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Abstract
We give a classification of the translation hypersurfaces with constant mean

curvature or constant Gauss–Kronecker curvature in Euclidean space or Lorentz–
Minkowski space. We also characterize the minimal translation hypersurfaces in the
upper half-space model of hyperbolic space.

1. Introduction

In R

3, a surface is called atranslation surfaceif it is given by an immersion

X W U � R

2
! R

3
W (x, y) 7! (x, y, f (x)C g(y)),

wherezD f (x)Cg(y) and f andg are smooth functions. One of the famous examples
of minimal surfaces in 3-dimensional Euclidean space is a Scherk’s minimal translation
surface. In fact, Scherk [10] showed in 1835 that except the planes, the only minimal
translation surfaces are the surfaces given by
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�
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�

coscy

coscx
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�

,

where c is a nonzero constant. This surface is called a Scherk’s minimal translation
surface. In 1991, Dillen et al. [3] generalized this result to higher-dimensional Euclid-
ean space. (See also [11].) A hypersurfaceM � R

nC1 is called atranslation hyper-
surface if M is a graph of a function

f W Rn
! R W (x1, : : : , xn) 7! f (x1, : : : , xn) D f1(x1)C � � � C fn(xn),

where fi is a smooth function of one real variable fori D 1, 2,: : : , n. More precisely,
they proved

Theorem ([3]). Let M be a minimal translation hypersurface inRnC1. Then M
is either a hyperplane or MD 6 � R

n�2, where6 is a Scherk’s minimal translation
surface inR3.
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Scherk’s minimal translation surface in 3-dimensional Euclidean spaceR3 was gen-
eralized to translation surfaces with constant mean curvature or constant Gaussian curva-
ture inR3 by Liu [7]. In particular, he proved

Theorem ([7]). Let M be a translation surface with constant Gaussian curvature
K in R

3. Then M is congruent to a cylinder, and hence K� 0.

In Section 2 we generalize these previous results to translation hypersurfaces with
constant mean curvature or constant Gauss–Kronecker curvature in Euclidean space
and Lorentz–Minkowski space. In particular, we prove the following theorems.

Theorem 1.1. Let M be a translation hypersurface with constant mean curvature
H in RnC1. Then M is congruent to a cylinder6�Rn�2, where6 is a constant mean
curvature surface inR3. In particular, if H D 0, then M is either a hyperplane or
6 � R

n�2, where6 is a Scherk’s minimal translation surface inR3.

Theorem 1.2. Let M be a translation hypersurface with constant Gauss–Kronecker
curvature GK inRnC1. Then M is congruent to a cylinder, and hence GK� 0.

One may ask the similar problems for translation hypersurfaces in the upper half-space
model of hyperbolic spaceHnC1. Recently López [8] proved that there is no minimal
translation surface of type I inH3. (See Section 3 for the definition of translation
hypersurface of type I or type II in hyperbolic space.) In Section 3, we prove an ana-
logue of López’s result for higher-dimensional cases in hyperbolic space as follows:

Theorem 1.3. There is no minimal translation hypersurface of typeI in H

nC1.

Furthermore we characterize the minimal translation surfaces of type II inH3. (See
Theorem 3.3.)

2. Translation hypersurface with constant curvature in Euclidean space and
Lorentz–Minkowski space

Theorem 2.1. Let M be a translation hypersurface with constant mean curvature
H in RnC1. Then M is congruent to a cylinder6�Rn�2, where6 is a constant mean
curvature surface inR3. In particular, if H D 0, then M is either a hyperplane or
M D 6 � R

n�2, where6 is a Scherk’s minimal translation surface inR3.

Proof. Let a translation hypersurfaceM be an immersion given by

X W Rn
! R

nC1
W (x1, : : : , xn) 7! (x1, : : : , xn, f (x1, : : : , xn)),
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where f (x1, : : : , xn) D f1(x1) C � � � C fn(xn) and each fi is a smooth function for
i D 1, : : : , n. One can easily see that the unit normal vectorN and the mean curvature
H are given by

N D

(� f 01, : : : , � f 0n, 1)
q

1C
Pn

iD1 f 02i

and

(2.1) H D

Pn
iD1

�

1C
Pn

j¤i f 02j
�

f 00i

n
�

1C
Pn

iD1 f 02i

�3=2 ,

respectively. SinceM has constant mean curvatureH , differentiating the equation (2.1)
with respect tox1, we get

(2.2)

�

1C
Pn

jD2 f 02j
�

f 0001 C 2 f 01 f 001

�

Pn
jD2 f 00j

�

n
�

1C
Pn

iD1 f 02i

�1=2 D 3nH f 01 f 001 .

Differentiate the equation (2.2) with respect tox2, and we have

(2.3) (2f 01 f 001 f 0002 C 2 f 02 f 002 f 0001 )

 

1C
n
X

iD1

f 02i

!1=2

D 3nH f 01 f 001 f 02 f 002 .

Now suppose thatf 01 f 001 f 02 f 002 ¤ 0. Then the equation (2.3) implies

(2.4) 2

�

f 0001

f 01 f 001

C

f 0002

f 02 f 002

�

 

1C
n
X

iD1

f 02i

!1=2

D 3nH.

Note that 1C
Pn

iD1 f 02i is a nonconstant function of a variablex1 or x2 from the as-
sumption that f 01 f 001 f 02 f 002 ¤ 0. If each f 0i is constant fori D 3, 4, : : : , n, then

f (x1, : : : , xn) D f1(x1)C � � � C fn(xn) D f1(x1)C f2(x2)C a3x3 C � � � C anxn,

where eachai is constant fori D 3, 4, : : : , n. This implies thatM is congruent to
a cylinder6 � R

n�2, where6 is a constant mean curvature surface inR3. If f 0k is
not a constant function for somek D 3, 4, : : : , n, then one sees thatH must van-
ish from the above equation (2.4). As mentioned in the introduction, by the result of
Dillen et al. [3], one sees that a minimal translation hypersurface M � R

nC1 is either a
hyperplane orM D 6�R

n�2, where6 is a Scherk’s minimal translation surface inR3.
Hence we conclude thatM is a hyperplane orM D 6 �R

n�2, where6 is a Scherk’s
minimal translation surface inR3. Otherwise, if f 01 f 001 f 02 f 002 D 0, then it follows that
either f1 or f2 is linear, that is,

f1 D a1x1 C b1 or f2 D a2x2 C b2,
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whereai and bi are constants fori D 1, 2. Without loss of generality, we may assume
that f1 D a1x1 C b1. It immediately follows that

X(x1, : : : , xn) D (x1, : : : , xn, f1(x1)C f2(x2)C � � � C fn(xn))

D (x1, : : : , xn, a1x1 C b1 C f2(x2)C � � � C fn(xn))

D x1(1, 0, : : : , 0, a1)C (0, x2, : : : , xn, b1 C f2(x2)C � � � C fn(xn)),

which implies thatM is a cylinder. This completes the proof of Theorem 2.1.

Let LnC1 be the (n C 1)-dimensional Lorentz–Minkowski space, that is, the real
vector spaceRnC1 endowed with the Lorentz–Minkowski metric

ds2
D dx1

2
C � � � C dxn

2
� dxnC1

2

and x1, : : : , xnC1 are the canonical coordinates ofRnC1. We say that a vectorv 2
L

nC1
n {0} is spacelike, timelike or lightlike if jvj2 D hv, vi is positive, negative or

zero, respectively. The zero vector 0 is spacelike by convention. A hyperplane inLnC1

is said to bespacelike, timelike or lightlike if the normal vector of the hyperplane is
timelike, spacelike, or lightlike, respectively. An immersed hypersurfaceM � L

nC1 is
calledspacelikeif every tangent hyperplane ofM is a spacelike. We define a spacelike
translation hypersurfaceM � L

nC1 as follows:

DEFINITION 2.2. A spacelike hypersurfaceM � L

nC1 is called aspacelike trans-
lation hypersurfaceif it is given by an immersion

X W Rn
! L

nC1
W (x1, : : : , xn) 7! (x1, : : : , xn, f (x1, : : : , xn))

where f (x1, : : : , xn) D f1(x1) C � � � C fn(xn) and each fi is a smooth function for
i D 1, : : : , n.

In the above definition, a functionf should satisfy thatjr f j < 1 since M is a
spacelike hypersurface inLnC1. Applying the similar arguments as in the proof of The-
orem 2.1 we can also obtain a similar result in the Lorentz–Minkowski space as follows:

Theorem 2.3. Let M be a spacelike translation hypersurface with constantmean
curvature H inLnC1. Then M is congruent to a cylinder6 � R

n�2, where6 is a
constant mean curvature surface inL3. In particular, if H D 0, then M is either a
hyperplane or MD 6 � R

n�2, where6 is a Scherk’s maximal spacelike translation
surface inL3.

REMARK 2.4. A spacelike hypersurface with vanishing mean curvature is called
a maximal spacelike hypersurface. Kobayashi [5] gave various examples of maximal
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spacelike surfaces inL3 including Scherk’s maximal spacelike translation surface. In
1976, Cheng and Yau [2] proved that the only entire solutionsto the maximal space-
like hypersurface equation are linear. Even though there isno entire maximal spacelike
graph by the result of Cheng and Yau, one has many kinds of maximal spacelike graphs
locally. However Theorem 2.3 implies that the only nontrivial maximal spacelike trans-
lation hypersurface is locallyM D 6�R

n�2, where6 is a Scherk’s maximal spacelike
translation surface inL3.

Scherk’s minimal translation surface inR3 was generalized to translation surfaces
with constant Gaussian curvature inR3 by Liu [7]. In the following, we generalize his
result to higher-dimensional Euclidean space.

Theorem 2.5. Let M be a translation hypersurface with constant Gauss–Kronecker
curvature GK inRnC1. Then M is congruent to a cylinder, and hence GK� 0.

Proof. Let a translation hypersurfaceM be an immersion given by

X W Rn
! R

nC1
W (x1, : : : , xn) 7! (x1, : : : , xn, f (x1, : : : , xn))

where f (x1, : : : , xn) D f1(x1) C � � � C fn(xn) and each fi is a smooth function for
i D 1, : : : , n. Then it follows that the unit normal vectorN and the Gauss–Kronecker
curvatureGK are given by

N D

(� f 01, : : : , � f 0n, 1)
q

1C
Pn

iD1 f 02i

and

(2.5) GK D

f 001 f 002 � � � f 00n
�

1C
Pn

iD1 f 02i

�(nC2)=2 ,

respectively. Differentiating the equation (2.5) with respect tox1 and using the assump-
tion that the Gauss–Kronecker curvatureGK is constant, we get

0D f 002 � � � f 00n

"

f 0001

 

1C
n
X

iD1

f 02i

!

� (nC 2) f 01 f 0021

#

.

Suppose thatf 002 � � � f 00n D 0. Then one offi ’s is linear for i D 2, : : : , n, which implies
that M is congruent to a cylinder. Therefore one may assume thatf 002 � � � f 00n ¤ 0. Thus
one has

(2.6) f 0001

 

1C
n
X

iD1

f 02i

!

D (nC 2) f 01 f 0021 .
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In the left-hand side of the equation (2.6), 1C
Pn

iD1 f 02i is a nonconstant function of
variablesx2, : : : , xn since f 002 � � � f 00n ¤ 0. However the right-hand side is a function of
variable x1. Hence we obtain thatf 0001 � 0 and f 001 � 0, which means thatf1 is linear.
Therefore we conclude thatM is congruent to a cylinder.

3. Minimal translation hypersurfaces in hyperbolic space

Anderson [1] gave many examples of minimal surfaces with various topological
types in the hyperbolic spaceHn using geometric measure theory. Later by solving the
minimal surface equation in the hyperbolic space, many examples of minimal surfaces
in the 3-dimensional hyperbolic spaceH3 have been found in [4, 6, 9]. In order to
search Scherk’s minimal translation hypersurfaces in the hyperbolic space, we consider
the upper half-space model of then-dimensional hyperbolic spaceHn, that is,Rn

C

D

{(x1, : : : , xn�1, xn) 2 Rn
W xn > 0} equipped with the hyperbolic metric

ds2
D

dx2
1 C � � � C dx2

n

x2
n

.

Note that unlike in Euclidean space, the coordinatesx1,:::,xn�1 are interchangeable, but
not for the coordinatexn in H

n. Motivated by this observation, we give the following
definition of translation hypersurfaces inHnC1. It should be mentioned that López [8]
gave the same definition whenn D 2.

DEFINITION 3.1. A hypersurfaceM � H

nC1 is called atranslation hypersurface
of type I if it is given by an immersionX W U � R

n
! R

nC1
C

satisfying

X(x1, : : : , xn) D (x1, : : : , xn, f1(x1)C � � � C fn(xn)),

where eachfi is a smooth function onU � R

n for i D 1,:::,n. Similarly a hypersurface
M �H

nC1 is called atranslation hypersurface of typeII if it is given by an immersion
X W U � R

n
! R

nC1
C

satisfying

X(x1, : : : , xn) D (x1, : : : , xn�1, f1(x1)C � � � C fn(xn), xn).

Let M be a hypersurface in the upper half-space model ofH

nC1. If we denote by
Nh a unit normal vector field onM with respect to the hyperbolic metric inRnC1

C

, then
a unit normal vector fieldN on M with respect to the Euclidean metric is given by

N D

Nh

xnC1
.

Moreover, if we denote byHh and He the hyperbolic and Euclidean mean curvature
on M respectively, then it is well-known that

(3.1) Hh D xnC1HeC NnC1,
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where NnC1 is the (nC 1)-th component of the unit normal vectorN.
Contrary to the Euclidean case, it was proved that there is nominimal translation

surface of type I inH3 by López [8]. We prove an analogue for higher-dimensional
cases in the following.

Theorem 3.2. There is no minimal translation hypersurface of typeI in H

nC1.

Proof. It suffices to prove this theorem forn � 3 because the case whenn D 2
was done by López [8]. LetM be a translation hypersurface of type I which is given
by an immersion

X W Rn
! R

nC1
C

W (x1, : : : , xn) 7! (x1, : : : , xn, f (x1, : : : , xn))

where f (x1, : : : , xn) D f1(x1) C � � � C fn(xn) and each fi is a smooth function for
i D 1, : : : , n. Then it follows from the equation (3.1) that

Hh D

 

n
X

iD1

fi

!

Pn
kD1

�

1C
Pn

j¤k f 02j
�

f 00k
�

1C
Pn

iD1 f 02i

�3=2 C

n
�

1C
Pn

iD1 f 02i

�1=2 .

Since M is minimal, we get

(3.2)

 

n
X

iD1

fi

!"

n
X

kD1

 

1C
n
X

j¤k

f 02j

!

f 00k

#

D �n

 

1C
n
X

iD1

f 02i

!

.

We claim that f 00i ¤ 0 for eachi D 1, : : : , n. To see this, suppose first thatf 00i � 0
for eachi D 1, : : : , n. Then while the left-hand side of the equation (3.2) vanishes, the
right-hand side cannot be zero. Thusf 00i ¤ 0 for some 1� i � n. Now suppose that
f 00j � 0 for some 1� j � n. Then f j D axj C b, wherea and b are constants. Note
that a ¤ 0 since M is a graph. While the right-hand side of the equation (3.2) has a
degree 0 in the variablex j , the left-hand side has a degree 1 in the variablex j , which
is a contradiction. Hence this proves our claim.

We now have three possibilities as follows:
CASE (1): f 000i � 0 for all i D 1, : : : , n.
CASE (2): f 000i � 0 for somei and f 000j ¤ 0 for some j .
CASE (3): f 000i ¤ 0 for all i D 1, : : : , n.
For Case (1),f 00i D constant¤ 0 for eachi D 1,: : : ,n, by our above claim. So each

fi is a quadratic polynomial. The right-hand side of the equation (3.2) has a degree 2
in the variablexi . Because the left-hand side has the same degree, we have

(3.3)
n
X

l¤i

f 00l � 0.
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Since the equation (3.3) holds for eachi D 1, : : : , n, one can obtain that

f 001 D � � � D f 00n � 0,

which is impossible. For Case (2), we may assume thatf 0001 � 0 and f 0002 ¤ 0 with-
out loss of generality. Sincef1 is a quadratic polynomial, the right-hand side of the
equation (3.2) has a degree 2 in the variablex1. Hence we see that

f 002 C � � � C f 00n � 0.

Therefore we get

f 0002 D � � � D f 000n � 0,

which is a contradiction to our assumption thatf 0002 ¤ 0. For Case (3), differentiating
the equation (3.2) with respect tox1, x2 and x3, we get

f 01( f 02 f 002 f 0003 C f 03 f 003 f 0002 )C f 02( f 03 f 003 f 0001 C f 01 f 001 f 0003 )C f 03( f 01 f 001 f 0002 C f 02 f 002 f 0001 ) D 0.

Since f 00i ¤ 0 by the assumption, dividing both sides of the above equation by
f 01 f 001 f 02 f 002 f 03 f 003 , we have

(3.4)
1

f 001

�

f 0002

f 02 f 002

C

f 0003

f 03 f 003

�

C

1

f 002

�

f 0003

f 03 f 003

C

f 0001

f 01 f 001

�

C

1

f 003

�

f 0001

f 01 f 001

C

f 0002

f 02 f 002

�

D 0.

Differentiation of the above equation with respect tox1 gives

(3.5)
( f 0001 =( f 01 f 001 ))0

(1= f 001 )0
D �

f 0002 =( f 02 f 002 )C f 0003 =( f 03 f 003 )

1= f 002 C 1= f 003

D c1,

wherec1 is a constant. Therefore

(3.6) f 0001 D c1 f 01 C d1 f 01 f 001 ,

whered1 is a constant. Similarly one can get

f 0002 D c2 f 02 C d2 f 02 f 002 ,

f 0003 D c3 f 03 C d3 f 03 f 003 ,(3.7)

whereci anddi are constants fori D 2,3. Using the equations (3.5) and (3.7), we obtain

( f 0001 =( f 01 f 001 ))0

(1= f 001 )0
D �

(d2 C d3) f 002 f 003 C c2 f 003 C c3 f 002

f 002 C f 003

D c1.(3.8)

Using the above equation (3.8) and the assumption thatf 000i ¤ 0 for all i D 1, : : : , n,
we see that

c2 D c3 and d2 C d3 D 0.
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From the similar arguments, it follows that

c1 D c2 and d1 C d2 D 0,

c1 D c3 and d1 C d3 D 0.

Combining these relations, we can conclude that

(3.9) c1 D c2 D c3 D c and d1 D d2 D d3 D 0.

From the equations (3.4), (3.6), (3.7), and (3.9), one can get that

c( f 001 C f 002 C f 003 ) D 0.

Since f 00i ¤ 0 for eachi D 1, : : : , n by the assumption, one sees thatcD 0, that is,

f 0001 D f 0002 D f 0003 D 0,

by the equation (3.6), (3.7), and (3.9). However this is a contradiction. Therefore we
obtain the desired conclusion.

In [8], López proved that the only minimal translation surfaces of type II inH3

were totally geodesic planes. However there is a gap in his proof which leads to wrong
conclusion. Nevertheless, using his arguments, we characterize the minimal translation
surfaces of type II inH3 as follows:

Theorem 3.3. Let M � H

3 be a minimal translation surface of typeII given by
the parametrization X(x, z) D (x, f (x) C g(z), z)). Then the functions f and g are
as follows:

f (x) D axC b,

g(z) D
p

1C a2

Z

cz2

p

1� c2z4
dz,

where a, b, and c are constants.

Proof. Since the Euclidean mean curvatureHe on M and the third componentN3

of a unit normal vector field onM with respect to the Euclidean metric are given by

He D �

1

2

(1C g02) f 00 C (1C f 02)g00

(1C f 02 C g02)3=2

and

N3 D
g0

p

1C f 02 C g02
,
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respectively, the hyperbolic mean curvatureHh on M is given by

Hh D �

1

2

(1C g02) f 00 C (1C f 02)g00

(1C f 02 C g02)3=2
zC

g0
p

1C f 02 C g02

from the equation (3.1). SinceM is minimal, we have

(3.10) z

�

f 00

1C f 02
C

g00

1C g02

�

D 2g0
1C f 02 C g02

(1C f 02)(1C g02)
.

Differentiating the above equation with respect tox, we get

(3.11) z

�

f 00

1C f 02

�

0

D �4
f 0 f 00

(1C f 02)2

g03

1C g02
.

First suppose thatf 0 f 00 D 0. Then f (x) D axC b for some constantsa and b. The
equation (3.10) says that

zg00 D
2g0(1C a2

C g02)

(1C a2)
.

Solving this ordinary differential equation with respect to z, we obtain

g(z) D
p

1C a2

Z

cz2

p

1� c2z4
dz,

wherec is a constant.
Now suppose thatf 0 f 00 ¤ 0. Then by the equation (3.11) one sees that

( f 00=(1C f 02))0

�4 f 0 f 00=(1C f 02)2
D

g03

z(1C g02)
D d,

whered is a constant. Ifd D 0, then f D mxC n and g D constant, which is impos-
sible by our assumption thatf 0 f 00 ¤ 0. If d ¤ 0, then one can obtain a contradiction
by applying López’s arguments as in [8].

REMARK 3.4. Note that ifc D 0 in the Theorem 3.3, then the minimal transla-
tion surface can be parametrized as

X(x, z) D (x, axC bCm, z),

wherea, b, and m are constants. This surface is a vertical Euclidean plane which is a
totally geodesic plane inH3.
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