, g) and a pointg in C(N), local coordinates;(”)gﬂ aroundq are said to be
associated with normal local coordinate$ N when the part of coordinate/{)_, be-
comes normal local coordinates dfl(g) aroundny(q) and y™*? is the standard co-
ordinate ofR*, that is, y"** = r. Here, my is the projection of the cone manifold
C(N) = N x R* onto the first factoiN.

Note that under local coordinates associated with normzdllgoordinates oiN,
we haver o F =r(F) = F"*! for a given mapF: M — C(N).

Let (x)™, be normal local coordinates centeredpabf the Riemannian manifold
(M, F*(@)), and (y")gﬁ local coordinates of G(N), §) associated with normal local
coordinates centered aty(F(p)) of (N, g). Then calculating onlyr(+ 1)-th coefficient
H"*1(p) of mean curvature vector gt, namely, the coefficient 0f/dy"+(= a/ar),
for the local expression of the mean curvature vector (5)obain the following local
expression forH"*%(p);

m 2 m n « 2
@®) Hip) =37 r(F)(p)—r(F(p»ZZ(aF (p)) .

i2 i
i 0X i3 a1\ 0%

This easily follows from
1:2;1 = gaﬂ
forl<a, g <n.

3. Finite time singularity for mean curvature flows

If the ambient space is the Euclidean sp&®&* and an initial date manifoldV
is compact, then the mean curvature flow does not have a lomg g¢blution. It is a
well-known result of Huisken:

Theorem 3.1 (Huisken [9]) Let Ry: M — R™K be an immersion of a compact
m-dimensional manifold M. Then the maximal time T of exé&arf a solution E M x
[0, T) — R™*k of the mean curvature flow with initial immersion & finite.
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The proof follows by applying the parabolic maximum prireigo the function
f = |F|? + 2mt which satisfies the evolution equatiod/(t)f = A f. One can show
T < (1/(2m)) max Fo|?, from which Theorem 3.1 follows. Using the position vector
in a cone as defined in (3), we can extend this result when tHaeamspace is a
Riemannian cone manifold as follows.

Theorem 3.2. Let(C(N),g) be the Riemannian cone manifold over a Riemannian
manifold (N, g) of dimension n M a compact manifold of dimension m and M x
[0, T) - C(N) a mean curvature flow with initial conditiongEM — C(N). Then the
maximal time T of existence of the mean curvature flow is finite

Before the proof of this theorem, we want to prepare some lesam

Lemma 3.3. Let (C(N), §) be a Riemannian cone manifold over a Riemannian
manifold (N, g) of dimension n and FM — C(N) an immersion of a manifold M of
dimension m. Then the following equation holds.

A(r%(F)) = 2@(H, F) +m),
where A is the Laplacian on(M, F*(Q)).

Proof. Fix a pointp in M. We take normal local coordinates' Y, of (M, F*(g))
centered atp and local coordinatew()gj of (C(N), §) associated with normal local
coordinates of I, g) centered atry(F(p)). Note that under these coordinatg8;* =r
and F"1 =r o F = r(F). First of all, by the local expression ¢4"+(p) in (8), we
have the following equalities;

G(H(p), F(p) = H™(p)r (F(p)

©) : “
— t (F(p) Z - (EEPEY 2(88'; )

i=1 a=1

Since F*g)(8/9x', 3/9x') = 1 at p, we have
n= 3050 5 0)
- 2 ar (F)
=E@r > () Zl( Om).

i=1 a=1

(10)

Adding above two equations (9) and (10), we have

— m 42
(A1) g(H(P), F(p) +m=r(F(p) 3arx<i';>(p) Z(ar(F)( ))

i
i=1 i=1 ax
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Since we took X' )™, as normal local coordinates of/, F*(g)) centered ap, the
LaplacianA is Y (3/9x")?, and thus we have g

Ar2(F) = Z 9°r2(F)

. axi2
42 N azr(F) ar(F)\?
= 2( (F)Z Z(W) )
i=1
Thus from (11) and (12) we have shown thst?(F) = 2(§(H, _F)) + m). L]

Lemma 3.4. Let(C(N),g) be a Riemannian cone manifold over an n-dimensional
Riemannian manifoldN, g), M an m-dimensional manifold and:RVl x [0, T) — C(N)
be a mean curvature flow with initial conditioryFM — C(N). Then for any fixed time
t in [0, T) the following equality holds

(13 2(H, F) = 1 r(F),

Proof. Fix a pointp in M. Take local coordmatesyf)”*1 of C(N) associated

with normal local coordinates ofl. Note that under these coordinatg8;"* = r and
FM! =r(F). SinceF satisfies the mean curvature flow condition (6), the follgyin

equalities hold;
a(H(P). Fo(p) = @(ﬁ(p, 0, ?t(p))

= r(Ft(p))—r(Ft(p)) = Eﬁrz(ﬁ(p))

from which (13) follows. ]
Now we are in a position to prove Theorem 3.2.

Proof of Theorem 3.2. Lef: M x [0, T) — R be a function defined by
f(p, t) = r¥(Fu(p)) + 2mt.

For a fixed timet in [0, T), by Lemma 3.3 and Lemma 3.4,

3 f
= = 24k, F)+2m

= Ar?(F) = Acf(-, 1)

where A, is the Laplacian with respect to the metf¢*(g) on M. Since M is com-
pact, there is a maximum of (-, 0) (= r2(Fo)) on M, which we denote byC,. By
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applying the maximum principle to the functioh, it follows that f (p,t) = r2(F¢(p)) +
2mt < Cy on M x [0, T). Therefore we obtain the following inequalities;

Co—rZ(Ft(p))

t <
2m - 2m

for all t in [0, T). This means that the maximal tine is finite. ]

4. Monotonicity formula

Next we turn to the monotonicity formula. For a fixed tirfiein R, we define the
backward heat kerngbr: R x (—oo, T) — R as follows;

— 1 y2
00 = G gy 2 =)

To simplify the notations, we use following abbreviation;

f pri= / pr(r(Fu(p)), t) dug,
M M

2
[ ,OT
M¢

Then Huisken’s monotonicity formula for a cone is the foliog:

T:H

L(|o)
27—

2(T —

/ pr(r (F(P)), t)‘

dug,.

Theorem 4.1 (Monotonicity formula) Let M be a compact m-dimensional mani-
fold without boundary(C(N), @) the Riemannian cone manifold over an n-dimensional
Riemannian manifoldN, g) and F: M x [0, T) — C(N) the mean curvature flow with
initial condition Fy: M — C(N). Then the following equation holds

d
(14) &/’:ﬂtPT——/Mt;OT

Proof. First we calculate the left term of (14) using (7).

Boop

—Z(T_t)+H

d
el ICLGIONDE

d 1 r2(F, ()
- ﬁ/M (4r (T — 1))"2 exp( t )de A

3 2(Ft(p))
2(T —t) 4T —1t)?
_ r(R(p))((@/at)r (Fe(p)))
2(T —to)

(15)

UGG t)(

- |Ht(p)|§) dug.
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It is clear that

G (ORI

= r¥(Fu(p)).

(16)

Substituting (13) and (16) in (15), we have following formaul

d /M pr(r (). 1) dug

dt
F.(D)2
17 =/Mpr(r(Ft(I0)), t)(zcrm—t) _L(rt(—p)t;gz
_ a(H(p). Fu(p)

T —|Ht(p)|§) dug.

Lett and p be fixed. We take normal local coordinated)f?, centered atp with
respect to the Riemannian metig (= F,"(g)) and local coordlnatesy(l)”’“l around
F¢(p) associated with normal local coordinates of, ¢). Under these coordinates, the

Laplacian A; with respect tog; is 82/8x12 +---482/0x™? at p. Under these coord-
inates we have following equations at the fixednd p;

Arpr(r(Fo), t) = pr(r(F), 1)

X

-
QJ‘

(o5

N

Il
-

Xi 2
i

MB
°’|
< (o5

et (F, t))

SN0
(

X
i=1
(18) -y 2 (e, t)( r(Ft)(z(Za_xit))r(ﬁ»))

i=1 X=p

r2(FO)((3/0X)r (Fy))?
= 0RO S
(00X (RY)?  r(F)((0%/0x] Z)r(Ft»)
2(T —1t) 2T —t) '

Furthermore we want to expres?sT(p) under these coordinates. Now by our choice
of the local coordinates ofx{()" ,, it is clear that

(19) Q(Ft*(p)(%), Ft*(p)(a%)) — 5.
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Note thaty™* = r and F"** = r(F,). The following equalities hold;
i)( (). Rl ) )Rt (5
é ( t(p), Ft*(p)( ))Ft*(p)(ax,)

>0 (rm(p»g,ia'g;fm 2 )ro()

i=1 a=

- r(F(p))Z T ()

(20)

Using (19) and (20), we can express the norml_-')qT(p) as follows;
F ()2 = G(??(p), _F)?(p))
— FE(F(P)) Z(a“ﬁ) )

Applying (11) for F; and using (18) and (21), we have the following equality;

(21)

Aot (r(Fe(p), 1)
(22)

FIME  m  §(H(p). Fu(p)
) t)(4(T - e B )
In this equation (22) there are no local coordinatesso we have proven this equation
(22) for all p in M globally. The equation (22) is equivalent to

prE (AP, D55

(23) = —Awpr(r(Fe(p)), 1)

R () g(H(p), ﬁ(p)))_

+ o1 (r (Fe(p)), t)(4(|- ~1)y2 2(T —t)
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Substituting (23) in (17), we have following equalities;

d
gt | orC R, v dug

:-/M Appr(r (Fe(p)), t) dug,

ENOECE
+ [ e EE 0 (g~ 3

g(H(p), F(p)
) -2 SED T (o)) g

GG o(-f%))'é
P Q(Hté?T),__F’g(p)) B |Ht(p)|§) d
—— [ )05 L(p) vy
This completes the proof of Theorem 4.1. 0

5. Singularities and the parabolic rescaling

In this section we see that the property that a mean curvéituredevelops type |
singularities is preserved under parabolic rescaling.

Proposition 5.1. Let M be an m-dimensional manifold an¢C(N), g) the
Riemannian cone manifold over an n-dimensional Riemanniamifold (N, g). If a
map F: M x [0, T) - C(N) is a mean curvature flawthen the parabolic rescaling
of F of scalex is also the mean curvature flow.

Proof. Fix (Do, So) in M x [-A%T,0). Lett =T + s/ A2 andtg = T + S/A%. Let

(xi)im:l be local coordinates ol aroundpg. Let (y* )”Jrl be local coordinates dE(N)
around F*(po, So) associated with local coordinatés. Put

()i = (Fg, g)(ax" aij)

and

(9)ij = ( tog)(ax" Bij)'
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Then one can easily show that
(25) @) = 2*(9)i -

Thus the Christoffel symboIsI*Qo)ijk with respect togg\0 and (I‘to)‘jk with respect tog;,
are related by

T = i)k

One can also compute the Christoffel symbols of the Rienzamoone manifoldC(N)
as follows. If 1<, B,y <n, thenT, (F(po)) = T§, (Fy(Po)). If 1 < B, y <n and
a =n+ 1 thenTFIH(FL(po)) = AR (Fy(po)), and if 1<a,y <nandf=n+1

then 2, (F&(po)) = (/M7 (Fy(po)). By using these and the formula (5), one

can show that the mean curvature vectbks of F, and Hs*O of F% are related by

(26) (H (P = 55 (o)

forl<ao <nand

1
(27) (Hg (po)™* = X(Hto(po))”“-

Now suppose thaF is a mean curvature flow, sb satisfies

d
F*(pOa tO)(ﬁ) = Hto(pO)-
Then

d

(0 9)( 55 ) = 7 HR 510+ SR g

ayn+1

(Po)

0
ay*

ol
3yn+l

= Y (H&(Po)* = (Po) + (Hg(po)™** (o)
a=1

= H (po).

This means thaF* is the mean curvature flow. This completes the proof of Propos
ition 5.1. O

Proposition 5.2. Let M be an m-dimensional manifold and(I¥) the Riemann-
ian cone over an n-dimensional Riemannian manifddg). Let F M x[0,T) — C(N)
be a mean curvature flow. Then parabolic rescaling presethiesvalue off,vIt o7- This
means that for all t in(0, T) the following equation holds.

/,OT=/ Lo
M 2
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where s= A%(t — T). Here we have used abbreviation féy, or and [y, po by
[ o= [ orteRp). 0 dvs,
M M
[ o= [ el (FP). 9 dug.

Proof. From the equation (25) in the proof of the Proposittoh, we get

vaet(@)i;) = A™/det(@)i;)
and
dvgé = )\.m dUgt-

It follows that

~ 1 2(FAp)
/ T /M (4r(—s))2 exp(‘ 40—s) ) dvg,
1

~ 32 2(F () ).

- /M (@r (2T — )2 exp(_ 52T —1) )A dug

~ 1 2R

- /M (@ (T — )2 exp(_ AT —1) ) dvg = /M o -

Proposition 5.3. Let M be an m-dimensional manifold andI€) the Riemann-
ian cone over an n-dimensional Riemannian manifg\j g). Let Fx [0, T) — C(N)
be a mean curvature flow. Then the parabolic rescaling pre=serthe condition that
the mean curvature flow develops a Tyipsingularity.

Proof. We have only to show that following two statements egaivalent.
e There exists some > 0 such that sug|ll{|> < c¢/(T —t) for all t € [0, T).
e There exists some > 0 such that sug|ll%|? < ¢'/—s for all s e [-AT, 0).
Here Ik and It are the second fundamental form with respect to the immersio
Fi: M — C(N) and F2: M — C(N) respectively.

We can find a local expression of 2(]?1 and (Ik)j; immediately by removing the
inverse of Riemannian metric tensorg ! (= (1/2%)(qt)"') from equalities (26) and
(27). Hence, we find that @) = ()7 if 1 <« <n, and (IB)} = A()f™ if
a =n+ 1, wheres = A%(t — T). It then follows that

1
(28) 1E2(P) = 5 1*(p).
Hence we get

—S
(29) (T =)= F><AZ|||Q|2=—s|||§|2.
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This mean that parabolic rescaling preserves the conditaweloping type | singularity.
This completes the proof of Proposition 5.3. 0

6. Self-similar solutions

This section is devoted to the proof of Theorem 1.2.

Proof of Theorem 1.2. Take any increasing sequdigi?, of the scales of the
parabolic rescaling such that — co asi — oo. Let F%: M x [—A?T, 0) — C(N)
be the parabolic rescaling of the mean curvature flewM x [0, T) — C(N). By
Proposition 5.1,F* remains to be a mean curvature flow.

Since F develops type singularity and in particular type | singularity, there si
a positive real numbe€ > 0 such that

C

sugll? < ——
Mﬂt|__T_t

for all t in [0, T), and by Proposition 5.3 the rescal&éd also develops type | singu-
larity satisfying

sugh|? < =
M

for all s in [-A?, 0) with the same constai@ > O by (29). Whens is restricted to the
interval [a, b], we have the following bound

C
(30) WQFS—B.

Hence we have a uniform bound of the second fundamental fanu,sinceF* satis-
fies the mean curvature flow, all the higher derivatives ofdaeond fundamental form
are uniformly bounded ona[ b] by [8].

On the other hand, by Theorem 4.1 the following monotoniditymula for
F* holds.

—
Ai L 2

d [ _ / F
ds M2 Po = M po —2s

Integrating the both side of the above equation on any clastedval [a, b] C (—oo, 0),
we have

(31) /M /Mapo— /ds/ ool

+ H”

g
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where we take sufficiently large so thatd, b] is contained in H\?T, 0). By Propos-

ition 5.2 we have
/_A_ Po =/ ot
Mgl My,

/.vpo=/ PT
M M

A
b v

whereu; = T +a/A? and

where vi = T + b/A2. By the monotonicity formula, the derivative of the functio
Ju, o7 is non-positive and/y, pr >0, so for any increasing sequenfigl’2; such that

ti — T asi — oo the sequencngq pt converges to a unique value. Now; }2, and
{vi}{2, are increasing sequences such that; — T asi — oo. So fM;.. 0o and fM;.. 00
converge to the same value ias> co. Therefore the left hand side of the equation (31)
converges to 0 as — oo, and thus

b
(32) ,Iim/ ds/, 00
1=00 Jgq ;‘I

From this we can take a sequengec [a, b] such that we have

(33) Agm

asi — oo.
Suppose thap; attains miry r(Fg‘i), and put

=21 2

+ H%| =0.

g

Ai L
—-2s

—
F)L.L

+HY -0

yo=r3(Fh(p, s)) = A2 3(F(pi, t).
Then p; also attains mip r(F;) and

—sr?(F(pi, ti)).

(34) 7= AR ) = ——

It then follows from the condition (c) of Definition 1.1 that

(3%) —bK; =y = —akKa.

Thus, the image of* (-, s) uniformly stays away from the apex, and tHati(p;, )
stays in a compact region i@(N) for the minimum point i, s) for r(F*).

Put y := —bK;. Let W be the manifold obtained fror®(N) by cutting out the
portion{r < ,/y/2}, and letV be the manifold obtained by gluirngy and—W smoothly
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along their boundaries. Thig containsC(N) — {r < ,/¥} and the image ofF* | )
is included in that part.

Since the higher derivatives of the second fundamental fanenbounded as shown
above, we can apply Theorem 1.2 in [3] (see also [1]) by takMg, pk) to be M, px),
(N, hg, x¢) to be , h, F*(px, s)) and F¢ to be F*, where the metrich is chosen
so thath coincides with the cone metric 06(N) — {r < ,/¥}. Then we obtain a
limit Fyo: My — Ny Which satisfies the equation of self-similar solution to thean
curvature flow by (33). But since = F*(p;, 5) stays in a compact region we have
No = V. The limiting self similar solution then defines a flow in thene C(N) sat-
isfying the mean curvature equation. This completes thefppd Theorem 1.2. [

ExampPLE 6.1 (Examples of typeclsingularities). Here we show a simple
example of the mean curvature flow developing the typesingularity. For—oo <
a < b < 400, assume that there exists a mean curvature flowM x [a, b) — N
on (N, g), namely @ satisfies §/0s)®( -, s) = HN, where HY is the mean curva-
ture vector with respect to the embeddidg-,s): M — N. ThenF: M x [0, T(1—
g 2mb-a))y » C(N) defined by

F(p, 1) == (®(p, a(t)), A1) € N xRT,
at) :=a-— % Iog(l— %)
B(t) = /2m(T —1t),

becomes a solution for mean curvature flow equation withaindata Fo = ®¢: M —
N x {+/2mT} C C(N), wherem = dimM. The second fundamental formtcﬁ\') of the
embeddingF(-,t): M — C(N) is given by

9
NEN =13 —r (F(p, )glw, ® ar’

where I@‘(t) is the second fundamental form of the embeddvig= ®(M, «(t)) C N.
Then we obtain

C(N)2
g2 <

m 1
1+ — nN 2,
st (1 e g0

since |||(’;l(t)|g =r(F(p, t))*1|lly(t)|g. HenceF develops a type | singularity dat=T,
if b= +o0 and

N
sup [llg(p)lg < oe.
peM,s=a

The condition (b) and (c) of Definition 1.1 are obviously sf#id sincer (F(p,t)) =

J2m(T —1).
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7. Special Lagrangian submanifolds in toric Calabi-Yau coes

In this section we construct special Lagrangian submadsfah toric Calabi—Yau
cones. Letv be a Ricci-flat Kahler manifold with a Kahler form and of dingV = n.
Then the canonical line bundlKy is flat. V is said to be a Calabi-Yau manifold if
in addition Ky is trivial and V admits a parallel holomorphin-form Q. This implies
that, with a suitable normalization &2, we have

/ n
o (—1)"<“1>/2(T_1) QAQ.

n

Let L be a real orientedh-dimensional submanifold of. ThenL is called a special
Lagrangian submanifold o¥ if w|. =0 and ImQ|_ = 0.

Toric Calabi-Yau cones are exactly the Kahler cones oveak$aBinstein mani-
folds. They are described as toric Kéhler cones obtained faric diagram of height 1.
This result was obtained in [4] and [2], which we outline lvelo

DEFINITION 7.1 (Good rational polyhedral cones, cf. [12]). Lgt be the dual
of the Lie algebrag of an n-dimensional torusG. Let Z, be the integral lattice of,
that is the kernel of the exponential map exp— G. A subsetC C g* is a rational
polyhedral cone if there exists a finite set of vectayss Zy, 1 <i < d, such that

C={yeg“|(y,r)=0fori=1,...,d}.
We assume that the sgt is minimal in that for anyj

C#{yeg | (y,x)=0forallij}

and that eachi; is primitive, i.e. ; is not of the formA; = au for an integera > 2
and u € Zy. (Thusd is the number of facets iC has non-empty interior.) Under
these two assumptions a rational polyhedral c@n&ith nonempty interior is said to
be good if the following condition holds. If

{yeC|l(y,4;)=0forallj=1,...,k}

is a non-empty face of for somefis,...,ik} C {1,...,d}, thena;,,..., A, are linearly
independent oveZ and generates the subgro{@‘;:l ajhi, |aj e R} N Zg.

DEFINITION 7.2 (Toric diagrams of heigHt, cf. [2]). An n-dimensional toric
diagram with height is a collection of); € Z" = Z4 which define a good rational
polyhedral cone angt € Q" = (Q)* such that
(1) | is a positive integer such thay is a primitive element of the integer lattice
Z" =17
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@) (v, x)=-1
We say that a good rational polyhedral coBeis associated with a toric diagram of
height! if there exists a rational vectgr satisfying (1) and (2) above.

The reason why we use the terminology “heidghtis because using a transform-
ation by an element o8L(n, Z) we may assume that

and the first component of; is equal tol for eachi.

Theorem 7.3([4], [2]). Toric Sasaki—Einstein manifolds are exactly those whose
Kéhler cones are obtained by the Delzant construction framctdiagram of fixed
height and applying the volume minimization of Martelliafqs—Yau[13]. Equivalently
Toric Ricci-flat Kahler manifolds are exactly those obtalrigy the Delzant construction
from toric diagram of fixed height and applying the volume imiration of Martelli—
Sparks—Yay13].

For a Ricci-flat toric Kéhler con&/ obtained from a toric diagram of height there
exists a parallel holomorphic section Kf\?'. In particular if| = 1 the Ké&hler cone
manifold V is a Calabi-Yau manifold. From now on we assuine: 1. Then it is
shown in [2] that the parallel holomorphizform is given in the form

Q=g XanZgA AL AdD

whereZz?, ..., z" are holomorphic logarithmic coordinates. Sin¢eis obtained from a
toric diagram of height 1 we may assume= (-1, 0,..., 0). In this case we have

Q=& dZ A A d2.

We now apply a method used in [6] and [11]. Their method is sanmad in [11]
as follows.

Proposition 7.4 ([11]). Let(V, J,»,2) be a Calabi-Yau manifold of complex di-
mension nand H be a compact connected Lie group of real dimensiehlnacting
effectively on V preserving the Calabi—Yau structure. ®8ppthere exist a moment
map u: V — h* and a H-invariant(n — 1)-form « such that for any X, ..., Xn_1 € b
we have

ImQ(-, Xq, ..., Xn1) = d(@(Xq, . .., Xn_1))
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where X e b are identified with vector fields on V. Then for ang &4+, ¢ € R and
any basis{Yy, ..., Ynp_1} C b, the set

Leo = Hfl(c) N(a(Ye, ..., Yn—l))il(c/)
is a H-invariant special Lagrangian submanifold of V.

We refer the reader to [11] for the proof of Proposition 7.4e Wow apply Propos-
ition 7.4 to toric Calabi—-Yau manifold obtained from toriagrams of height 1 with

Q= dZAA---AdZ, a=ImE d2A---AdD),

and withY; =2 Im(@/9z!) and H the subtorusT"™ ! generated byi, ..., Yo_1. Then
one easily finds that

Im Q( Y1, ..., Yn—l) = d(()l(Yl, . Yn_]_)),
and

1 -
a(Y1, ..., Yoo1) = i—n(eZ + (—1)"e™).
Thus the assumptions of Proposition 7.4 is satisfied, andave proved the following.

Theorem 7.5. Let V be a toric Calabi—-Yau manifold obtained from a toric -dia
gram of heightl. Let

Q=e"dZA---AdZ

be the parallel holomorphic n-form described as above. Tihemne is a T'-invariant
special Lagrangian submanifold described as

1, . -
/,L_l(C) n {I—n(ez + (—1)“ezl) = C/}
where T! is a subtorus generated dyn(d/9z?),...,Im(3/0z") and u: V — b* is a
moment map.

EXAMPLE 7.6. TakeV to be the flatC", and letw?, ..., w" be the standard
holomorphic coordinates with

Q=dwrA---Adu".

The logarithmic holomorphic coordinates, ..., v" are given byw' = e'. Thus,
we have

Q = V" T gyl AL A do".
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Taking y = {(—1, 0,..., 0) amounts to changing the coordinat@s= v! +--- + v",
722 =12, ...,Z" =v". Then with the new coordinates we have

Q=e"dZ2 A---Ad2.

In this situation the points in~%(c) are described as

w22 — [wl? =cy ..., [W"? = Wl = c,.
If nis even thend + (—1)"e4)/i" = ¢’ if and only if R(w!---w") = ¢, and Ifn is
odd then ¢ + (—1)"e%)/i" = ¢ if and only if Im(w?---w") = ¢. This is exactly the

same as Theorem 3.1 in [7].

8. Infinitesimal deformations of special Lagrangian cones

In this section we consider the infinitesimal deformatiorisspecial Lagrangian
cones embedded in the cone of Sasaki—Einstein manifolds.

DEFINITION 8.1. A Riemannian manifoldN, g) is called aSasakian manifold
if its Riemannian cone(N), g) is a Kahler manifold with respect to some integrable
complex structure] over C(N). A Reeb vector field on the Sasakian manifold\( g)
is a Killing vector field onN given by & := J(r(a/ar)).

For a Sasakian manifold\(, g), a contact formy € Q1(N) on N is given byn :=
g(€, -). Then the K&hler formv € Q(C(N)) on C(N) is described as = d(r?y).

DEFINITION 8.2. For a smooth manifoldN, a cone submanifold C of @) is
a submanifold ofC(N) which can be written a€ = C(X) for a submanifoldZ C N.
For a Sasakian manifold\(, g,£), a cone submanifol€ c C(N) is a Lagrangian cone
if it is a Lagrangian submanifold ofQ(N), w).

The following proposition is well-known but here we give aopf for readers’
convenience.

Proposition 8.3. A submanifoldz C N is Legendrian if and only if &) = X x
R* c C(N) is Lagrangian with respect to the Kahler form on C(N).

Proof. LetX C N be a Legendrian submanifold. For apye X, open neighbor-
hoodU Cc X andu, v € X(U), we have

CL)(U, U) = dn(uv U) = —7]([U, U]) = Ov

ofu 57 ) = o8 = 1w =0,
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sincen|s = 0 and [, v] € X(U). HenceC(X) C C(N) is Lagrangian. Conversely, let
C(X) c C(N) be Lagrangian and take € T,Xx arbitrarily. Then

i) = (U, &) = w(u. %) _o,

which implies thatX C N is a Legendrian submanifold. 0

Proposition 8.4. Let (V, J, ) be a Ricci-flat Kéhler manifold ofimc = n with
H3s(V,R) = 0, and assume that the canonical line bundlg i holomorphically triv-
ial. Then there exists a holomorphic n forfhe QMO(V) satisfying

o ez Y o
(36) o = (-1 1)/2(7) QAQ.

Proof. From the assumption there is a nowhere vanishingnimiphic n form

Qo € QO(V) on V. Since Qg is holomorphic,dQy = 0. The Kahler formw on V
induces a hermitian metric oKy by

A
h := h(Q0, Qo) := n!(—1)n<n1)/z(V2‘_1) o A Ky

wn

Now we putQ := h-zev-1rQ, for p € C*®(V, R), which satisfies the equation (36).
Then it suffices to show that there exigtE C*°(V,R) such thatd©Q = 0. Fromd2 =
0, we have

dQ = 3(h™Y2eV~19) A Qo

1 _ —

— hY2ev-Tp (_Eh_lah + «/—13,0) Ao
1- _

— hY2eV~10 (_53 logh + \/—18,0) A Q0.

Thus the problem is reduced to show the existence of the iumgt which satisfies
3(—(1/2) logh + +/—1p) = 0.

Recall thatw is Ricci-flat Kahler form. Then the curvature form of the Héran
connection onKy induced fromh is equal to zero, we havdd®logh = 0. Now we
have assumetii;(V,R) = 0, there exist$ € C®(V,R) such thatd®logh = (v/—18 —
V—13)logh = dp = (9 +9)p. By comparing (0, 1)-part, we havilogh—+/—1p) = 0,
consequently we obtain the assertion by putting: 2p. ]

From now on suppose\ g,&) is a Sasaki—Einstein manifold of dimension-21,
hence the Kahler structure on C(N) is Ricci-flat. Moreover we assume the canonical
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bundle K¢y is trivial. Since (N, g) is an Einstein manifold with positive Ricci curva-
ture, thenH(C(N),R) = H(N, R) = 0. Therefore we have a holomorphieform Q
on C(N) satisfying (36).

Now we denote byH and H the mean curvature vector @&(x) c C(N) and
¥ C N, respectively. Then the direct calculation givels=r—2H, thereforeC(x) is
minimal if and only if X is minimal.

It is well known that the mean curvature of a Lagrangian sutifoll embedded
in a Calabi-Yau manifold is equal td9 under the identification of vector fields and
1-forms by the symplectic form, whe is the Lagrangian angle. Then the Lagrang-
ian submanifold embedded in the Calabi—-Yau manifold is maliif and only if the
Lagrangian angle is constant. In particular it is speciagrhagian if the Lagrangian
angle is equal to zero. Henc® C N is minimal Legendrian if and only iC(X) C
C(N) is Lagrangian with constant Lagrangian angle.

In [14], the infinitesimal deformation spaces of minimal kedrian submanifolds
embedded im-Sasaki—Einstein manifolds are studied. Here we obsemédntinitesi-
mal deformation spaces of special Lagrangian con&3(M), using the results obtained
in [5].

Let C(X) be a special Lagrangian submanifold @{N), and we have orthogonal
decompositionsT C(N)|cz) = TC(Z) @ NC(X) and TN|z = TEZ @ NX, whereNE,
NC(X) are normal bundles. Then for any, ) € C(X) we have the natural identifi-
cation Ny r)C(Z) = Ny Z.

The infinitesimal deformations of cone submanifoldsG{iN) is generated by the
smooth 1-parameter families of cone submanifol@§%;) = 7y 1(%y); —e < t < ¢},
where {Z;; —¢ <t < ¢} is the smooth families of submanifolds &f which satisfies
Yo=Y, andzy: N xRT — N is the projection onto the first component. Since the
infinitesimal deformations ok C N are parameterized by smooth sections\at, the
infinitesimal deformations of cone submanifolds are patanmed by

Ac(z) := {a = nn*ap € T(NC(E)); ap € T(NX)}.

Then o) € NxrnC(X) = NX is independent of for eacha € Ac(x).
SinceC(X) is Lagrangian,N C(X) is identified with the cotangent bundlg*C(X)
by the bundle isomorphisiy: NC(Z) — T*C(X) defined byw(v) := t,0 = o(v, -).
By the results in [5], the infinitesimal deformations of si¢d.agrangian sub-
manifolds of C(X) are parameterized by harmonic 1-forms G(X). Thus the infini-
tesimal deformations of special Lagrangian cones<C¢E) are parameterized by

Heny 1= (0(a) € QHC(D)); a € Ac(x), dd(e) = d * d(a) = 0},

where® is the isomorphism induced hy, and* is the Hodge star with respect to the
induced metricg|c(z). To study the vector spackc(x), we need the next lemma.
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Lemma 8.5. Under the natural identification J\C(X) = Ty X & T*R*, we have
O(Aci)) = (Br) = ro(x) dr + 2y, € QYC(R)); ¢ € CX(D), y € QY(D)}.

Proof. Define a diffeomorphismm, = exp@r(d/ar)): C(N) — C(N) by
ma(p,r) = (p,ar) for a> 0. First of all we show thatn, is a biholomorphism. Since
(d/d@)(ma)«J = (Ma)«Lr/0r)d, it suffices to show’;,or)d = 0. Now we may write
r(a/ar) = —Jg, then for anyx € C(N) and open neighborhood € U C C(N) and
v e X(C(N)),

(L3 I)(v) = L3e(Iv) — I(Lysv)
= [J&, Jv] — I([J&, v])
= —Ny(§, v) = I%[&, v] + J[g, Ju]
= —Ny(§, v) + IH{(Le )W)},

where N; is the Nijenhuis tensor. Thus we hayg;:J = 0 sinceJ is integrable and
L:J =0, hencem, is a biholomorphism.
Next we show that

O(Aces)) = (B € QYC(T)); my*p = a?p for all a e RT).

Sincem, satisfiesm,*g = m,a*(dr?+4r2g) = d(ar)?+ (ar)?g = ag, we obtainmy*w =
a’w. By the definition ofAc(s), we may write

Acesy = o € QC(T)); (Ma)scr = « for all a € RY).
For anya € I'(NC(X)), we have

M3 (@(@)) = M5 (1e®) = tmy)-1aMae = 8%0((Ma), 'e)

= a2d(a) + a2o((My); o — a).

Therefore the equatiom(&(«)) = a2&(«) holds for alla € R if and only if « € Ac(x).
Now we takep € Q}(C(X)) and decompose it a8 = o(X,r)+(x,r)dr such
thato(x,r) € T andz € C*(C(X)).

my*B = My*o + my*t -adr,
thenmy* B = a?g is equivalent to

o(x, ar) = a%o(x,r),

(X, ar) = ar(x,r).

Thus we may put =r?y andt =r¢ for somey € Q(X) and g € C®(%). O]
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Theorem 8.6. The vector spacéic) is isomorphic to
Ker(Ay — 2n) = {p € C™(X); Asp = 2ng¢},

where Ay = d**d and d* is a formal adjoint operator of d with respect to the met-
ric g|s=.

Proof. From Lemma 8.5, alp € &(Ac(x)) can be written apd = re dr + r2y.
Then we have

dg =rdr A (2y —dg) +r?dy,

from which it follows thatdg = 0 is equivalent to 2 = dg.
Next we calculated * 8. Denote by vo} the volume form ofg|s. Since the vol-
ume forms ofd|c(s) is given byr"1dr A volyz, we can deduce

xy = —r"3dr A x5y,

xdr = r"voly,
where xy is the Hodge star operator with respectdls:;. Consequently, we obtain
dx B =r"1dr A(dx*gy + nevoly).

Hencedg = d % g = 0 is equivalent to
1 1
y = > deg, ngvolg +§d xy dp =0,

and the latter equation is equivalentdé=dg = 2ng. O

In [14], the infinitesimal deformation spaces of minimal keedrian submanifolds
in Sasaki—Einstein manifolds are studied. Proposition i8.@lso obtained from the
case ofp-Ricci constantA is equal to 2 — 2 in [14]. Here we should pay attention
that the dimension of infinitesimal deformation spaces iobtain [14] is equal to &
dimKer(Ax — 2n), since the deformations & (X) generated by Reeb vector fiefdis
not special Lagrangian cone, but minimal Lagrangian coneseh_agrangian angle is
not equal to zero. Actually, if we put = &, then8 = w(«x) = —r dr and

d* g = —d(r"volg) = —nr"tdr Avols # 0,

accordingly thise does not generate deformations of special Lagrangian cones
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