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Abstract

We show that, as in de Rham cohomology over the complex nwenties value
of the entropy of an automorphism of the surface over a finékl iy is taken on
the span of the Néron—Severi group insidel-@fdic cohomology.

1. Introduction

If X is a smooth proper surface (any smooth proper surface ovetdaisi project-
ive) over the field of complex numbers, apd X — X is an automorphism, then a no-
tion of topological entropyof ¢ has been defined on the underlying topological mani-
fold X(C) and shown to be the same as the following cohomological itiefin([7],
[17], see also [6] and [5, Theorem 2.1]): [et?*(X(C)) = HO(X(C)) @& HZ(X(C)) &
H4(X(C)) be the even degree de Rham cohomology. The automorphismts lin-
early on H?*(X(C)) via contravariance, and as the identity BII(X(C)) & H*(X(C)).
Thus, the maximum absolute value of the eigenvalues @§ > 1. One defines the
entropy h(¢) to be the maximum of the natural logarithm of those absolatees. It
is then> 0 and of interest are the cases when it=ig). Clearly, it can only happen
when ¢ is not of finite order onH?*(X(C)), so a fortiori wheny does not have finite
order as an automorphism of.

Keiji Oguiso observed (private communication) that Hodgeory implies thatthis
maximum is taken on the span of the Néron—Severi group ie$ide Rham cohomology
in fact on the transcendental part of de Rham cohomol@dyas finite order (see Prop-
osition 5.1 for a slightly more precise statement). On theeothand, the definition of
the entropy stated above is clearly algebraic. One cancepde Rham cohomology
by I-adic étale cohomology in the definition. Taking then a riRgC C of finite type
over Z over which X, ¢) has a model Xg, ¢r) such thatXg has good reduction at all
closed pointss € SpecR, one sees that the value of the entropygef= ¢r ®r «(S)
on H?(Xs, Q) is taken on theQ,-span of the Néron—Severi group inside leddic
cohomology, whereXs = Xg xgr S, Xs = Xs ®y(s) £(S).

2000 Mathematics Subject Classification. 14G17, 14G99.
The first author is supported by the SFB/TR45 and the ERC Ach@irant 226257, the second
author is supported by a J.C. Bose Fellowship of the D.S.T.



828 H. ESNAULT AND V. SRINIVAS

We ask whether this property comes from the fact that overfitiige field «(s),
(Xs, @s) is the reduction modp of (X, ¢) or whether it is true in general as a property
of eigenvalues of automorphisms acting leadic cohomology over finite fields.

Our main result says:

Theorem 1.1. Let X be a smoothprojective surface over a finite fiely, let ®
be a polarization and let g € Aut(X) be an automorphism of the underlying surface.
Let X = X ®g, Fp, be the corresponding surface over an algebraic closBgeof F,
(where p is the characterisiic

Let | # p be a primeand let

V = V(X [6], p) C [0]* C HA(X, Q(1))

be the largestp-stable subspacevhich is contained in the orthogonal complement of
[©] € Hé2t(>_(, Qi (1)) with respect to the cup product pairing

HE(X, Qi(1) ®q HE(X, Qi(1) = H4(X, Qi(2)) = Q.
Then ¢ has finite order on V.

We note here that from the Hodge index theorem for divisdrs,imtersection form
on the orthogonal complement o] within the Q-span of the Néron—Severi group is
a negative definiteQ-valued bilinear form. Hence there is an orthogonal diraghs
decomposition, compatible witf,

HA(X, Q1) = (p"©) LV,

where (¢"[©]) is the Q -span of the images ofd]] under iterates ofp and 1. Thus
V is well-defined, and the intersection form restrictedtds non-degenenerate.

We note that the formulation of Theorem 1.1 does not involveatly the Q;-span
of the Néron—Severi, which is not always liftable to chagastic O even ifX, defined
over the finite field, is so liftable. Hence, one sees that cae reverse the classical
argument sketched above, to get the following corollary:

Corollary 1.2. Let (Y, ®) be a polarized surface over an algebraically closed
field k, and letg: Y — Y be an algebraic automorphism of (With ¢ not necessarily
preserving the polarization

Let | be a primeinvertible in k and let

V = V(Y, [0], ¢) C [O]" c HE(X, Qi(1))

be the largestp-stable subspagevhich is contained in the orthogonal complement of
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[©] € Hézt(Y, Qi (1)) with respect to the cup product pairing

HE(Y, Qi(1) ®q, HAY, Qi(1)) = HAY, Q(2) = Q.
Theng has finite order on V.

While the Hodge theoretic argument is purely abstract, (depends only on the
properties of Hodge structures, and not on geometric argtshethe arguments we
present in this note for proving Theorem 1.1 rely on the di@ssion of smooth pro-
jective surfaces, on the fact that surfaces of general tgper(a finite field) have a
finite group of automorphisms, on the Tate conjecture forliabesurfaces, and, un-
fortunately, on one argument involving liftin 3 surfaces to characteristic 0. So, due
to this oneK3 case, we can't say that we have a purely arithmetic proof aflc
lary 1.2 overC. On the other hand, Theorem 1.1 should follow from the stahda
conjectures (see Section 6.1). So, aside from its inteseifitropy questions, it can
also be viewed as a motivic statement. To reinforce this pat, we show in section
Theorem 6.1

Theorem 1.3. In the situation ofTheorem 1.1the maximum of the absolute values
of the eigenvalues af on @ﬁ:o HL(X, Q) (with respect to any complex embedding of
Qi) is achieved on th@;-span of (¢"[®], n € Z), in HA(X, Q)).

We deduce of course the same theorem over any field:

Corollary 1.4. In the situation of Corollary 1.2,the maximum of the absolute
values of the eigenvalues ¢f on @i“zo HL(Y, Q) (with respect to any complex em-
bedding ofQ) is achieved on th&;-span of (¢"[®], n € Z), in H&(Y, Q).

2. Some preliminaries and general reduction steps to prove Heorem 1.1

As was already done in the formulation of the theorem andatsliary, we write
¢ for the contravariant action ap on cohomology; it should be clear from the con-
text if ¢ denotes the automorphism, or the linear automorphism rddafrom it in a
specific linear representation.

As in Theorem 1.1, one considers the actiongobn H'(X, Q|), we may as well
replaceFy by a finite extension, and thus we will always assume that téeN-Severi
group N §(X) is defined oveiFy.

We may also replace by any powerg", n # 0, without loss of generality. In par-
ticular, as already observed, Theorem 1.1 has content ongnw acts onHéZt()_(,Q| (1))
through a linear automorphism of infinite order.
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Lemma 2.1. Supposg®] € NX) has a finite orbit undek. Let k> Fq be a
finite extension on whicl is defined as a line bundle. Thenitself has finite order as
an automorphism on Xy, k, so a fortiori it has finite order on the whole cohomology
Hgt()_(, Qi (1)), and Theorem 1.1is trivially valid.

Proof. Replacingy by a suitable power, we may assume that
() the algebraic equivalence clas®][e N X) is fixed by ¢
(ii) there is a very ample line bundl€ on X, which satisfiesp*L =~ £, whose class
in NSX) is m[®] for some positive integem.
Here, (i) is clear. For (ii), first choose a very amm@leon X with classm[®] for some
positive integerm. Now the orbit of [£] in Pic(X) under the group of automorphisms
generated byp is contained in a fixed coset of F"((X)(]Fp), consisting ofFq-rational
points in Pic), and this is a finite set. Now replacingby a suitable positive power,
we may assume that the class ®fin Pic(X) is fixed. Then (i) holds, since*£ and
L are line bundles oX, which become isomorphic oX, so that they are isomorphic
on X.

In particular, from (i), if we fix an isomorphism*L =~ £, then the automorphism
@ of X yields a graded automorphism of the ridg= P, HO(X, £&"). Conversely,
¢ is the induced automorphism od = Proj A, obtained from the graded ring auto-
morphism of A. Now Lemma 2.2 below finishes the argument. O

Lemma 2.2. Let k be a finite fieldand A= ), ., A, a finitely generated graded
algebra over A = k. Then any graded automorphism of A has finite order.

Proof. SinceA is finitely generated ovek, it is generated by = @{‘zo A for
somen, where we note thatV is a finite vector space. Any graded automorphism of
A restricts to ak-linear automorphism ofV/, and this restriction uniquely determines
the graded automorphism. Thus we may identify the group aflen automorphisms
with a subgroup of the finite grou@L(W). O

Proposition 2.3. Let the notation be as iTheorem 1.1leti> 0, j € Z.
(i) The eigenvalues ap acting on any étale cohomology groupétﬂ_(, Qi())) are al-
gebraic integerswhich are units(that is invertible elements in the ring of algebraic
integers.
(i) The characteristic polynomial ap on Hét()_(, Qi(j)) has integer coefficientsand
is a monic polynomial with constant terfal. This polyomial is independent of and
of the chosen prime # p.
(iif) A similar conclusion holds for the characteristic polynamof ¢ acting on any
@-stable subspace ofjél;ﬂf(, Qi(})), which can be defined using a projector in the ring
of self-correspondences of (Ke., corresponds to a direct summand of the Chow motive
of X which on base change tﬁp, has only one non-zero étale cohomology gioup
particular, this holds for the characteristic polynomial ¢fon V.
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Proof. This is a standard consequence of the Grothendiexfkehetz fixed point
formula, applied to powers op ([9, Proposition 2.7]), combined with Deligne’s re-
sults on Weil's conjectures ([4]). In (ii) and (iii), the puiis that the characteristic
polynomial in question has rational coefficients, sincesitietermined by the action on
cohomology of a Chow Motive, while its roots are algebraicegars (this argument
appears in a paper of Katz and Messing [8]). Over finite fieldsjgbe’s theorem im-
plies that the individual étale cohomology groups do cqoesl to Chow motives (see
[8, Theorem 2.1], and the proof in [8, Theorem 2.1] appliesadlyg well to any Chow
motive which is a summand of the motive of, whose étale cohomology is concen-
trated in one degree. []

Next, we consider the subspace \6fspanned by algebraic cycles.
Proposition 2.4. Assume we are in the situation dheorem 1.1 Let
Vag = (NSX) ® Q) N V.
Then Vg is stable underfp, and ¢ on Vyg has finite order.

Proof. The Q-vector spaceVyy has a naturalZ-structure NV defined by the
maximal ¢-stable subgroup

NV c [0]F ¢ NYX),

where_L is the orthogonal complement with respect to the interseqtoduct orN Y X).
One hasVag = NV ® Q, and this identification ig-equivariant.

Now NV comes equipped with the intersection proditV ® NV — Z, which
is non-degenerate aftep R, and isnegative definiteby the Hodge index theorem for
divisors. This pairing is clearly-stable as well, so that can be considered as an or-
thogonal transformation for a Euclidean space structurdNdh® R. In particular it is
semi-simple. Moreover all eigenvalues @fon NV ® C are of absolute value 1. Since
these eigenvalues are algebraic integers (in fact units) tlee characteristic polynomial
of ¢ on NV ® Q has rational coefficients, the eigenvalues are in fact atgebnte-
gers, all of whose conjugates have absolute value 1; thysateeroots of unity, by a
well-known theorem of Kronecker. This finishes the proof. []

One obtains the immediate corollary:
Corollary 2.5. Theorem 1.1holds whenever

V = Valg,
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or equivalently whenever

NSX) ® Q = H&(X, Qi(1)).
More generally let
Ve =V N NYX),

where the orthogonall is taken in H(X, @)(1). This is a¢-stable subspace of V
which may be defined as the cohomology of a suitable Chow enaiin the conclu-
sion of Theorem 1.1is equivalent to a similar statement about the eigenvaldes on

the subspace v

REMARK 2.6. The cup product also induces a non-degenerate synorbéiniear
form on V; with values inQ,. Sinceg is an automorphism oK, ¢ acts as an orthog-
onal transformation oW with respect to this bilinear form.

3. Using classification of surfaces

Now we consider the possibilites for the surfa¥e from the perspective of the
Enriqgues—Bombieri-Mumford classification of surfaces initeary characteristic (a con-
venient reference for most of what we need is the book [1]ic&iwe need only con-
sider surfaces wher€ # V,g4, we may assume that the Kodaira dimensiorXois > 0.

As a consequence, from [1, Corollary 10.22], sirXéhas Kodaira dimensioa O,
the birational equivalence class &f has a unique non-singular minimal model, say
Xo. Increasing the finite fieldy, we may assume the modl, and the morphism
X — Xo, are defined ovelfy. Sinceg acts onX, it acts on its function field, and
thus on this unique minimal model ([1, Theorem 10.21]). S® aitomorphisny of X
descends tdXo, and the space¥; of X and Xo are naturally identified. Hencere are
reduced to the case wheX is itself minimal i.e., X does not contain any exceptional
curves of the first kind.

We may also assum& is not of general typeIndeed,¢ yields a graded auto-
morphism of the canonical model P(@ Ho(X, »%")) of X, which (by Lemma 2.2)
has finite order. Hence, some power @fis an automorphism which acts trivially on
the function field ofX, since it is trivial on the canonical model, which § is of gen-
eral type) is birational toX. Thus a power ofp agrees with the identity on a Zariski
dense subset, and hence equals the identity.

Thus, we need only focus on the cases when the Kodaira dioren$iX is 0 or 1.

Proposition 3.1. In the situation of Theorem 1.1suppose X has Kodaira dimen-
sion 1. Then the conclusion oTheorem 1.1holds.
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Proof. LetC = Proj(@,-oH%(X,w%") (this graded ring is finitely generated; see
[1, Theorem 9.9]). Then from classification (same resultl}) fhere is a morphism

f: X—=C

which gives rise to an elliptic or quasi-elliptic fibratione., the generic fiber is a regu-
lar projective curve which has arithmetic genus 1, and thengric generic fiber is
either an elliptic curve, or is an irreducible rational ceirwith an ordinary cusp (this
can occur only in characteristics 2 and 3, [1, Theorem 7.18])

In the quasi-elliptic case, the Leray spectral sequenceéfale cohomology im-
plies that

NSX) ® Q = HZ(X, Qi(1)),

since the stalks oR!f,Q,(1) at all geometric points o€ vanish. (Alternately, as re-
marked by the referee, one could argue that, after a puragparable base-change
C’ — C, one obtains a surface birational toPd-bundle overC’, which implies that
X is uniruled; in particular, all cycles oX are algebraic.)

Hence we may assume without loss of generality thais an elliptic fibration
The proof of [1, Theorem 9.9]) implies that some power of tla@anical line bundle
of X is the pullback of a line bundle fror.

Now we note thaty induces a graded automorphism of the canonical ring
Do HO(X, %", and thus an automorphism @&, which we may also denote by
@, such thatf : X — C is g-equivariant.

As usual, after replacing by a power, we may assume (from Lemma 2.2) that the
induced automorphism of the canonical ring (and thus of theebcurveC) is trivial.

Now for any morphismD — C, ¢ acts in a canonical way on the total space of
the base changed morphisk xc D — D, preserving the fibers; we denote this in-
duced automorphism also hy. Hence, ifD — C is a finite morphism of nonsingular
curves, so tha xc D is an integral projective surface, also acts on the normalization
of X x¢ D, which is a normal projective surface, denoted Xy. Making a suitable
such base changg D — C, and normalizing, we may arrange that the resulting ellip-
tic fibration Xp — D has a section. Clearly the singular locus of the normal sarfa
Xp is stabilized (as a set) by the automorphism. Consider thanmal resolution of
singularitiesX — Xp. If we write it as the blow-up of some ideal sheaf whose radi-
cal defines the singular locus, we may assume (after reglacihy a suitable power)
that this ideal sheaf is stabilized ly, so thate lifts canonically to an automorphism
of the blow-up X (since ¢ clearly determines an automorphism of the Rees algebra
sheaf). Note also that a power of the canonical sheaKdé the pullback of a line
bundle fromD, the surfaceX is also an elliptic surface of Kodaira dimension 1, and
X — D is the morphism determined by the canonical ringXof

The morphismX — X is a generically finite proper morphism between smooth
projective surfaces, which ig-equivariant. We may choose a polarizatiod] [for X
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which is the sum of the pullback of§]] and a divisor class with support in the ex-
ceptional divisor ofX — Xp. (This is a consequence of the negative definiteness of
the intersection pairing on the exceptional curves, and Nagai—Moishezon ample-
ness criterion.) Then the resulting spa¢éX, [@], ¢) containsV = V(X, [0], ¢) as a
p-stable subspace.

Thus, we are further reduced to considering the situatioara/tthe mapf: X — C
determined by the canonical divisor of, is an elliptic fibration which has a section,
and ¢ is an automorphism oK preserving the fibers.

Let U ¢ C be the maximal open subset over whidh is smooth, so that
fu: f1(U) — U is an abelian scheme of relative dimension 1. GetU, f-1U)
be the corresponding schemes offgr The localisation sequence

P HE. (X, Qi(D)) — HAX, (1)) > HE(F (), Qi(1))

Sex

is exact andp-equivariant, wherex is the discriminant off. On one hand, each sum-
mand H>2<§(>_<,Q|) is (up to a Tate twist) the free abelian group on the irreloleccom-
ponents of the geometric fibets, and¢ acts via a permutation on the classes of these
components. Thug has finite order ordD, 5 H)Z(g()_(, Q). Further, the map fronV,

to H2(f~1(U), Qi(1)) is injective.

On the other hand, any automorphism of (the total space @& )athelian scheme
f~1(U), which is compatible with the structure morphisfg, is the composition of
a group-scheme automorphism (which has finite order) anduwsslation, since this is
true on the elliptic curve which forms the geometric genditier. Replacingy by a
power, we may assume further thatacts on f~3(U) as a translation by a section,
with respect to the abelian scheme structure.

We claim that, in this situationy is unipotent onHZ(f~1(U), Q(1)). Indeed, the
Leray spectral sequence yieldspaequivariant exact sequence

0 — Hg(U, R*.Qi(1)) — HE(f(U), Qi(1)) — H&(U, R*f.Qi(1)) - 0.

The action ofp on H3(U, R?f.Q,(1)) is the identity, while the action af in R*(fy).Q)
is trivial.
On the other hand, the composition

H&(X, Qi(1)) = HE(f(U), Qi(1)) » HYU, RPf.Qi(1)) = @

is identified with the intersection product with the cohoomy class of a geometric
fiber, from the projection formula. In particula¥ is contained in the kernel of the
restriction map

H&(fH(U), Qu(1)) — H&(U, R £.Qu(1)),
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that is,
Vie € HA(U, RYf.Qi(1))

as ag-stable subspace on whigh actstrivially. We conclude that the actiop on V;
is trivial as it is on R f,Q(1).

Since, in the discussion above, we had possibly replacéy a power, we con-
clude that the original automorphism has finite order onv;,. Furthermore, we also
conclude that the eigenvalues @fon the whole grougHZ(X, Q@ (1)) are roots of unity.

O

REMARK 3.2. Our proof shows that iX is elliptic, the eigenvalues of are
roots of unity on the Whold-lézt()_(, Q)), that is¢ acts quasi-unipotently on it.

Proposition 3.3. Suppose thatin the sitution of Theorem 1.1the surfaceX is
minimal of Kodaira dimensior®, and X is not a K3 or abelian surface. ThefThe-
orem 1.1holds for X.

Proof. As stated in [3, p. 1], the minimal surfaces with Kadaiimension 0 fall
into 4 classesK 3 surfaces, Enriques surfaces (both of “classical” and “classical”
type), abelian surfaces and surfaces fibered over theirn&ke® which is an elliptic
curve (and the fibrations are either elliptic or quasi-&éltp

In case the Albanese variety of is an elliptic curve, we may assume (after in-
creasingFy if needed) thatX has anFy-rational ¢-fixed point. Then AlbK) and the
Albanese mapping are defined ov&f, and¢ induces a unique (group-scheme) auto-
morphism of the elliptic curve AIB) making the Albanese mapping-equivariant.
Since the automorphism group of an elliptic curve is finiteplacingy by a power,
we reduce to the situation where the action on Xlp(s trivial.

Now we may argue just as in the proof of Proposition 3.1, ugimg Albanese
mapping instead of the mapping deduced from the canonicagl riAgain, the case
when V4, is possibly nontrivial is for an elliptic fibration, and a slar Leray spectral
sequence argument goes through.

In the case of Enriques surfaces, including the non-claksiges, in fact one has
V = Vg (see [3, Theorem 4]), by an argument of Artin involving theaBer group,
so we conclude by Corollary 2.5. []

4. The case of an abelian surface

Any automorphism of the abelian surfade is the composition of a group auto-
morphism and a translation by a closed point, where the latos has finite order.
Hence, increasing the finite fielst; and replacingy by a power, if necessary, we may
assumeX is an abelian surface ovéfy, and ¢ is a group-scheme automorphism of
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X. We may assume that all the endomorphismsXofire defined oveify (since the
endomorphism ring is finitely generated).

We may also deduce (by again increasifiigand replacingy by a power, if nec-
essary) that the validity of Theorem 1.1 fr depends only on the isogeny classf
This follows because for ang > 1, ¢ acts as an automoprhism of finite order on the
n-torsion X(Fp)[n], and thus for any isogenX — X’, some power ofp acts trivially
on its kernel, and so a suitable power @fdescends to a compatible automorphism
of X'.

Let F: X — X be thegeometric Frobenius morphisassociated toX, considered
as anFy-scheme; thus

F: X > X

is an Fp-morphism of degree?, which acts on each—lét(f(, Q), with (by Deligne’s
theorem) a characteristic polynomial wi#rcoefficients, whose (algebraic integer) roots
all have complex absolute valuq/‘q)i. We may assume without loss of generality that
g is an even power op, so that these absolute values are integers.

We now defineP(t) € Z[t] to be the (monic)minimal polynomialof F viewed
as an element of the finite rank torsion-fréemodule EndK). Thus P(t) € Q[t] is
the minimal polynomial ofF as an element in End() ® Q, and P(t) € Q[t] is the
minimal polynomial of F as an element in

End(X) ® Q ¢ EndH(X, Q))) = EndH (X, Q/(j))) for all j e Z.

From Tate’s theorems [16] (see in particular Theorem 2; s [42, Appendix 1, The-
orem 3]), proving the Tate conjecture for endomorphismsbafian varieties over finite
fields, we know in particular thaP(t) has no multiple rootsand is thus a product of
distinct monic irreducible polynomials which are pairwigdatively prime. Equivalently,
F acts semisimply oHA(X, Q)).

We consider also theharacteristic polynomiale Z[t] of F, as defined in [12],
819, Theorem 4, which is the same, viewedQit], as the characteristic polynomial
of F as an element in Ent(}(X, Q))).

Since diny, H&(X, Q) = 4, it has degree 4.

In case the minimal polynomial is irreducible ov@ the characteristic polynomial
must be a power of this minimal polynomi&l(t), and so the degree of the minimal
polynomial P(t) must divide 4.

We now distinguish between several cases.

Case 1: The minimal polynomial R) is reducible overQ.

In this case,X is not simple, since its endomorphism algebra has zero attisjis
and in fact X must then be isogenous to a product of two mutually non-isegas
elliptic curves (this is the only way to have two mutually dope factors of P(t)).
But then X has a finite group of automorphisms as an abelian varietgedinis is the
case for an elliptic curve, and any automorphism of a prodfidivo non-isogeneous
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elliptic curves is a product of automorphisms on each of the factors. Hence, in
this situation, cannot have infinite order, and we have nothing to prove.

CAseE 2: P(t) is a linear polynomial

Then the characteristic polynomial is a power of a lineaypomial, and from the
Tate conjecture, this implies th& is isogenous tcE x E for a supersingular elliptic
curve E. But in this case, since the endomorphism algebrd&dé a quaternion divi-
sion algebra, which has dimension 4 o@rthe Picard number o x E is 6, which is
also the second Betti number; one thus has that V4, andVy, = 0, so we conclude
with Corollary 2.5.

CAse 3: P(t) is an irreducible quadratic polynomial ovéZ.

Let A be a complex root ofP(t). Then i is a non-real complex number, with
|A|> = AL = g. Indeed, ifA is a real root, it must be an integer, singeis an even
power of p; howeverP(t) is irreducible.

Hence we must have th&(t) = (t —A)(t—1), whereQ(F) = Q() is an imaginary
guadratic field. Clearly the characteristic polynomial Fofon Hélt(f(, Q) is just P(t)?
(see [12, Appendix 1, Theorem 3 (e)]).

Since X is an abelian surface, the cup product gives an isomorphism

2
HER, Q1) = (/\ HAK, Q|))-

Thus we see that the characteristic polynomialFobn Hé2t(>_(, Q) has to be
(t =22t =23 = 22 = (t = A3t = 27)(t — a)*.

From the Tate conjecture for divisors ofy we conclude thaV, is 2-dimensional,
and the characteristic polynomial & on Vj is the quadratic polynomial

(t — 1)t —12).

As noted before, the cup product Oﬂﬁ(f(, Q| (1)) gives rise to a non-degenerate
symmetric bilinear form onVy, with values inQ,, and ¢ and (¥q)F are orthogonal
transformations with respect to this form, which commute.

Now ¢ is a unit in the ring of endomorphisms of the abelian varigtyand from
the Tate conjecture, End) ® Q is a central simple algebra of dimension 4 over its
centreK = Q[F], the subalgebra generated By (this central simple algebra is either
a matrix algebra of size 2, or a quaternion divison algebk®nce the reduced char-
acteristic polynomidl of ¢, considered as an element of this endomorphism algebra, is

1This is the characteristic polynomial ¢f, considered as an element of EXd(®x K, which is
the algebra of % 2 matrices overK.
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a quadratic polynomial with coefficients iK,
(4.1) f(x) = x2 = Trd(p)x + Nrd(p)

where Trdf) € K and Nrdf) € K are the values of the reduced norm and trace of
the central simple algebra.
Now on

H&(X, Q) ® Q

we may diagonalizeé=. Fixing an embedding of), into the complex number field,
we can split the resulting complex vector space intoxitand A eigenspaces for the
action of F.

Clearly ¢, considered as a complex linear transformation, staBilthées decompos-
ition, sincegp commutes withF. Further, on each of the 2-dimensiorfateigenspaces,
on which F acts asx - Id and A - Id, ¢ has the appropriate characteristic polynomial
(with C-coefficients)o (f) or 6(f), whereo, 6 are the embeddings df into C deter-
mined byo(F) = 4, 6(F) = X (resulting in two conjugate embeddinggx] < C[x],
denoted the same way).

The upshot is that, on the 2-dimensional complex vector espac

Vir Rq C

¢ is diagonalizable, and has eigenvalug®Nrd(p)) and 6 (Nrd(e)). But Nrd(p) € K is
actually an algebraic integer, which is a unit. Sin€eis an imaginary quadratic field,
Nrd(p) must be a root of unity. Thug is semisimple onvy, with eigenvalues which
are roots of unity, and this finishes the proof of Theorem h.this case.

CASE 4:

P(t) is an irreducible polynomial ove® of degree4.

In this case,F has 4 distinct algebraic non-real eigenvaluesl-dét{f(, Q), which
(once we embed), into C) are of the forma, &, u, it, with |A]? = |u|? = q.

In this case, onHZ(X, @), F has the eigenvaluesu, Au, AL, Afr, which are
again all distinct and non-real, as well as the eigenvajusith multiplicity 2. From
the Tate conjecture foX, we see tha\, is a 4-dimensional space, on whid¢h acts
with the above 4 distinct non-real eigenvalues.

Now the Tate conjecture implies (see [16, Theorem 2], or A@pendix 1, The-
orem 3]) that the minimal and characteristic polynomialsFobn H4(X, Q) coincide,
and we have that End() ® Q = Q(F) = K. Hence for some polynomiai (t) € Q[t],
we have thaip = f(F) € K.

Fixing an embedding o, into C, we may choose a basis of eigenvectors, v;,
vy, v} for Foon Hélt(>_(,Q|)®(C, indexed by the corresponding eigenvalues. Then these
are also eigenvectors far, with eigenvaluesf (1), f(), f(u), f(i) respectively.
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Now Vi ® C has a resulting basig;, Av,, vy Avg, v; Av,, v; Avg). For this basis,
it is then clear thaty acts diagonally, with eigenvaluei() f (i), f(x)f(i), etc.

We now observe thaK is a CM field i.e., a totally non-real quadratic extension
of a totally real number subfield. Indeed, the distinct endigs of K into C are de-
termined byF — A, F — u, and their complex conjugate embeddings,ksas totally
non-real. It is also clear that the subfidld= Q(F + q/F) is totally real, andK is a
quadratic extension, sinde|? = |u|? = q.

Since ¢ € K is an automorphism of, it is a unit in the ring of integer®y .
From theDirichlet unit theorem(see for example [2, Chapter 2, Theorem 5]), the unit
groups of Ok and of the integer®), in the totally real subfield. have the same rank.
This means that, after replacing by some power, we may assumelies in L, and
all of its eigenvalues on-lélt(f(, Q) ® C arereal algebraic numbers

Hence onHA(X, Q) ® C, ¢ has two distinct eigenvaluet(r) = f(1) and f(x) =
f (i), each with multiplicity 2 (sincep has infinite order, and determinant 1 (as the de-
gree ofp is 1), these two real numbers must be distinct, and satigh)? f (1) = 1).
But this impliesg acts onV, ® Q; as the real scalaf (1) f (1), which must bet1.

[

5. The case of aK3 surface

In the proof of Theorem 1.1, there is one case remaining: #s® avhenX is a
K3 surface. As in [3], this meanX is a smooth, projective minimal surface, and we
have the properties

wx = Ox, HY X, 0x) =0, dimg HA(X, Q (1)) =22, Pi¢(X)=0.

We first treat the case of a supersingukaB surface in the sense of Shioda. Then
by definition of supersingularity (in this sensk)?(X, Q(1)) is algebraic and we can
apply Corollary 2.5.

We now rely on the crutch of lifting to characteristic 0. Frarecent paper [10]
(see in particular Theorem 6.1 and the bottom of p.8), itofedl that if X is not a
Shioda-supersingulak 3 surface, we can find
() a complete discrete valuation ring, with residue fieldF,, and quotient field of
characteristic 0,

(i) an R-schemer: X — SpecR, such thatr is projective and smooth, of relative
dimension 2, with closed fibeX,

(i) if Y := A5 is the geometric generic fiber of, then the specialization homo-
morphism Pic{) — Pic(X) is an isomorphism, which induces an isomorphism between
the respective cones of effective cycles,

(iv) there is aninjective specialization homomorphism AMj — Aut(X), whose image
has finite index.

The specialization map on automorphisms in (iv), which igpantant for us here,
is defined as follows. Ify is an automorphism oY, then (after making a base change
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if needed), the authors of [10] prove that it is induced by amomorphism of the
generic fiberd;, which extends to arR-automorphismyx of X \ S for some finite
setSC X C X of closed points; the induced automorphismXf\ S then extends to
an automorphism o, which is defined to be the specialization ¥f

Granting this, we see that, after replacipgby a power, if necessary, we may
assumey is the specialization of an automorphism %f in the above sense. It then
follows that, under the specialization isomorphism

HEA(Y, Qi(1)) = HE(X, Qi(1))

the respective actions af and ¢ are compatible. Further, the polarizatio®][of X
determines uniquely a polarization ¥f which we may also denote by], compatibly
with the specialization isomorphism. The specializatieomorphism above is of course
one component of an isomorphism between cohomology ring$,sa respects the cor-
responding cup products, thus inducing also an isomorploiradic vector spaces

V(Y, [€], v) = V(X, [©], ¢),

again compatible with the respective automorphisgimsy. It thus suffices to prove that
the ¢ has finite order oV (Y, [®], ¥).

We may identify the algebraic closure of the quotient fieldled DVR R with the
complex number fieldC, and thus also consider as an automorphism of the complex
projective K3 surfaceY.

In fact, one has the following more general assertion; tliseovation is, in a
sense, the motivation for Theorem 1.1 proved in this paped, \was explained to us
by K. Oguiso (in the shape that on H2(Y, C) has finite order):

Proposition 5.1. Supposey is an automorphism of a projective smooth surface
Y overC, with a polarization® (not necessarily invariant undef). Theny has finite
order on Y, [®], ¥).

Proof. By the comparison theorem between étale and singulomology, we
reduce to proving a similar assertion for the actionyobn H2(Y, Q). In other words,
it suffices to show that the eigenvalues ¥f acting on the similarly define® vec-
tor space

V(Y, [6], ¥) C HXY, Q)
are roots of unity. Since/ is also compatible with the cup product, it defines an or-

thogonal transformation with respect to the non-degeadsdinear form onV defined
by the cup product.
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Consider now the associated non-degenerate real bilimear 6n Vg = V ®q R.
From the Hodge decomposition, we may wrifg as an orthogonal direct sum

V]R = V]él'l) 1 VR,tI’!
where
V]lglll) — V]R N H(l'l) C H2(Y1 C)'

and the other summand is its orthogonal complement. This dibe an orthogonal
direct sum decomposition dfg, since by the Hodge index theorem (the Hodge theo-
retic version), the cup product pairing &f is negative definite or\/ﬂgl'l), and positive
definite on its orthogonal complement.

Since the Hodge decomposition &t?(Y,C) is also preserved by, it follows that
Y preserves the above orthogonal direct sum decompositidf oHence, after chang-
ing the sign of the inner product ovﬂ§1~1), we see thaty preserves a non-degenerate
Euclidean form onvg. Hence theys is semi-simple and all its eigenvalues are complex
numbers of absolute value 1.

However, we also know that the eigenvaluesvyofare algebraic integers, which
are invertible, and the characteristic polynomialpfhas integer coefficients (since it
obviously has rational coefficients). Thus, by Kroneckéhisorem, these eigenvalues
are roots of unity. ]

6. Some further remarks

6.1. Standard conjectures and Theorem 1.1. P. Deligne explained to us that
our Theorem 1.1 would be a consequence of the standard tagscwere they avail-
able. We reproduce his argument.

As explained in Section 2, we have to show tiahas finite order on transcen-
dental cohomolog)Htf(f(, Qi(1)), whereX is a smooth projective surface over a finite
field Fq. We denote byM the underlying Chow motive withQ coefficients, which
is endowed with a quadratic forh: M ® M — @, which induces the cup-product
H2(X, Qi(1)) ® HZ(X, Qi(1)) — H*(X, @ (2)) in |-adic realization. The automorphism
¢ induces an orthogonal automorphismMf Its characteristic polynomial lies iQ[t].
But thel-adic realization of the characterisitc polynomial lieszft] ([8]), thus in fact,
it lies on Z[t]. On the other hand, there should exist ([14, V 2.4.5.1 i@)fiber func-
tor w overR on the category of Chow motives of weight 0, with the extraperty that
b(w) is a positive definite form. Thus this implies already thais semi-simple and
that its eigenvalues oM have absolute value 1. On the other hand, they are algebraic
integers again by [8]. We conclude by Kronecker’s theoreat the eigenvalues are
roots of unity.

6.2. Entropy, even and odd degree cohomology.Recall that theentropy of a
homeomorphisny: M — M of a compact, orientable manifolsll is defined to be the
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natural logarithm of the spectral radius of the linear toamfation induced byy on
the rational cohomology algebtd®*(M, Q). Sinceg is a homeomorphism, it induces a
(z-linear) automorphism of the integral cohomology algels@,that the characteristic
polynomial of ¢ acting on cohomology has integer coefficients, and the eaees of
¢ on cohomology are algebraic integers which are invertithef is, are units in the
ring of algebraic integers.

If M is a complex smooth projective variety, apdis an algebraic automorphism,
the value of the entropy is taken on tegendegree cohomology?*(M, Q) (see [5,
Theorem 2.1]).

We can now go through our proof of Theorem 1.1 from which weuded

Theorem 6.1. In the situation ofTheorem 1.1the maximum of the absolute values
of the eigenvalues af on @f:o Hét(f(, Q) with respect to any complex embedding is
achieved on th&),-span of(¢"[®], n € Z), in Hézt(f(, Q).

Proof. The automorphisnp acts as the identity orHét()Z, Q), fori =0 and
i = 4. Sinceg respects the cup-produdtl(X, Q) x H3(X, Q) — HZ(X, Q)), its
eigenvalues on-lgt()_(,QQ are the inverse of its eigenvalues btjt()_(,QQ. On the other
hand, the characteristic polynomial @fon any Heit()_(, Q) hasZ-coefficients, and the
eigenvalues lie inZ. Thus the constant term of this polynomial 4s1 and, fixing a
complex embedding of a number field containing all the roatdeast one eigenvalue
has absolute valug 1. Thus the maximum of the absolute values is always achieved
on @?:1 Hét(x, QI)

By Theorem 1.1, we just have to see that the absolute valu¢seotigenvalues
on HA(X, Q) and H3(X, Q) are at most those oR2(X, Q)).

Again we may assume (after replacifig by a finite extension ang by a power)
that X has a rational fixed point under, which we take to define the Albanese mapping
alb: X — Alb(X). Then the action o extends so as to make albpaequivariant map.

If the image of alb is 0, this meand(X, Q) = H3(X, Q) = 0, there is nothing
to prove.

If the image of alb is a curv&€, theng acts onC, thus on its normalizatioiC.
Since the genus of is > 1, the action ofp on C, thus onC has finite order. Thus via
the surjective pull-back map dlbH&(C, Q) — HA(X,Q;), and its injective push-down
dual map alb: H3(X,Q) — H&(C, Q) the action ofp on Hi(X,Q)), i = 1,3 is finite
as well.

If the image of alb is 2-dimensional, then eith¥ris of general type, in which
caseg has finite order and there is nothing to prove, or ecés an abelian surface.
In this case, we have a more general Proposition 6.2 belowd bnBut for an abelian
surface, Hy(X, Q) = HL(XY, @) for (i, j) = (3, 1) and (2, 2), whereX" is the dual
abelian surface. Since the eigenvalues of the induced aphison ¢¥ on Hézt(XV, Q)
are those ofp on Hé2t(>_(,Q|), Proposition 6.2 concludes the proof of Theorem 6/11
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We now show that for automorphisms of abelian varieties, gpectral radius of
the induced linear automorphism dd! is at most that for the similar linear auto-
morphism of H2.

Proposition 6.2. Let X be an abelian variety over a field land ¢ an auto-
morphism of X. LeX = X®yk be the corresponding variety over an algebraic closure
k, and let | be a prime invertible in k.

Then the complex absolute values of the eigenvaluesoof I-|é1t()_(,Q|) are bounded
above by the maximum of the complex absolute values of threwaiges ofy on

Hezt()_(! Q|)

Proof. By the standard arguments involving the choice of alehover a finite-
ly generatedZ-algebra, and specialization, we reduce to the case vkhenFy is a
finite field. We also fix an embeddin@, < C, so that we may speak of the eigen-
values as complex numbers. Without loss of generality, wg mlso increase the size
of the finite fieldFy, replacep by a power, and replacX by an isogenous abelian
variety. Thus, we may writeX = X; x --- x X, where theX; are powers of mutually
non-isogenous absolutely simple abelian varieties, inclvliasep must be a product
@1 %+ X ¢ With ¢; € Aut(X;j). From the Kinneth formula, it follows that it suffices
to consider the case wheX = X; is a power of an absolutely simple abelian variety.
In this case, End) ® Q is a central simple algebra over a number field.

We also make use of the fact thH(X, Q) = A* H&(X, Q) for an abelian vari-
ety. The automorphisnp has eigenvalues ohlélt()i, @) which are invertible algebraic
integers whose product is 1, and so the maximal absolutee\@flihese eigenvalues is
always> 1.

Thus, if we consider the complex absolute values of the eajaas of ¢ on
HA(X, Qi), counted with multiplicity, the proposition is clearlyu, unless the largest
such absolute value is- 1, and appears exactly once, while all the other absolute
values are< 1. Since the set of eigenvalues is closed under complex gatiun (as
the characteristic polynomial af has integer coefficients), this largest absolute value
must correspond to a real eigenvalue, which we may take tookd#iye (replacep by
its square if needed).

In other words, we have to rule out the possibility thacting on Hélt()_(, Q) has
one real eigenvalue > 1, occuring with multiplicity 1, and all other eigenvaluet o
complex absolute value 1 (in particular,., must be a “Pisot-Vijayaraghavan number”).
We do this by induction on the dimension &f. Let P(t) € Z[t] be the monic min-
imal polynomial ofy as an element of Eni(), and let f (t) € Z[t] be the monic min-
imal polynomial overQ for the real algebraic integetr. Then there is a factorization
of polynomialsP(t) = f(t)g(t), sincex is an eigenvalue fop, so thatP(A) = 0. Now
A must be a simple root oP(t), so thatf(t), g(t) are relatively prime polynomials in
Q[t]. If g(t) is non-constant, then the identity componéhtof the subgroup-scheme
ker f(¢) C X is a subabelian variety of dimensienl1 and < dim X which is ¢-stable
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and such that > 1 is an eigenvalue ap on Hé(\?,Q.). ThusY has dimensior® 2 and
we can replaceX by Y to show Proposition 6.2, that is we can assume giigtis con-
stant, so thaP(t) = f(t) (as they are both monic). Further, sinteccurs with multi-
plicity 1 as an eigenvalueR(t) is also the characteristic polynomial g¢fon Hélt()z, Q).

In particular, the subrind- C End(X) ® Q generated byy over Q, is a subfield,
isomorphic toQ(1). We must also have

[L: Q] = degP(t) = dimg, H&(X, Q) = 2 dim X.

Thus ¢ has distinct eigenvalues oHélt()_(, Q)), and is diagonalizable, an@(¢) is a
maximal commutative subring of EQp(Hélt()Z, Q). In particularL c End(X) is also
a maximal commutative subring. Thus the geometric FrolseRiue End(X), which
commutes withg, lies in L, and F = Q(¢) for some polynomialQ(t) € Q[t]. We
conclude thatF has the eigenvalu€®(1) € R on Hélt()_<,Q|). This means, assuming, as
we may, thatq is an even power op, that F has an integer eigenvalue. Sin¥eis a
power of an absolutely simple abelian variety, Tate’s thets imply that the minimal
polynomial of F in End(X) ® Q is irreducible, and so, having an integer root, must
be a linear polynomial. This forceX to be isomorphic to a power of a supersingular
elliptic curve, sayX =~ E".

Now EndX) ® Q = M(D), whereD = End(E) ® Q is the unique quaternion divi-
sion algebra ove® which splits at all places apart frop and co. SinceL € My(D)
is a maximal commutative subfield of the central simple alge¥,(D), we know that
L is a splitting field for the algebra, i.eMn(D) ®¢ L = End (Mn(D)) = Man(L)
as central simple algebras over(where D is regarded as ah-vector space through
right multiplication; the isomorphism is given bMr(D) ® L sa® b+ (x > axb) €
End_(Mn(D))). (We thank M.S. Raghunathan for a discussion on this poifSince L
has a real embedding, we conclude tW(D) ®g R = M2, (R), which contradicts that
D is non-split atco. This concludes the proof. ]

6.3. Algebraic entropy. In general, if X is a smooth proper variety over a field
k, and ¢ an algebraic automorphism of, then we may associate to it two numerical
invariants, as follows.
(1) Letl be a prime invertible irk, and letX = X xk be the corresponding (smooth,
proper) variety over an algebraic closuke The characteristic polynomial ap on
Hé't(>_(, Q) is independent of, and has integer coefficients, and algebraic integer roots
(which are units); hence we may define the spectral radius ah Hé't()_(,Q|) as a real
number> 1, and define its natural logarithm to be tbetropyof ¢. Whenk C C, so
that we may associate tX(¢) a compact complex manifolXc, and a holomorphic
automorphismpc, then our definition agrees with the usual one (given above)§.
(2) We may instead define an invariant using algebraic cyasdollows. LetX be as
above, andC H2, (X) the ring of algebraic cycles oX modulo numerical equivalence.

num’
Theng yields an automorphism of the ril@H?,(X), whose underlying abelian group
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is known to be a finitely generated free abelian group; thes dharacteristic poly-
nomial of ¢ on this ring has integer coefficients, and eigenvalues whiehalgebraic
integer units. We may now define ttagebraic entropyof ¢ to be the natural loga-
rithm of the spectral radius g acting onCH?,(X).

num

Our main result, Theorem 1.1, and its Corollary 1.2, with dileen 6.1, imply that

for automorphisms of smooth projective algebraic surfaties algebraic entropy co-
incides with the entropyOne may ask whether this is true in arbitrary dimension. It
would in particular imply that the value of the entropy on thieole |-adic cohomology
is taken on even degree cohomology, which is true in chaiaitteO (see Section 6.2).
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