Seo, K.
Osaka J. Math.
50 (2013), 631-641

TRANSLATION HYPERSURFACES
WITH CONSTANT CURVATURE IN SPACE FORMS

KEOMKYO SEO

(Received August 26, 2011, revised November 24, 2011)

Abstract

We give a classification of the translation hypersurfaceth vdonstant mean
curvature or constant Gauss—Kronecker curvature in Eemfidspace or Lorentz—
Minkowski space. We also characterize the minimal trarmtatiypersurfaces in the
upper half-space model of hyperbolic space.

1. Introduction

In R3, a surface is called &ranslation surfacef it is given by an immersion
X:UCR* =R (x,y) (%Y, f(X)+9(y),

wherez = f(x)+9(y) and f andg are smooth functions. One of the famous examples
of minimal surfaces in 3-dimensional Euclidean space isteefs minimal translation
surface. In fact, Scherk [10] showed in 1835 that except thegs, the only minimal
translation surfaces are the surfaces given by

coscy
COSCX

z=-lo

where c is a nonzero constant. This surface is called a Scherk'snmaintranslation
surface. In 1991, Dillen et al. [3] generalized this resalthigher-dimensional Euclid-
ean space. (See also [11].) A hypersurfadec R"*! is called atranslation hyper-
surfaceif M is a graph of a function

f:RT—-R: (Xg, ..., %) = F(X, ..., %) = fo(X) + -+ + fa(Xn),

where f; is a smooth function of one real variable foe 1, 2,...,n. More precisely,
they proved

Theorem ([3]). Let M be a minimal translation hypersurface B'*X. Then M
is either a hyperplane or M= © x R"2, where X is a Scherls minimal translation
surface inRS.
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Scherk’s minimal translation surface in 3-dimensional IEiean spac&® was gen-
eralized to translation surfaces with constant mean cureair constant Gaussian curva-
ture inRR3 by Liu [7]. In particular, he proved

Theorem ([7]). Let M be a translation surface with constant Gaussian cumeat
K in R3. Then M is congruent to a cylindeand hence K= 0.

In Section 2 we generalize these previous results to tramislaypersurfaces with
constant mean curvature or constant Gauss—Kroneckertatevan Euclidean space
and Lorentz—Minkowski space. In particular, we prove théofging theorems.

Theorem 1.1. Let M be a translation hypersurface with constant mean durea
H in R"1. Then M is congruent to a cylindek x R"2, where ¥ is a constant mean
curvature surface inR®. In particular, if H = 0, then M is either a hyperplane or
¥ x R"2, where X is a Scherls minimal translation surface iR

Theorem 1.2. Let M be a translation hypersurface with constant GaussxEater
curvature GK inR"™1. Then M is congruent to a cylindeand hence GK= 0.

One may ask the similar problems for translation hypersedan the upper half-space
model of hyperbolic spac#"*!. Recently Lopez [8] proved that there is no minimal
translation surface of type | ifI3. (See Section 3 for the definition of translation
hypersurface of type | or type Il in hyperbolic space.) Int8et 3, we prove an ana-

logue of Lopez’'s result for higher-dimensional cases indmigplic space as follows:

Theorem 1.3. There is no minimal translation hypersurface of tylpa H"*1,

Furthermore we characterize the minimal translation sedaof type Il inH®. (See
Theorem 3.3.)

2. Translation hypersurface with constant curvature in Eudidean space and
Lorentz—Minkowski space

Theorem 2.1. Let M be a translation hypersurface with constant mean durea
H in R"*1. Then M is congruent to a cylindet x R"2, where X is a constant mean
curvature surface inR3. In particular, if H = 0, then M is either a hyperplane or
M = = xR"2, where X is a Scherls minimal translation surface iiR3.

Proof. Let a translation hypersurfad® be an immersion given by

X:R" > R™L: (g, o, Xn) > (Xay ey Xny F(Xa, -2y Xn)),
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where f(Xg, ..., X3) = fi(Xs) + --- + fo(Xn) and eachf; is a smooth function for
i =1,...,n. One can easily see that the unit normal vedtband the mean curvature
H are given by

(= =101

V 1+, 172

N

and
H— Y1+ ZT;éi fjlz) fi’
n(1+ Y, 1)

respectively. SincéM has constant mean curvatuire differentiating the equation (2.1)
with respect tox;, we get

(1+ 20, ) f7 + 26 £/ (0, 1))
n(1+>, fi/z)l/z

2.1)

2.2)

= 3nHf] f.
Differentiate the equation (2.2) with respect:tg and we have

n 1/2
(2.3) (@2f f1 15" + 2f5 15 1) <1 +3° fi’2> = 3nHT ] 5],
i=1

Now suppose thaf f;f; f; # 0. Then the equation (2.3) implies

£/ £ n 1/2
2.4 L 2 1 f/2 = 3nH.
@4 {5+ fz’fz’/)( 3 ) "

Note that 1+ Y ', f/? is a nonconstant function of a variabig or x, from the as-
sumption thatf, f;" ;) # 0. If each f is constant fori = 3, 4,...,n, then

f(X1, ..oy Xn) = fo(Xe) 4+ -+ 4+ fa(Xn) = fo(x1) + f2(X2) + @3Xz + - - - + @nXn,

where eachg; is constant fori = 3, 4,...,n. This implies thatM is congruent to
a cylinder = x R"2, where £ is a constant mean curvature surfaceRf If f; is
not a constant function for some = 3, 4,..., n, then one sees thatl must van-
ish from the above equation (2.4). As mentioned in the intotidn, by the result of
Dillen et al. [3], one sees that a minimal translation hypeece M C R"*! is either a
hyperplane oM = £ xR" 2, where X is a Scherk’s minimal translation surfaceis.
Hence we conclude tha¥l is a hyperplane oM = X x R"2, where X is a Scherk’s
minimal translation surface ilR3. Otherwise, if f; f;’ f;f, = 0, then it follows that
either f, or f, is linear, that is,

fi=aixg +by or f,=axxy+ by,
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whereg andb; are constants for = 1, 2. Without loss of generality, we may assume
that f; = a3x; + by. It immediately follows that

X(Xgy o ooy Xn) = X1y« + oy Xny F10) + f2(X2) + -+ + fr(Xn))
= (X]_, ey Xny Xy + by + fg(Xg) + -+ fn(Xn))
=x1(1,0,...,0,a) 4+ (0, X2, ..., Xn, by + fo(X2) +--- 4+ fn(Xn)),

which implies thatM is a cylinder. This completes the proof of Theorem 2.1. []

Let L"*! be the ( + 1)-dimensional Lorentz—Minkowski space, that is, the real
vector spaceR"! endowed with the Lorentz—Minkowski metric

ds? = dxq? + - 4 dxe? — A% 112

and Xi, . .., X1 are the canonical coordinates &%, We say that a vector
L1\ {0} is spacelike timelike or lightlike if |v|?> = (v, v) is positive, negative or
zero, respectively. The zero vector 0 is spacelike by caimenA hyperplane inL"**

is said to bespacelike timelike or lightlike if the normal vector of the hyperplane is
timelike, spacelike, or lightlike, respectively. An immsed hypersurfacél c L"*! is
called spacelikeif every tangent hyperplane dfl is a spacelike. We define a spacelike
translation hypersurfac! c L"+1 as follows:

DEFINITION 2.2. A spacelike hypersurfadd c L"*! is called aspacelike trans-
lation hypersurfacdf it is given by an immersion

XoR" > L™ (g, o Xa) P (Xe, e Xy T (X1 e X))

where f(Xg, ..., Xn) = fi(x)) + .-+ + f(xy) and eachf; is a smooth function for
i=1,...,n

In the above definition, a functiori should satisfy thafVf| < 1 sinceM is a
spacelike hypersurface ih"*. Applying the similar arguments as in the proof of The-
orem 2.1 we can also obtain a similar result in the Lorentz-kislivski space as follows:

Theorem 2.3. Let M be a spacelike translation hypersurface with constaptin
curvature H inL"*1., Then M is congruent to a cylindeE x R"2, where X is a
constant mean curvature surface I’. In particular, if H = 0, then M is either a
hyperplane or M= ¥ x R"2, where ¥ is a Scherls maximal spacelike translation
surface inLL3.

REMARK 2.4. A spacelike hypersurface with vanishing mean cureatsircalled
a maximal spacelike hypersurfac&kobayashi [5] gave various examples of maximal
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spacelike surfaces ii.® including Scherk’s maximal spacelike translation surfate
1976, Cheng and Yau [2] proved that the only entire solutimmshe maximal space-
like hypersurface equation are linear. Even though ther@igntire maximal spacelike
graph by the result of Cheng and Yau, one has many kinds ofmadpacelike graphs
locally. However Theorem 2.3 implies that the only nonaivinaximal spacelike trans-
lation hypersurface is locallil = ¥ x R"~2, where X is a Scherk’s maximal spacelike
translation surface ifi.®.

Scherk’s minimal translation surface i®® was generalized to translation surfaces

with constant Gaussian curvaturelk? by Liu [7]. In the following, we generalize his
result to higher-dimensional Euclidean space.

Theorem 2.5. Let M be a translation hypersurface with constant GaussnEaier
curvature GK inR"™?1. Then M is congruent to a cylindeand hence G K= 0.

Proof. Let a translation hypersurfadé be an immersion given by

X:R™ - R™: (g, .oy Xa) = (Xay e Xy F(X2, -2y X))
where f(Xg, ..., Xy) = fi(Xs) + --- + fo(Xn) and eachf; is a smooth function for
i =1,...,n. Then it follows that the unit normal vectdd and the Gauss—Kronecker

curvatureGK are given by

(=, =)

Vi+ i 2

N

and
f]i/fz//"' frfl/

AL e

(2.5)

respectively. Differentiating the equation (2.5) with pest tox; and using the assump-
tion that the Gauss—Kronecker curvatu& is constant, we get

n
0= f) .- fr;’[fl”’<1 +y f(2> —(n+2)f] fl”z}.
i=1

Suppose thatf) --- f = 0. Then one off;’s is linear fori = 2,...,n, which implies
that M is congruent to a cylinder. Therefore one may assume tfiat- f." # 0. Thus
one has

n
(2.6) f) (1 +> fi’Z) = (n+2)f {2
i=1
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In the left-hand side of the equation (2.6)+1>""_, fi’2 is a nonconstant function of
variablesxs, . . ., X, since f;'--- f/ # 0. However the right-hand side is a function of
variable x;. Hence we obtain thaf;” = 0 and f;” = 0, which means thaf; is linear.
Therefore we conclude tha#l is congruent to a cylinder. ]

3. Minimal translation hypersurfaces in hyperbolic space

Anderson [1] gave many examples of minimal surfaces withiousr topological
types in the hyperbolic spadd" using geometric measure theory. Later by solving the
minimal surface equation in the hyperbolic space, many @kasnof minimal surfaces
in the 3-dimensional hyperbolic spad@® have been found in [4, 6, 9]. In order to
search Scherk’s minimal translation hypersurfaces in gpetbolic space, we consider
the upper half-space model of tmedimensional hyperbolic spadd”, that is, R} =
{(X1, ..., Xn—1, Xn) € R": x, > 0} equipped with the hyperbolic metric

dsz_dxf+---+dx§
==

Note that unlike in Euclidean space, the coordinatgs..,x,_1 are interchangeable, but
not for the coordinates, in H". Motivated by this observation, we give the following
definition of translation hypersurfaces Hi"**. It should be mentioned that Lopez [8]
gave the same definition when= 2.

DEFINITION 3.1. A hypersurfaceM c H"*! is called atranslation hypersurface
of typel if it is given by an immersionX: U C R" — R“jl satisfying

X(X1, oy Xn) = (Xg, - - -, X, Fo(X0) + -+ + Fa(Xn)),

where eachf; is a smooth function ot C R" for i =1,...,n. Similarly a hypersurface
M c H"*! is called atranslation hypersurface of typk if it is given by an immersion
X:U c R" — R satisfying

X(X1y - ooy Xn) = (X1, - -y Xne1, F2(X0) + -+ fa(Xn), Xn).

Let M be a hypersurface in the upper half-space modelibfl. If we denote by
Np a unit normal vector field oM with respect to the hyperbolic metric m“;l, then
a unit normal vector field\ on M with respect to the Euclidean metric is given by

Nh

N = .
Xn+1

Moreover, if we denote byH, and He the hyperbolic and Euclidean mean curvature
on M respectively, then it is well-known that

(3.1) Hh = Xny1He + Nnya,
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where Np41 is the fi + 1)-th component of the unit normal vectdy.

Contrary to the Euclidean case, it was proved that there isnimimal translation
surface of type | inH® by Lépez [8]. We prove an analogue for higher-dimensional
cases in the following.

Theorem 3.2. There is no minimal translation hypersurface of tylpan H"*2.
Proof. It suffices to prove this theorem far> 3 because the case whan= 2

was done by Lépez [8]. LeM be a translation hypersurface of type | which is given
by an immersion

X:R™ > RY (Xg, ooy Xn) > (Xay ooy Xny F(Xa -2y X))
where f(Xq, ..., X3) = fi(Xs) + --- + fo(Xn) and eachf; is a smooth function for
i =1,...,n. Then it follows from the equation (3.1) that
R B
N £/ 3/2 n1/2°
1+ X0, 12 1+ X0, 137

Since M is minimal, we get

(3.2) (Zl fi> [k;(l + § f;z) fk”} =-n (1 + Zl fi’2>.

We claim that f” # 0 for eachi = 1,...,n. To see this, suppose first th&tf' = 0
for eachi = 1,...,n. Then while the left-hand side of the equation (3.2) varsgstiee
right-hand side cannot be zero. Thd$ # 0 for some 1<i < n. Now suppose that
f{" =0 for some 1< j <n. Then fj = ax; + b, wherea andb are constants. Note
thata # 0 sinceM is a graph. While the right-hand side of the equation (3.2 &a
degree 0 in the variablg;, the left-hand side has a degree 1 in the variaglewhich
is a contradiction. Hence this proves our claim.

We now have three possibilities as follows:

Case (1): f”=0foralli=1,...,n

Caske (2): f{” =0 for somei and f;” # 0 for some].

CAse 3): f”"#Oforalli=1,...,n

For Case (1),f;” = constant# 0 for eachi =1,...,n, by our above claim. So each
fi is a quadratic polynomial. The right-hand side of the equa(3.2) has a degree 2
in the variablex;. Because the left-hand side has the same degree, we have

(3.3) Z f"=0

I£i
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Since the equation (3.3) holds for eack= 1, ..., n, one can obtain that
fl=--.=1/=0,

which is impossible. For Case (2), we may assume tat= 0 and f,” # 0 with-
out loss of generality. Sincd; is a quadratic polynomial, the right-hand side of the
equation (3.2) has a degree 2 in the variakle Hence we see that

fj+---4+ f/=0.
Therefore we get

fé”:---: fr;”Eo,

which is a contradiction to our assumption thgt # 0. For Case (3), differentiating
the equation (3.2) with respect tq, x, and x3, we get

H(Ey 15+ (585 85) + fo(f5 88 87 + F18765) + F3(FLH1 65 + 565 £]) = 0.

Since f” # 0 by the assumption, dividing both sides of the above ecuaby
ff) £, 171,17, we have

1 f/// f/// l f/// f/// 1 f/// f///
B4 S+ )+l )t 5 ) =0
f1 fZ fZ f3 f3 f2 f3 f3 f1 f1 f3 fl fl f2 f2

Differentiation of the above equation with respectxpgives

(F7/CE80) 17/ (Ha ) + f37/(f3f5)
/1]y 1/t +1/1 b

(3.5)

wherec; is a constant. Therefore
(3.6) f"=c f{+di f{ ],
whered; is a constant. Similarly one can get
£ =cofy+dafyfy,
(3.7) f) = cafs+ dsfifs,
wherec; andd; are constants far= 2,3. Using the equations (3.5) and (3.7), we obtain

(/) (o + o) £ 15 + Cofy +cafy
@/ 1]y 7+ 1y

(3.8) C1.

Using the above equation (3.8) and the assumption fffat4 O for alli =1,...,n,
we see that

c;=¢ and dy+d3=0.
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From the similar arguments, it follows that
ct=¢C and d;+d,=0,
ct=c3 and d; +d3=0.
Combining these relations, we can conclude that
(3.9) ci=C=¢c=c¢ and d;=d, =d; =0.
From the equations (3.4), (3.6), (3.7), and (3.9), one carthgs
c(fy + f) + f§)=0.
Since f” # 0 for eachi =1, ..., n by the assumption, one sees tltat O, that is,
f"=1)=1=0,

by the equation (3.6), (3.7), and (3.9). However this is atrealiction. Therefore we
obtain the desired conclusion. L]

In [8], Lépez proved that the only minimal translation seda of type Il inH?
were totally geodesic planes. However there is a gap in luefpwhich leads to wrong
conclusion. Nevertheless, using his arguments, we claraetthe minimal translation
surfaces of type Il inH® as follows:

Theorem 3.3. Let M c H® be a minimal translation surface of tyge given by
the parametrization X, z) = (X, f(X) + 9(2), 2)). Then the functions f and g are
as follows

f(x) = ax+ b,

9(2) = vV1+ aZ/ —_1(;_220224 dz

where g b, and ¢ are constants.

Proof. Since the Euclidean mean curvatitgon M and the third componeritl;
of a unit normal vector field oM with respect to the Euclidean metric are given by

1@+g)f"+ @+ g’

He = 2 (1+f2+g?)2

and
g/

/1+ f/2+g/2’

N3 =
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respectively, the hyperbolic mean curvatuig on M is given by

_}(1+g/2)f”+(1+ f/2)g// g/

R (S ) 14 f2+g2

from the equation (3.1). SincB®l is minimal, we have

f g// , 1+ f/2+g/2
z + =2 :
1+f2 " 1492 1+ f2)(1+g?)

Hn =

(3.10)

Differentiating the above equation with respectxowe get

£ / frfr g/3
3.11 — ) =-4 )
(3.11) Z(1+ f/2) (1+ 221+ g2

First suppose thaf’f” = 0. Then f(x) = ax + b for some constanta andb. The
equation (3.10) says that
’ 2 7
2q' = 20(1+a"+g ).
(1+a?)

Solving this ordinary differential equation with respeotz we obtain

c?
7) = \/1+a2/ ———dgz
9(2) e
wherec is a constant.
Now suppose thaf’f” £ 0. Then by the equation (3.11) one sees that

(f”/(l—i— .I:/Z))/ g/3

_4f/f///(l+ f/2)2 - Z(1+g/2) =d,

whered is a constant. Ifd = 0, then f = mx+ n and g = constant, which is impos-
sible by our assumption that’ f” # 0. If d # 0, then one can obtain a contradiction
by applying Lépez’s arguments as in [8]. ]

REMARK 3.4. Note that ifc = 0 in the Theorem 3.3, then the minimal transla-
tion surface can be parametrized as

X(x,2) = (x,ax + b+ m, 2),

wherea, b, andm are constants. This surface is a vertical Euclidean planehns a
totally geodesic plane ifi®.
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