
Futaki, A., Hattori, K. and Yamamoto, H.
Osaka J. Math.
51 (2014), 1053–1079

SELF-SIMILAR SOLUTIONS TO THE MEAN CURVATURE
FLOWS ON RIEMANNIAN CONE MANIFOLDS AND

SPECIAL LAGRANGIANS ON TORIC CALABI–YAU CONES

AKITO FUTAKI, K OTA HATTORI and HIKARU YAMAMOTO

(Received June 15, 2012, revised April 18, 2013)

Abstract
The self-similar solutions to the mean curvature flow have been defined and stud-

ied on the Euclidean space. In this paper we propose a generaltreatment of the self-
similar solutions to the mean curvature flow on Riemannian cone manifolds. As a
typical result we extend the well-known result of Huisken about the asymptotic be-
havior for the singularities of the mean curvature flows. We also extend results on
special Lagrangian submanifolds onCn to the toric Calabi–Yau cones over Sasaki–
Einstein manifolds.

1. Introduction

Let F W M � [0, T)! V be a smooth family of immersions of anm-dimensional
manifold M into a Riemannian manifold (V, Ng) of dimensionmC k. F is called a
mean curvature flow if it satisfies

(1)
�F

�t
(p, t) D Ht (p) for all (p, t) 2 M � [0, T)

where Ht is the mean curvature of the immersionFt WD F( � , t) W M ! V .
WhenV is the Euclidean spaceRmCk there is a well-studied important class of solu-

tions of (1), that is, self-similar solutions. They are immersionsFW M ! R

mCk satisfying

(2) H D �F?

where� is a constant andF? denotes the normal part of the position vectorF . The
solution of (2) is called shrinking, stationary (or minimal) or expanding depending on
whether� < 0, � D 0 or � > 0.

The purpose of this paper is to extend the definition of the self-similar solutions
from the case whenV is the Euclidean spaces to the case whenV is a Riemannian
cone manifold. Let (N, g) be ann-dimensional Riemannian manifold. We define the
Riemannian cone manifold (C(N), Ng) over (N,g) by C(N)D N�RC and NgD dr2

Cr 2g
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wherer is the standard coordinate ofRC. If F W M ! C(N) is an immersion we define

the position vector
�!

F of F at p 2 M by

(3)
�!

F (p) D r (F(p))
�

�r
2 TF(p)C(N).

Then the self-similar solution is defined as

(4) H D �
�!

F ?

where� is a constant and
�!

F ? denotes the normal part of the position vector
�!

F . In
this paper we propose a general treatment of the self-similar solutions to the mean
curvature flows on Riemannian cone manifolds. As a typical result we extend the well-
known result of Huisken about the asymptotic behavior for the singularities of the mean
curvature flows. In [9] Huisken introduced the rescaling technique and the monotonic-
ity formula for the mean curvature flow of hypersurfaces in Euclidean space. Also in
[9], using the monotonicity formula, Huisken proved that ifthe mean curvature flow
has the type I singularity then there exists a smoothly convergent subsequence of the
rescaling such that its limit satisfies the self-similar solution equation. In this paper we
extend those techniques and consequences to Riemannian cone manifolds and an ini-
tial date manifold. We also give a construction of self-similar solutions on Riemannian
cone manifolds.

Let us recall the definition of type I singularity and its parabolic rescaling. Let
M be a manifold and (V, Ng) a Riemannian manifold. SupposeF W M � [0, T)! V is
a mean curvature flow with maximal timeT < 1 of existence of the solution. One
says thatF develops a singularity of Type I ast ! T if there exists a constantC > 0
such that

sup
M
jII t j

2
�

C

T � t
for all t 2 [0, T),

where IIt is the second fundamental form with respect to the immersionFt W M ! V .
Otherwise one says thatF develops a singularity of Type II.

Let M be a manifold and (C(N), Ng) the Riemannian cone manifold over a Riemann-
ian manifold (N,g). Take a constant� > 0. For a mapFW M� [0,T)! C(N), we define
the parabolic rescaling ofF of scale� as follows;

F�

W M � [��2T, 0)! C(N)I

F�(p, s) D

�

�N

�

F

�

p, T C
s

�

2

��

, �r

�

F

�

p, T C
s

�

2

���

where�N W C(N) D N � RC

! N is the standard projection.
When the singularity does not occur at the apex of the cone onecan show that the

parabolic rescaling of type I singularity gives rise to a self-similar solution as shown
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by Huisken. However when the singularity occurs at the apex we need some more
conditions. Thus we are lead to the following definition of type Ic singularity.

DEFINITION 1.1. Let M be a manifold and (N, g) a Riemannian manifold. Sup-
pose F W M � [0, T) ! C(N) is a mean curvature flow withT < 1. We say thatF
develops a singularity of type Ic if the following three conditions are satisfied:
(a) F develops a singularity of type I ast ! T ,
(b) r (Ft (p))! 0 for somep 2 M as t ! T and
(c) K1(T � t) � minM r 2(Ft ) � K2(T � t) for all t 2 [0, T) where K1 and K2 are
positive constants.

Examples of type Ic singularities are given in Example 6.1.

Theorem 1.2. Let M be an m-dimensional compact manifold and C(N) the
Riemannian cone manifold over an n-dimensional Riemannianmanifold (N, g). Let
FW M� [0,T)! C(N) be a mean curvature flow, and assume that F develops a typeIc

singularity at T . Then, for any increasing sequence{�i }
1

iD1 of the scales of parabolic
rescaling such that�i !1 as i!1, there exist a subsequence{�ik}

1

kD1 and a se-

quence tik ! T such that the sequence of rescaled mean curvature flow{F
�ik
sik

}1kD1 with

sik D �

2
ik

(tik � T) converges to a self-similar solution F1 W M
1

! C(N) to the mean
curvature flow.

The proof of this theorem is not substantially different from Huisken’s original
proof. But the merit of the idea to study on cones will be that we obtain examples
of more non-trivial topology. In factN � {r D 1} in C(N) is already a self-shrinker.
Thus, any compact manifold can be a self-shrinker in some Riemannian cone manifold.
It is also possible to study special Lagrangian submanifolds and Lagrangian self-similar
solutions in Calabi–Yau cones over Sasaki–Einstein manifolds. A Sasaki manifoldN is
by definition an odd dimensional Riemannian manifold whose cone C(N) is a Kähler
manifold. If the Kähler cone manifold is toric then the Sasaki manifold is said to be
toric. It is proven in [4] and [2] that a Sasaki–Einstein metric exists on a toric Sasaki
manifold obtained from a toric diagram. A typical example iswhen N is the standard
sphere of real dimension 2mC 1. Then its cone isCmC1

� {o}. It is natural to expect
that we can extend results on special Lagrangian submanifolds or self-similar solutions
on CmC1 to these toric Calabi–Yau cones of height 1. In Theorem 7.5 weconstruct ex-
amples of complete special Lagrangian manifolds on toric Calabi–Yau cones using the
ideas of [6] and [11]. This construction includes the examples given in Theorem 3.1
in III.3 of Harvey–Lawson [7]. Further construction of examples of special Lagrangians
and Lagrangian self-similar solutions are given in the third author’s subsequent paper
[15], in which it is shown that, for any positive integerg, there are toric Calabi–Yau 3-
dimensional cones including Lagrangian self-shrinkers diffeomorphic to6g � S1 where
6g is a compact orientable surface of genusg.
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In Section 8 we also study the infinitesimal deformations of special Lagrangian
cone C(6) � C(N) over a Legendrian submanifold6 in a Sasaki–Einstein manifold
N. We show that the parameter spaceHC(6) of those infinitesimal deformations is iso-
morphic to

Ker(1
6

� 2n) D {' 2 C1(6)I 1
6

' D 2n'},

see Theorem 8.6. This is also proved by Lemma 3.1 of [14], although the proof in this
paper is different from [14].

This paper is organized as follows. In Section 2 we show fundamental formulas on
mean curvature flows in Riemannian cone manifolds. In Section 3 we show the finite
time blowup of the mean curvature from a compact manifold (Theorem 3.1). Section 4
is devoted to the proof of the monotonicity formula (Theorem4.1). In Section 5 we see
that the type I singularity is preserved under parabolic rescaling. In Section 6 we see
that we obtain a self-similar solution by parabolic rescaling at a type Ic singularity. In
Section 7 we construct special Lagrangians in toric Calabi–Yau cones. In Section 8 we
study the infinitesimal deformations of special Lagrangiancones in Calabi–Yau cones.

2. Self-similar solutions to the mean curvature flows on Riemannian cone
manifolds

Let F W M ! V be an immersion of anm-dimensional manifoldM into an mC k-
dimensional Riemannian manifold (V, Ng). Thus the differentialF

�x W Tx M ! TF(x)V
is injective for everyx 2 M, and we have a natural orthogonal decomposition of the
vector bundle

F�(T V) � T M � T?M

where T?M ! M is the normal bundle. Denote by? (resp. >) the projection
?W F�(T V)! T?M (resp.>W F�(T V)! T M). The second fundamental form II of
the immersionF W M ! V is a section of the vector bundleT?M 
 (
2T�M) defined
by II(X, Y) D ( NrF

�

(X) F�(Y))? for X, Y 2 0(T M). Here Nr is the Levi-Civita connec-
tion of (V, Ng). The mean curvature vector fieldH of F W M ! V is a section ofT?M
defined byH D tr II, where the trace is taken with respect to the Riemannianmetric
g WD F�( Ng) on M.

For the actual computations one often needs local expressions of the mean curva-
ture vector. Letx1, : : : , xm and y1, : : : , yn be local coordinate charts aroundp 2 U � M
and F(p) 2 U 0

� V such thatF jU W U ! U 0 is an embedding. WriteF�(x1, : : : , xm) D
y�(F(x1, : : : , xm)). Then we have the induced metric

gi j D
�F�

�xi

�F�

�x j
Ng
��

,

where NgD Ng
��

dy�
dy� is the Riemannian metric onU 0

� V . Here we use the indices
i , j , k, : : : to denote the coordinates onM and �, �, 
 , : : : to denote the coordinates
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on V . The coefficientsH� of the mean curvature vector field

H D H�

�

�y�

are given by the Gauß’ formula

H�

D gi j

�

�

2F�

�xi
�x j
� 0

k
i j

�F�

�xk
C

N

0

�

�


�F�

�xi

�F


�x j

�

.(5)

Next we consider a smooth family of immersionsF W M � (a, b)! V . Namely, for
every time t in (a, b) � R, Ft W M ! V given by p 7! F(p, t) is an immersion. We
denote bygt the Riemannian metricF�

t ( Ng) over M. For a fixed timet0 in (a, b), the
variation vector field (�F=�t)(�,t0), considered as a section ofF�

t0 T V, is decomposed as

�F

�t
( � , t0) D v?t0 C v

>

t0

wherev?t0 (p) and v>t0 are respectively the sections ofT?M and T M.
We denote byr t , divt , II t andHt respectively the Levi-Civita connection on (M,gt ),

the divergence with respect togt , the second fundamental form and the mean curvature
vector field of the immersionFt W M ! V .

Then following proposition is well-known as the “first variation formula”.

Proposition 2.1. For every p in M, two tangent vectors X, Y at p and a com-
pactly supported integrable function f on M, we have

d

dt

�

�

�

�

tDt0

gt (X, Y) D gt0(r
t0
Xv

>

t0 , Y)C gt0(X, r t0
Y v

>

t0 ) � 2 Ng(II t0(X, Y), v?t0 (p)),

d

dt

�

�

�

�

tDt0

Z

M
f dvgt D

Z

M
f (divt0(v

>

t0 ) � Ng(Ht0, v
?

t0 )) dvgt0
.

Let F W M � [0, T)! V be evolving by mean curvature flow with initial condition
F0 W M ! V :

(6)

�F

�t
(p, t) D Ht (p) for all (p, t) 2 M � [0, T),

F(p, 0)D F0(p) for all p 2 M.

Applying the first variation formula in Proposition 2.1 to the mean curvature flows,
we obtain following well-known properties for mean curvature flows.
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Proposition 2.2. If F W M � [0, T)! V is a mean curvature flow then the follow-
ing equation holds.

d

dt

�

�

�

�

tDt0

p

det((gt )i j ) D �jHt0j
2
g

p

det((gt0)i j ).(7)

If M is compact we also have

d

dt

�

�

�

�

tDt0

Volgt (M) D �
Z

M
jHt0j

2
Ng dvgt0

.

Proof. Because we consider the mean curvature flow,vt0 D Ht0 and therefore

v

>

t0 D 0

and

v

?

t0 (p) D Ht0(p).

It then follows from Proposition 2.1 that

d

dt

�

�

�

�

tDt0

(gt )i j D �2 Ng((II t0)i j , Ht0).

Then the first formula (7) follows from the well-known formula for the derivative of
the determinant. To prove second formula, simply letf � 1 on M in the first varia-
tion formula.

Recall that, for ann-dimensional Riemannian manifold (N, g), we define the
Riemannian cone manifold (C(N), Ng) over (N,g) by C(N)D N�RC and NgD dr2

Cr 2g
wherer is the standard coordinate ofRC. Note thatC(N) does not contain the apex.

The most typical example of a cone is the case whenN is the standard sphere
Sn in R

nC1. In this case the cone isRnC1
� {o}. For a mapF W M ! R

nC1, one
can consider the position vector ofF(p) for p 2 M, and using it, one can define self-
similar solutions

H D �F?

where� is a constant.
We can extend this idea to maps into Riemannian cone manifolds. Namely, for a

smooth mapF W M ! C(N) and p in M, we define the position vector
�!

F of F at
p 2 M by

�!

F (p) D r (F(p))
�

�r
2 TF(p)C(N).
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With respect to the bundle decomposition of

F�TF(p)C(N) � TpM � T?

p M,

we decompose
�!

F (p) as
�!

F (p) D
�!

F >(p)C
�!

F ?(p).

Then we can define self-similar solutions by

H D �
�!

F ?.

For a Riemannian cone manifold (C(N), Ng) over ann-dimensional Riemannian mani-
fold (N, g) and a pointq in C(N), local coordinates (y�)nC1

�D1 aroundq are said to be
associated with normal local coordinatesof N when the part of coordinate (y�)n

�D1 be-
comes normal local coordinates of (N, g) around�N(q) and ynC1 is the standard co-
ordinate ofRC, that is, ynC1

D r . Here, �N is the projection of the cone manifold
C(N) � N � RC onto the first factorN.

Note that under local coordinates associated with normal local coordinates ofN,
we haver Æ F D r (F) D FnC1 for a given mapF W M ! C(N).

Let (xi )m
iD1 be normal local coordinates centered atp of the Riemannian manifold

(M, F�( Ng)), and (y�)nC1
�D1 local coordinates of (C(N), Ng) associated with normal local

coordinates centered at�N(F(p)) of (N,g). Then calculating only (nC1)-th coefficient
HnC1(p) of mean curvature vector atp, namely, the coefficient of�=�ynC1(D �=�r ),
for the local expression of the mean curvature vector (5), weobtain the following local
expression forHnC1(p);

HnC1(p) D
m
X

iD1

�

2r (F)

�xi 2 (p) � r (F(p))
m
X

iD1

n
X

�D1

�

�F�

�xi
(p)

�2

.(8)

This easily follows from

N

0

nC1
��

D �r Ng
��

for 1� �, � � n.

3. Finite time singularity for mean curvature flows

If the ambient space is the Euclidean spaceRmCk and an initial date manifoldM
is compact, then the mean curvature flow does not have a long time solution. It is a
well-known result of Huisken:

Theorem 3.1 (Huisken [9]). Let F0 W M ! R

mCk be an immersion of a compact
m-dimensional manifold M. Then the maximal time T of existence of a solution FW M �
[0, T)! R

mCk of the mean curvature flow with initial immersion F0 is finite.
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The proof follows by applying the parabolic maximum principle to the function
f D jF j2C 2mt which satisfies the evolution equation (d=dt) f D 1 f . One can show
T � (1=(2m)) maxjF0j

2, from which Theorem 3.1 follows. Using the position vector
in a cone as defined in (3), we can extend this result when the ambient space is a
Riemannian cone manifold as follows.

Theorem 3.2. Let (C(N), Ng) be the Riemannian cone manifold over a Riemannian
manifold (N, g) of dimension n, M a compact manifold of dimension m and FW M �
[0, T)! C(N) a mean curvature flow with initial condition F0W M ! C(N). Then the
maximal time T of existence of the mean curvature flow is finite.

Before the proof of this theorem, we want to prepare some lemmas.

Lemma 3.3. Let (C(N), Ng) be a Riemannian cone manifold over a Riemannian
manifold (N, g) of dimension n and FW M ! C(N) an immersion of a manifold M of
dimension m. Then the following equation holds.

1(r 2(F)) D 2( Ng(H,
�!

F )Cm),

where1 is the Laplacian on(M, F�( Ng)).

Proof. Fix a pointp in M. We take normal local coordinates (xi )m
iD1 of (M, F�( Ng))

centered atp and local coordinates (y�)nC1
�D1 of (C(N), Ng) associated with normal local

coordinates of (N, g) centered at�N(F(p)). Note that under these coordinates,ynC1
D r

and FnC1
D r Æ F D r (F). First of all, by the local expression ofHnC1(p) in (8), we

have the following equalities;

(9)

Ng(H (p),
�!

F (p)) D HnC1(p)r (F(p))

D r (F(p))
m
X

iD1

�

2r (F)

�xi 2 (p) � r (F(p))2
m
X

iD1

n
X

�D1

�

�F�

�xi
(p)

�2

.

Since (F�

Ng)(�=�xi , �=�xi ) D 1 at p, we have

(10)

mD
m
X

iD1

(F�

Ng)

�

�

�xi
(p),

�

�xi
(p)

�

D r (F(p))2
m
X

iD1

n
X

�D1

�

�F�

�xi
(p)

�2

C

m
X

iD1

�

�r (F)

�xi
(p)

�2

.

Adding above two equations (9) and (10), we have

(11) Ng(H (p),
�!

F (p))CmD r (F(p))
m
X

iD1

�

2r (F)

�xi 2 (p)C
m
X

iD1

�

�r (F)

�xi
(p)

�2

.
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Since we took (xi )m
iD1 as normal local coordinates of (M, F�( Ng)) centered atp, the

Laplacian1 is
Pm

iD1(�=�xi )2, and thus we have atp

1r 2(F) D
m
X

iD1

�

2r 2(F)

�xi 2

D 2

 

r (F)
m
X

iD1

�

2r (F)

�xi 2 C

m
X

iD1

�

�r (F)

�xi

�2
!

.

(12)

Thus from (11) and (12) we have shown that1r 2(F) D 2( Ng(H,
�!

F )Cm).

Lemma 3.4. Let (C(N), Ng) be a Riemannian cone manifold over an n-dimensional
Riemannian manifold(N, g), M an m-dimensional manifold and FW M � [0, T)! C(N)
be a mean curvature flow with initial condition F0W M ! C(N). Then for any fixed time
t in [0, T) the following equality holds;

(13) 2Ng(Ht ,
�!

F t ) D
�

�t
r 2(Ft ).

Proof. Fix a point p in M. Take local coordinates (y�)nC1
�D1 of C(N) associated

with normal local coordinates ofN. Note that under these coordinates,ynC1
D r and

FnC1
t D r (Ft ). Since F satisfies the mean curvature flow condition (6), the following

equalities hold;

Ng(Ht (p),
�!

F t (p)) D Ng

�

�F

�t
(p, t),

�!

F t (p)

�

D r (Ft (p))
�

�t
r (Ft (p)) D

1

2

�

�t
r 2(Ft (p)),

from which (13) follows.

Now we are in a position to prove Theorem 3.2.

Proof of Theorem 3.2. Letf W M � [0, T)! R be a function defined by

f (p, t) D r 2(Ft (p))C 2mt.

For a fixed timet in [0, T), by Lemma 3.3 and Lemma 3.4,

� f

�t
D 2 Ng(Ht ,

�!

F t )C 2m

D 1tr
2(Ft ) D 1t f ( � , t)

where1t is the Laplacian with respect to the metricFt
�( Ng) on M. Since M is com-

pact, there is a maximum off ( � , 0) (D r 2(F0)) on M, which we denote byC0. By
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applying the maximum principle to the functionf , it follows that f (p,t)D r 2(Ft (p))C
2mt � C0 on M � [0, T). Therefore we obtain the following inequalities;

t �
C0 � r 2(Ft (p))

2m
�

C0

2m

for all t in [0, T). This means that the maximal timeT is finite.

4. Monotonicity formula

Next we turn to the monotonicity formula. For a fixed timeT in R, we define the
backward heat kernel�T W R � (�1, T)! R as follows;

�T (y, t) D
1

(4�(T � t))m=2
exp

�

�

y2

4(T � t)

�

.

To simplify the notations, we use following abbreviation;
Z

Mt

�T WD

Z

M
�T (r (Ft (p)), t) dvgt ,

Z

Mt

�T

�

�

�

�

�!

F ?

2(T � t)
C H

�

�

�

�

2

Ng

WD

Z

M
�T (r (Ft (p)), t)

�

�

�

�

�!

F ?

t (p)

2(T � t)
C Ht (p)

�

�

�

�

2

Ng

dvgt .

Then Huisken’s monotonicity formula for a cone is the following.

Theorem 4.1 (Monotonicity formula). Let M be a compact m-dimensional mani-
fold without boundary, (C(N), Ng) the Riemannian cone manifold over an n-dimensional
Riemannian manifold(N, g) and FW M � [0, T)! C(N) the mean curvature flow with
initial condition F0 W M ! C(N). Then the following equation holds;

d

dt

Z

Mt

�T D �

Z

Mt

�T

�

�

�

�

�!

F ?

2(T � t)
C H

�

�

�

�

2

Ng

.(14)

Proof. First we calculate the left term of (14) using (7).

(15)

d

dt

Z

M
�T (r (Ft (p)), t) dvgt

D

d

dt

Z

M

1

(4�(T � t))m=2
exp

�

�

r 2(Ft (p))

4(T � t)

�

p

det(gt,i j ) dx1
^ � � � ^ dxm

D

Z

M
�T (r (Ft (p)), t)

�

m

2(T � t)
�

r 2(Ft (p))

4(T � t)2

�

r (Ft (p))((�=�t)r (Ft (p)))

2(T � t0)
� jHt (p)j2

Ng

�

dvgt .
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It is clear that

(16)
j

�!

F t (p)j2
Ng D Ng

�

r (Ft (p))
�

�r
, r (Ft (p))

�

�r

�

D r 2(Ft (p)).

Substituting (13) and (16) in (15), we have following formula;

(17)

d

dt

Z

M
�T (r (Ft (p)), t) dvgt

D

Z

M
�T (r (Ft (p)), t)

�

m

2(T � t)
�

j

�!

F t (p)j2
Ng

4(T � t)2

�

Ng(Ht (p),
�!

F t (p))

2(T � t)
� jHt (p)j2

Ng

�

dvgt .

Let t and p be fixed. We take normal local coordinates (xi )m
iD1 centered atp with

respect to the Riemannian metricgt (D F�

t ( Ng)) and local coordinates (y�)nC1
�D1 around

Ft (p) associated with normal local coordinates of (N, g). Under these coordinates, the

Laplacian1t with respect togt is �2
=�x12

C � � � C �

2
=�xm2 at p. Under these coord-

inates we have following equations at the fixedt and p;

(18)

1t�T (r (Ft ), t) D
m
X

iD1

�

2

�xi 2

�

�

�

�

xDp

�T (r (Ft ), t)

D

m
X

iD1

�

�xi

�

�

�

�

xDp

�

�

�xi
�T (r (Ft ), t)

�

D

m
X

iD1

�

�xi

�

�

�

�

xDp

�

�T (r (Ft ), t)

�

�

r (Ft )((�=�xi )r (Ft ))

2(T � t)

��

D �T (r (Ft ), t)

�

r 2(Ft )((�=�xi )r (Ft ))2

4(T � t)2

�

((�=�xi )r (Ft ))2

2(T � t)
�

r (Ft )((�2
=�xi 2

)r (Ft ))

2(T � t)

�

.

Furthermore we want to express
�!

F >

t (p) under these coordinates. Now by our choice
of the local coordinates of (xi )m

iD1, it is clear that

(19) Ng

�

Ft�(p)

�

�

�xi

�

, Ft�(p)

�

�

�x j

��

D Æi j .
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Note thatynC1
D r and FnC1

t D r (Ft ). The following equalities hold;

(20)

�!

F >

t (p) D
m
X

iD1

Ng

�

�!

F >

t (p), Ft�(p)

�

�

�xi

��

Ft�(p)

�

�

�xi

�

D

m
X

iD1

Ng

�

�!

F t (p), Ft�(p)

�

�

�xi

��

Ft�(p)

�

�

�xi

�

D

m
X

iD1

Ng

 

r (Ft (p))
�

�r
,

nC1
X

�D1

�F�

t (p)

�xi

�

�y�

!

Ft�(p)

�

�

�xi

�

D r (Ft (p))
m
X

iD1

�r (Ft (p))

�xi
Ft�(p)

�

�

�xi

�

.

Using (19) and (20), we can express the norm of
�!

F >

t (p) as follows;

j

�!

F >

t (p)j2
Ng D Ng

�

�!

F >

t (p),
�!

F >

t (p)

�

D r 2(Ft (p))
m
X

iD1

�

�r (Ft )

�xi
(p)

�2

.
(21)

Applying (11) for Ft and using (18) and (21), we have the following equality;

(22)

1t�T (r (Ft (p)), t)

D �T (r (Ft (p)), t)

�

j

�!

F >

t (p)j2
Ng

4(T � t)2
�

m

2(T � t)
�

Ng(Ht (p),
�!

F t (p))

2(T � t)

�

.

In this equation (22) there are no local coordinatesxi , so we have proven this equation
(22) for all p in M globally. The equation (22) is equivalent to

(23)

�T (r (Ft (p)), t)
m

2(T � t)

D �1t�T (r (Ft (p)), t)

C �T (r (Ft (p)), t)

�

jFt
>

(p)j2
Ng

4(T � t)2
�

Ng(Ht (p), Ft (p))

2(T � t)

�

.
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Substituting (23) in (17), we have following equalities;

(24)

d

dt

Z

M
�T (r (Ft (p)), t) dvgt

D �

Z

M
1t�T (r (Ft (p)), t) dvgt

C

Z

M
�T (r (Ft (p), t))

�

j

�!

F >

t (p)j2
Ng

4(T � t)2
�

j

�!

F t (p)j2
Ng

4(T � t)2

� 2�
Ng(Ht (p),

�!

F t (p))

2(T � t)
� jHt0(p)j2

Ng

�

dvgt

D

Z

M
�T (r (Ft (p)), t)

�

�

j

�!

F ?

t (p)j2
Ng

4(T � t)2

� 2�
Ng(Ht (p),

�!

F ?

t (p))

2(T � t)
� jHt (p)j2

Ng

�

dvgt

D �

Z

M
�T (r (Ft (p)), t)

�

�

�

�

�!

F ?

t (p)

2(T � t)
C Ht (p)

�

�

�

�

2

Ng

dvgt .

This completes the proof of Theorem 4.1.

5. Singularities and the parabolic rescaling

In this section we see that the property that a mean curvatureflow develops type I
singularities is preserved under parabolic rescaling.

Proposition 5.1. Let M be an m-dimensional manifold and(C(N), Ng) the
Riemannian cone manifold over an n-dimensional Riemannianmanifold (N, g). If a
map FW M � [0, T) ! C(N) is a mean curvature flow, then the parabolic rescaling
of F of scale� is also the mean curvature flow.

Proof. Fix (p0, s0) in M � [��2T, 0). Let t D T C s=�2 and t0 D T C s0=�
2. Let

(xi )m
iD1 be local coordinates ofM aroundp0. Let (y�)nC1

�D1 be local coordinates ofC(N)
around F�(p0, s0) associated with local coordinatesN. Put

(g�s0
)i j D (F��

s0
Ng)

�

�

�xi
,
�

�x j

�

and

(gt0)i j D (F�

t0 Ng)

�

�

�xi
,
�

�x j

�

.
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Then one can easily show that

(25) (g�s0
)i j D �

2(gt0)i j .

Thus the Christoffel symbols (0�s0
)i

jk with respect tog�s0
and (0t0)

i
jk with respect togt0

are related by

(0�s0
)i

jk D (0t0)
i
jk .

One can also compute the Christoffel symbols of the Riemannian cone manifoldC(N)
as follows. If 1� �, �, 
 � n, then N0�

�


(F�

s0
(p0)) D N0�

�


(Ft0(p0)). If 1 � �, 
 � n and

� D nC 1 then N0nC1
�


(F�

s0
(p0)) D � N0nC1

�


(Ft0(p0)), and if 1� �, 
 � n and � D nC 1

then N0�nC1 
 (F�

s0
(p0)) D (1=�) N0�nC1 
 (Ft0(p0)). By using these and the formula (5), one

can show that the mean curvature vectorsHt0 of Ft0 and H�

s0
of F�

s0
are related by

(26) (H�

s0
(p0))� D

1

�

2
(Ht0(p0))�,

for 1� � � n and

(27) (H�

s0
(p0))nC1

D

1

�

(Ht0(p0))nC1.

Now suppose thatF is a mean curvature flow, soF satisfies

F
�

(p0, t0)

�

�

�t

�

D Ht0(p0).

Then

F�

�

(p0, s0)

�

�

�s

�

D

1

�

2

n
X

�D1

(Ht0(p0))�
�

�y�
(p0)C

1

�

(Ht0(p0))nC1 �

�ynC1
(p0)

D

n
X

�D1

(H�

s0
(p0))�

�

�y�
(p0)C (H�

s0
(p0))nC1 �

�ynC1
(p0)

D H�

s0
(p0).

This means thatF� is the mean curvature flow. This completes the proof of Propos-
ition 5.1.

Proposition 5.2. Let M be an m-dimensional manifold and C(N) the Riemann-
ian cone over an n-dimensional Riemannian manifold(N,g). Let FW M�[0,T)! C(N)
be a mean curvature flow. Then parabolic rescaling preservesthe value of

R

Mt
�T . This

means that for all t in(0, T) the following equation holds.

Z

Mt

�T D

Z

M�

s

�0
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where sD �2(t � T). Here we have used abbreviation for
R

Mt
�T and

R

M�

s
�0 by

Z

Mt

�T D

Z

M
�T (r (Ft (p)), t) dvgt ,

Z

M�

s

�0 D

Z

M
�0(r (F�

s (p)), s) dvg�t .

Proof. From the equation (25) in the proof of the Proposition5.1, we get

q

det((g�s )i j ) D �
m
p

det((gt )i j )

and

dvg�s D �
m dvgt .

It follows that
Z

M�

s

�0 D

Z

M

1

(4�(�s))m=2
exp

�

�

r 2(F�

s (p))

4(0� s)

�

dvg�s

D

Z

M

1

(4�(�2(T � t)))m=2
exp

�

�

�

2r 2(Ft (p))

4�2(T � t)

�

�

m dvgt

D

Z

M

1

(4�(T � t))m=2
exp

�

�

r 2(Ft (p))

4(T � t)

�

dvgt D

Z

Mt

�T .

Proposition 5.3. Let M be an m-dimensional manifold and C(N) the Riemann-
ian cone over an n-dimensional Riemannian manifold(N, g). Let F� [0, T)! C(N)
be a mean curvature flow. Then the parabolic rescaling preserves the condition that
the mean curvature flow develops a TypeI singularity.

Proof. We have only to show that following two statements areequivalent.
• There exists somec > 0 such that supM jII t j

2
� c=(T � t) for all t 2 [0, T).

• There exists somec0 > 0 such that supM jII
�

sj
2
� c0=�s for all s 2 [��2T, 0).

Here IIt and II�s are the second fundamental form with respect to the immersion
Ft W M ! C(N) and F�

s W M ! C(N) respectively.
We can find a local expression of (II�

s)�i j and (IIt )�i j immediately by removing the

inverse of Riemannian metric tensors (g�s )i j (D (1=�2)(gt )i j ) from equalities (26) and
(27). Hence, we find that (II�s)�i j D (II t )�i j if 1 � � � n, and (II�s)nC1

i j D �(II t )
nC1
i j if

� D nC 1, wheresD �2(t � T). It then follows that

jII�sj
2(p) D

1

�

2
jII t j

2(p).(28)

Hence we get

(T � t)jII t j
2
D

�s

�

2
� �

2
jII�sj

2
D �sjII�sj

2.(29)
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This mean that parabolic rescaling preserves the conditiondeveloping type I singularity.
This completes the proof of Proposition 5.3.

6. Self-similar solutions

This section is devoted to the proof of Theorem 1.2.

Proof of Theorem 1.2. Take any increasing sequence{�i }
1

iD1 of the scales of the
parabolic rescaling such that�i ! 1 as i ! 1. Let F�i

W M � [��2
i T, 0)! C(N)

be the parabolic rescaling of the mean curvature flowF W M � [0, T) ! C(N). By
Proposition 5.1,F�i remains to be a mean curvature flow.

SinceF develops type Ic singularity and in particular type I singularity, there exists
a positive real numberC > 0 such that

sup
M
jII t j

2
�

C

T � t

for all t in [0, T), and by Proposition 5.3 the rescaledF�i also develops type I singu-
larity satisfying

sup
M
jII�i

s j
2
�

C

�s

for all s in [��2
i , 0) with the same constantC > 0 by (29). Whens is restricted to the

interval [a, b], we have the following bound

jII�i
s j

2
� �

C

b
.(30)

Hence we have a uniform bound of the second fundamental form,and sinceF�i satis-
fies the mean curvature flow, all the higher derivatives of thesecond fundamental form
are uniformly bounded on [a, b] by [8].

On the other hand, by Theorem 4.1 the following monotonicityformula for
F�i holds.

d

ds

Z

M
�i
s

�0 D �

Z

M
�i
s

�0

�

�

�

�

�!

F�i ?

�2s
C H�i

�

�

�

�

2

Ng

.

Integrating the both side of the above equation on any closedinterval [a,b] � (�1, 0),
we have

(31)
Z

M
�i
b

�0 �

Z

M
�i
a

�0 D �

Z b

a
ds
Z

M
�i
s

�0

�

�

�

�

�!

F�i ?

�2s
C H�i

�

�

�

�

2

Ng
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where we takei sufficiently large so that [a, b] is contained in [��2
i T, 0). By Propos-

ition 5.2 we have
Z

M
�i
a

�0 D

Z

Mui

�T

whereui D T C a=�2
i and

Z

M
�i
b

�0 D

Z

M
vi

�T

where vi D T C b=�2
i . By the monotonicity formula, the derivative of the function

R

Mt
�T is non-positive and

R

Mt
�T � 0, so for any increasing sequence{ti }1iD1 such that

ti ! T as i !1 the sequence
R

Mti
�T converges to a unique value. Now{ui }

1

iD1 and

{vi }
1

iD1 are increasing sequences such thatui ,vi ! T as i !1. So
R

M
�i
a
�0 and

R

M
�i
b
�0

converge to the same value asi !1. Therefore the left hand side of the equation (31)
converges to 0 asi !1, and thus

(32) lim
i!1

Z b

a
ds
Z

M
�i
s

�0

�

�

�

�

�!

F�i ?

�2s
C H�i

�

�

�

�

2

Ng

D 0.

From this we can take a sequencesi 2 [a, b] such that we have

(33)
Z

M
�i
si

�0

�

�

�

�

�!

F�i ?

�2si
C H�i

�

�

�

�

! 0

as i !1.
Suppose thatpi attains minM r (F�i

si
), and put


i WD r 2(F�i (pi , si )) D �
2
i r

2(F(pi , ti )).

Then pi also attains minM r (Fti ) and

(34) 
i D �
2
i r

2(F(pi , ti )) D
�si r 2(F(pi , ti ))

T � ti
.

It then follows from the condition (c) of Definition 1.1 that

(35) �bK1 � 
i � �aK2.

Thus, the image ofF�i ( � , si ) uniformly stays away from the apex, and thatF�i (pi , si )
stays in a compact region inC(N) for the minimum point (pi , si ) for r (F�i ).

Put 
 WD �bK1. Let W be the manifold obtained fromC(N) by cutting out the
portion{r �

p


 =2}, and letV be the manifold obtained by gluingW and�W smoothly
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along their boundaries. ThisV containsC(N) � {r �
p


 } and the image ofF�i
j(M,si )

is included in that part.
Since the higher derivatives of the second fundamental formare bounded as shown

above, we can apply Theorem 1.2 in [3] (see also [1]) by taking(Mk, pk) to be (M, pk),
(Nk, hk, xk) to be (V, h, F�k (pk, sk)) and Fk to be F�k , where the metrich is chosen
so that h coincides with the cone metric onC(N) � {r �

p


 }. Then we obtain a
limit F

1

W M
1

! N
1

which satisfies the equation of self-similar solution to themean
curvature flow by (33). But sincexi D F�i (pi , si ) stays in a compact region we have
N
1

D V . The limiting self similar solution then defines a flow in the cone C(N) sat-
isfying the mean curvature equation. This completes the proof of Theorem 1.2.

EXAMPLE 6.1 (Examples of type Ic singularities). Here we show a simple
example of the mean curvature flow developing the typeIc singularity. For�1 <

a < b � C1, assume that there exists a mean curvature flow8 W M � [a, b) ! N
on (N, g), namely8 satisfies (�=�s)8( � , s) D H N

s , where H N
s is the mean curva-

ture vector with respect to the embedding8( � , s) W M ! N. Then F W M � [0, T(1�
e�2m(b�a)))! C(N) defined by

F(p, t) WD (8(p, �(t)), �(t)) 2 N � RC,

�(t) WD a�
1

2m
log

�

1�
t

T

�

,

�(t) WD
p

2m(T � t),

becomes a solution for mean curvature flow equation with initial data F0 D 80W M !

N�{
p

2mT} � C(N), wheremD dimM. The second fundamental form IIC(N)
t of the

embeddingF( � , t) W M ! C(N) is given by

IIC(N)
t D II N

�(t) � r (F(p, t))gjMt 


�

�r
,

where IIN
�(t) is the second fundamental form of the embeddingMt D 8(M,�(t)) � N.

Then we obtain

jIIC(N)
t j

2
Ng �

m

2(T � t)

�

1C
1

m2
sup
p2M
jII N
�(t)(p)j2g

�

,

since jII N
�(t)j Ng D r (F(p, t))�1

jII N
�(t)jg. Hence F develops a type I singularity att D T ,

if bD C1 and

sup
p2M,s�a

jII N
s (p)jg <1.

The condition (b) and (c) of Definition 1.1 are obviously satisfied sincer (F(p, t)) D
p

2m(T � t).
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7. Special Lagrangian submanifolds in toric Calabi–Yau cones

In this section we construct special Lagrangian submanifolds in toric Calabi–Yau
cones. LetV be a Ricci-flat Kähler manifold with a Kähler form! and of dim

C

V D n.
Then the canonical line bundleKV is flat. V is said to be a Calabi–Yau manifold if
in addition KV is trivial and V admits a parallel holomorphicn-form �. This implies
that, with a suitable normalization of�, we have

!

n

n!
D (�1)n(n�1)=2

�

p

�1

2

�n

� ^�.

Let L be a real orientedn-dimensional submanifold ofV . Then L is called a special
Lagrangian submanifold ofV if !jL D 0 and Im�jL D 0.

Toric Calabi–Yau cones are exactly the Kähler cones over Sasaki–Einstein mani-
folds. They are described as toric Kähler cones obtained from toric diagram of height 1.
This result was obtained in [4] and [2], which we outline below.

DEFINITION 7.1 (Good rational polyhedral cones, cf. [12]). Letg� be the dual
of the Lie algebrag of an n-dimensional torusG. Let Zg be the integral lattice ofg,
that is the kernel of the exponential map expW g! G. A subsetC � g� is a rational
polyhedral cone if there exists a finite set of vectors�i 2 Zg, 1� i � d, such that

C D {y 2 g� j hy, �i i � 0 for i D 1, : : : , d}.

We assume that the set�i is minimal in that for anyj

C ¤ {y 2 g� j hy, �i i � 0 for all i ¤ j }

and that each�i is primitive, i.e. �i is not of the form�i D a� for an integera � 2
and � 2 Zg. (Thus d is the number of facets ifC has non-empty interior.) Under
these two assumptions a rational polyhedral coneC with nonempty interior is said to
be good if the following condition holds. If

{y 2 C j hy, �i j i D 0 for all j D 1, : : : , k}

is a non-empty face ofC for some{i1, : : : , ik} � {1,: : : ,d}, then�i1, : : : ,�ik are linearly

independent overZ and generates the subgroup
{
Pk

jD1 a j�i j j a j 2 R
}

\ Zg.

DEFINITION 7.2 (Toric diagrams of heightl , cf. [2]). An n-dimensional toric
diagram with heightl is a collection of�i 2 Z

n
� Zg which define a good rational

polyhedral cone and
 2 Qn
� (Qg)� such that

(1) l is a positive integer such thatl
 is a primitive element of the integer lattice
Z

n
� Z

�

g.
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(2) h
 , �i i D �1.
We say that a good rational polyhedral coneC is associated with a toric diagram of
height l if there exists a rational vector
 satisfying (1) and (2) above.

The reason why we use the terminology “heightl ” is because using a transform-
ation by an element ofSL(n, Z) we may assume that


 D

0

B

B

B

B

B

�

�

1

l
0
...

0

1

C

C

C

C

C

A

and the first component of�i is equal tol for eachi .

Theorem 7.3 ([4], [2]). Toric Sasaki–Einstein manifolds are exactly those whose
Kähler cones are obtained by the Delzant construction from toric diagram of fixed
height and applying the volume minimization of Martelli–Sparks–Yau[13]. Equivalently,
Toric Ricci-flat Kähler manifolds are exactly those obtained by the Delzant construction
from toric diagram of fixed height and applying the volume minimization of Martelli–
Sparks–Yau[13].

For a Ricci-flat toric Kähler coneV obtained from a toric diagram of heightl , there
exists a parallel holomorphic section ofK
l

V . In particular if l D 1 the Kähler cone
manifold V is a Calabi–Yau manifold. From now on we assumel D 1. Then it is
shown in [2] that the parallel holomorphicn-form is given in the form

� D e�
Pn

iD1 
i zi
dz1
^ � � � ^ dzn

wherez1, : : : , zn are holomorphic logarithmic coordinates. SinceV is obtained from a
toric diagram of height 1 we may assume
 D t (�1, 0, : : : , 0). In this case we have

� D ez1
dz1
^ � � � ^ dzn.

We now apply a method used in [6] and [11]. Their method is summarized in [11]
as follows.

Proposition 7.4 ([11]). Let (V, J,!,�) be a Calabi–Yau manifold of complex di-
mension n, and H be a compact connected Lie group of real dimension n� 1 acting
effectively on V preserving the Calabi–Yau structure. Suppose there exist a moment
map�W V ! h� and a H-invariant(n� 1)-form � such that for any X1, : : : , Xn�1 2 h

we have

Im�( � , X1, : : : , Xn�1) D d(�(X1, : : : , Xn�1))
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where Xi 2 h are identified with vector fields on V . Then for any c2 Zh� , c0 2 R and
any basis{Y1, : : : , Yn�1} � h, the set

Lc,c0 D �
�1(c) \ (�(Y1, : : : , Yn�1))�1(c0)

is a H-invariant special Lagrangian submanifold of V .

We refer the reader to [11] for the proof of Proposition 7.4. We now apply Propos-
ition 7.4 to toric Calabi–Yau manifold obtained from toric diagrams of height 1 with

� D ez1
dz1
^ � � � ^ dzn, � D Im(ez1

dz2
^ � � � ^ dzn),

and with Yj D 2 Im(�=�z j ) and H the subtorusTn�1 generated byY1, : : : , Yn�1. Then
one easily finds that

Im�( � , Y1, : : : , Yn�1) D d(�(Y1, : : : , Yn�1)),

and

�(Y1, : : : , Yn�1) D
1

i n
(ez1
C (�1)nez1).

Thus the assumptions of Proposition 7.4 is satisfied, and we have proved the following.

Theorem 7.5. Let V be a toric Calabi–Yau manifold obtained from a toric dia-
gram of height1. Let

� D ez1
dz1
^ � � � ^ dzn

be the parallel holomorphic n-form described as above. Thenthere is a Tn�1-invariant
special Lagrangian submanifold described as

�

�1(c) \

�

1

i n
(ez1
C (�1)nez1) D c0

�

where Tn�1 is a subtorus generated byIm(�=�z2), : : : , Im(�=�zn) and �W V ! h� is a
moment map.

EXAMPLE 7.6. TakeV to be the flatCn, and letw1, : : : , wn be the standard
holomorphic coordinates with

� D dw1
^ � � � ^ dwn.

The logarithmic holomorphic coordinatesv1, : : : , vn are given bywi
D ev

i
. Thus,

we have

� D e(v1
C���Cv

n) dv1
^ � � � ^ dvn.
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Taking 
 D t (�1, 0, : : : , 0) amounts to changing the coordinatesz1
D v

1
C � � � C v

n,
z2
D v

2, : : : , zn
D v

n. Then with the new coordinates we have

� D ez1
dz1
^ � � � ^ dzn.

In this situation the points in��1(c) are described as

jw

2
j

2
� jw

1
j

2
D c2, : : : , jwn

j

2
� jw

1
j

2
D cn.

If n is even then (ez1
C (�1)nez1)=i n

D c0 if and only if <(w1
� � �w

n) D c0, and If n is
odd then (ez1

C (�1)nez1)=i n
D c0 if and only if Im(w1

� � �w

n) D c0. This is exactly the
same as Theorem 3.1 in [7].

8. Infinitesimal deformations of special Lagrangian cones

In this section we consider the infinitesimal deformations of special Lagrangian
cones embedded in the cone of Sasaki–Einstein manifolds.

DEFINITION 8.1. A Riemannian manifold (N, g) is called aSasakian manifold
if its Riemannian cone (C(N), Ng) is a Kähler manifold with respect to some integrable
complex structureJ over C(N). A Reeb vector field� on the Sasakian manifold (N,g)
is a Killing vector field onN given by � WD J(r (�=�r )).

For a Sasakian manifold (N, g), a contact form� 2 �1(N) on N is given by� WD
g(� , � ). Then the Kähler form! 2 �2(C(N)) on C(N) is described as! D d(r 2

�).

DEFINITION 8.2. For a smooth manifoldN, a cone submanifold C of C(N) is
a submanifold ofC(N) which can be written asC D C(6) for a submanifold6 � N.
For a Sasakian manifold (N,g,� ), a cone submanifoldC � C(N) is a Lagrangian cone
if it is a Lagrangian submanifold of (C(N), !).

The following proposition is well-known but here we give a proof for readers’
convenience.

Proposition 8.3. A submanifold6 � N is Legendrian if and only if C(6)D 6�
R

C

� C(N) is Lagrangian with respect to the Kähler form! on C(N).

Proof. Let6 � N be a Legendrian submanifold. For anyp 2 6, open neighbor-
hood U � 6 and u, v 2 X (U ), we have

!(u, v) D d�(u, v) D ��([u, v]) D 0,

!

�

u,
�

�r

�

D g(u, � ) D �(u) D 0,
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since�j
6

D 0 and [u, v] 2 X (U ). HenceC(6) � C(N) is Lagrangian. Conversely, let
C(6) � C(N) be Lagrangian and takeu 2 Tp6 arbitrarily. Then

�(u) D g(u, � ) D !

�

u,
�

�r

�

D 0,

which implies that6 � N is a Legendrian submanifold.

Proposition 8.4. Let (V, J, !) be a Ricci-flat Kähler manifold ofdim
C

D n with
H1

DR(V,R) D 0, and assume that the canonical line bundle KV is holomorphically triv-
ial. Then there exists a holomorphic n form� 2 �(n,0)(V) satisfying

!

n

n!
D (�1)n(n�1)=2

�

p

�1

2

�n

� ^�.(36)

Proof. From the assumption there is a nowhere vanishing holomorphic n form
�0 2 �

(n,0)(V) on V . Since�0 is holomorphic,d�0 D 0. The Kähler form! on V
induces a hermitian metric onKV by

h WD h(�0, �0) WD n!(�1)n(n�1)=2

�

p

�1

2

�n
�0 ^�0

!

n
.

Now we put� WD h�
1
2 e

p

�1�
�0 for � 2 C1(V, R), which satisfies the equation (36).

Then it suffices to show that there exists� 2 C1(V,R) such thatd�D 0. Fromd�0D

0, we have

d� D N�(h�1=2e
p

�1�) ^�0

D h�1=2e
p

�1�

�

�

1

2
h�1
N

�hC
p

�1N��

�

^�0

D h�1=2e
p

�1�

�

�

1

2
N

� log hC
p

�1N��

�

^�0.

Thus the problem is reduced to show the existence of the function � which satisfies
N

�(�(1=2) loghC
p

�1�) D 0.
Recall that! is Ricci-flat Kähler form. Then the curvature form of the Hermitian

connection onKV induced fromh is equal to zero, we haveddc log h D 0. Now we
have assumedH1

DR(V,R)D 0, there existsO� 2 C1(V,R) such thatdc loghD (
p

�1��
p

�1N�) loghD d O� D (�C N�) O�. By comparing (0,1)-part, we haveN�(logh�
p

�1O�)D 0,
consequently we obtain the assertion by puttingO� D 2�.

From now on suppose (N,g,� ) is a Sasaki–Einstein manifold of dimension 2n�1,
hence the Kähler structure! on C(N) is Ricci-flat. Moreover we assume the canonical
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bundle KC(N) is trivial. Since (N, g) is an Einstein manifold with positive Ricci curva-
ture, thenH1(C(N),R) D H1(N,R) D 0. Therefore we have a holomorphicn-form �

on C(N) satisfying (36).
Now we denote by QH and H the mean curvature vector ofC(6) � C(N) and

6 � N, respectively. Then the direct calculation givesQH D r �2H , thereforeC(6) is
minimal if and only if 6 is minimal.

It is well known that the mean curvature of a Lagrangian submanifold embedded
in a Calabi–Yau manifold is equal tod� under the identification of vector fields and
1-forms by the symplectic form, where� is the Lagrangian angle. Then the Lagrang-
ian submanifold embedded in the Calabi–Yau manifold is minimal if and only if the
Lagrangian angle is constant. In particular it is special Lagrangian if the Lagrangian
angle is equal to zero. Hence6 � N is minimal Legendrian if and only ifC(6) �
C(N) is Lagrangian with constant Lagrangian angle.

In [14], the infinitesimal deformation spaces of minimal Legendrian submanifolds
embedded in�-Sasaki–Einstein manifolds are studied. Here we observe the infinitesi-
mal deformation spaces of special Lagrangian cones inC(N), using the results obtained
in [5].

Let C(6) be a special Lagrangian submanifold inC(N), and we have orthogonal
decompositionsT C(N)jC(6) D T C(6)� NC(6) and T Nj

6

D T6 � N6, where N6,
NC(6) are normal bundles. Then for any (x, r ) 2 C(6) we have the natural identifi-
cation N(x,r )C(6) D Nx6.

The infinitesimal deformations of cone submanifolds ofC(N) is generated by the
smooth 1-parameter families of cone submanifolds{C(6t ) D �N

�1(6t )I �" < t < "},
where {6t I �" < t < "} is the smooth families of submanifolds ofN which satisfies
60 D 6, and�N W N � RC

! N is the projection onto the first component. Since the
infinitesimal deformations of6 � N are parameterized by smooth sections ofN6, the
infinitesimal deformations of cone submanifolds are parameterized by

AC(6) WD {� D �N
�

�0 2 0(NC(6))I �0 2 0(N6)}.

Then �(x,r ) 2 N(x,r )C(6) D Nx6 is independent ofr for each� 2 AC(6).
SinceC(6) is Lagrangian,NC(6) is identified with the cotangent bundleT�C(6)

by the bundle isomorphismO! W NC(6)! T�C(6) defined by O!(v) WD �
v

O! D O!(v, � ).
By the results in [5], the infinitesimal deformations of special Lagrangian sub-

manifolds ofC(6) are parameterized by harmonic 1-forms onC(6). Thus the infini-
tesimal deformations of special Lagrangian cones ofC(6) are parameterized by

HC(6) WD {O!(�) 2 �1(C(6))I � 2 AC(6), d O!(�) D d � O!(�) D 0},

where O! is the isomorphism induced by!, and� is the Hodge star with respect to the
induced metricNgjC(6). To study the vector spaceHC(6), we need the next lemma.
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Lemma 8.5. Under the natural identification T�(x,r )C(6)D T�

x 6�T�

r R
C, we have

O!(AC(6)) D {�(x,r ) D r'(x) dr C r 2

x 2 �

1(C(6))I ' 2 C1(6), 
 2 �1(6)}.

Proof. Define a diffeomorphismma D exp(ar (�=�r )) W C(N) ! C(N) by
ma(p,r )D (p,ar ) for a> 0. First of all we show thatma is a biholomorphism. Since
(d=da)(ma)

�

J D (ma)
�

Lr (�=�r ) J, it suffices to showLr (�=�r ) J D 0. Now we may write
r (�=�r ) D �J� , then for anyx 2 C(N) and open neighborhoodx 2 U � C(N) and
v 2 X (C(N)),

(LJ� J)(v) D LJ� (Jv) � J(LJ�v)

D [ J� , Jv] � J([ J� , v])

D �NJ(� , v) � J2[� , v] C J[� , Jv]

D �NJ(� , v)C J{(L
�

J)(v)},

where NJ is the Nijenhuis tensor. Thus we haveLJ� J D 0 since J is integrable and
L
�

J D 0, hencema is a biholomorphism.
Next we show that

O!(AC(6)) D {� 2 �1(C(6))I ma
�

� D a2
� for all a 2 RC}.

Sincema satisfiesma
�

NgDma
�(dr2

Cr 2g)D d(ar )2
C(ar )2gD a2

Ng, we obtainma
�

! D

a2
!. By the definition ofAC(6), we may write

AC(6) D {� 2 �1(C(6))I (ma)
�

� D � for all a 2 RC}.

For any� 2 0(NC(6)), we have

m�

a( O!(�)) D m�

a(�
�

!) D �(ma)�1
�

�

m�

a! D a2
O!((ma)�1

�

�)

D a2
O!(�)C a2

O!((ma)�1
�

� � �).

Therefore the equationm�

a( O!(�))D a2
O!(�) holds for alla 2 RC if and only if � 2AC(6).

Now we take� 2 �1(C(6)) and decompose it as�(x,r ) D � (x, r )C � (x, r ) dr such
that � (x, r ) 2 T�

x 6 and � 2 C1(C(6)).

ma
�

� D ma
�

� Cma
�

� � a dr,

then ma
�

� D a2
� is equivalent to

� (x, ar ) D a2
� (x, r ),

� (x, ar ) D a� (x, r ).

Thus we may put� D r 2

 and � D r' for some
 2 �1(6) and ' 2 C1(6).
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Theorem 8.6. The vector spaceHC(6) is isomorphic to

Ker(1
6

� 2n) D {' 2 C1(6)I 1
6

' D 2n'},

where1
6

D d�6d and d�6 is a formal adjoint operator of d with respect to the met-
ric Ngj

6

.

Proof. From Lemma 8.5, all� 2 O!(AC(6)) can be written as� D r' dr C r 2

 .

Then we have

d� D r dr ^ (2
 � d')C r 2 d
 ,

from which it follows thatd� D 0 is equivalent to 2
 D d'.
Next we calculated � �. Denote by vol

6

the volume form ofgj
6

. Since the vol-
ume forms of NgjC(6) is given by r n�1 dr ^ vol

6

, we can deduce

�
 D �r n�3 dr ^ �
6


 ,

�dr D r n�1 vol
6

,

where�
6

is the Hodge star operator with respect togj
6

. Consequently, we obtain

d � � D r n�1 dr ^ (d �
6


 C n' vol
6

).

Henced� D d � � D 0 is equivalent to


 D

1

2
d', n' vol

6

C

1

2
d �

6

d' D 0,

and the latter equation is equivalent tod�6d' D 2n'.

In [14], the infinitesimal deformation spaces of minimal Legendrian submanifolds
in Sasaki–Einstein manifolds are studied. Proposition 8.6is also obtained from the
case of�-Ricci constantA is equal to 2n � 2 in [14]. Here we should pay attention
that the dimension of infinitesimal deformation spaces obtained in [14] is equal to 1C
dim Ker(1

6

�2n), since the deformations ofC(6) generated by Reeb vector field� is
not special Lagrangian cone, but minimal Lagrangian cone whose Lagrangian angle is
not equal to zero. Actually, if we put� D � , then� D O!(�) D �r dr and

d � � D �d(r n vol
6

) D �nrn�1 dr ^ vol
6

¤ 0,

accordingly this� does not generate deformations of special Lagrangian cones.
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