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Abstract
In this paper, we show that the space of vector valued Siegelutar forms of
I'o(N) C Sp(2,Z) with respect to the symmetric tensor of degree 2 has a simple
unified structure folN = 2, 3, 4. Each structure is similar to the structure of the full
modular group.

1. Introduction

On the structure theorem of Siegel modular forms of degrelgusa [10, 11] de-
termined the structure of Siegel modular forms with respedhe full modular group
Sp(2,Z). There are five generators of weight 4, 6, 10, 12 and 35. Tkefbiur gener-
ators are algebraically independent and the square of #tegénerator is in the sub-
ring generated by first four. Recently, Aoki and Ibukiyamé if&licated that the rings
of Siegel modular forms with small levels have similar stawes. That is, on the ring
of Siegel modular forms of degree 2 with respect to the cosgrisubgroup of level
N =1, 2, 3,4 (forN = 3, 4, taking Neven-type case with character), there are five
generators, among which four generators are algebraigadlgpendent and the square
of the other generator is in the subring generated by first fou

On the structure of vector valued Siegel modular forms ofrele@ with respect to
the symmetric tensor of degree 2, Satoh [12] and Ibukiyamal¢®ermined the struc-
ture with respect to the full modular group. There are tenegatiors with some rela-
tions. In this paper, we determine the structures of vecatmed Siegel modular forms
with small levels. Their structures are similar to the dmoe with respect to the full
modular group.

2. Main theorem

In this section, we state two main theorems. The first one ighenstructure of
complex valued Siegel modular forms and the second one i@sttucture of vector
valued Siegel modular forms. Today we have already knoweraékinds of proofs of
the first one. For example, In Aoki [1], we proved the first oryeusing the restriction
maps to Jacobi forms. In this paper we give another new prbdhe first one, that
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is available for the second one. The idea of our new proof isgplication of the
restriction map to the diagonal component, that is calledt \@fperator in the paper
by Ibukiyama [7]. This idea was given by van der Geer [4] andthy author [2]
independently but almost simultaneously.

2.1. Complex valued case. For a positive integeg, we denote the Siegel upper
half plane of degreq by

Hg:={Z ="'Z € My(C) | Im Z > 0}.
The symplectic group

A B Oy —E
s (2 8)evaen [ (5]

acts onHyg transitively by
Hg > Z — M(Z) := (AZ+ B)(CZ+ D)™* € Hy.
For M € Sp@, R), k € Z and a holomorphic functior: Hy — C, we write
(FkM)(Z) := detCZ + D) ™*F(M(Z)).

Put
Sp(g, Z) = Sp@! R) N MZQ(Z)

Let T be a finite index subgroup of Sp(Z) and lety : ' — C* be a character. We
denote by 1 the constant character.

For a holomorphic functiorF: Hy — C andk € Z, we sayF is a Siegel modular
form of weightk with a characteny if F satisfies the following two conditions:
(M1) v (M)F(Z) = (F|xkM)(Z) for any M € T.
(M2) F is bounded for each cusps.
We remark that, ifg > 2, the condition (M2) is induced from the condition (M1) by
Koecher principle. We denote by (T, ¥) the space of all Siegel modular forms of
weight k with a characteny. Put A(T") := A(T", 1) and A.(T") := Py A(T). The
spaceA, (") is a graded ring.

Put

rON) := {M - (é g) € Sp@, ) | C = 0y (mod N)}

for any natural numbeN € N := {1, 2, 3,...}. We denote byl//ég) the character
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defined byy?(M) = (—3/det(D)) and by y\? the character defined by ¥(M) =
(—1/det(D)). We put
re (N):= (M eTP(N) | (M) = 1)

for N =3, 4.

In this paper, our interest is the cage= 2 andN =1, 2, 3, 4. From now on, we
denote the coordinate dl, by

Z= ( vz ) € H,
Z o

and setq := exp(2r v/ —11), ¢ ;= exp(2r~/—12z) and p := exp(2r v/—1w). In foregoing
cases, the structure &, (") is already known.

Thgorem 1. For eaF:hF = Sp(2,Z2), Féz)(Z),F&)h(S) or Fé?l)l,4(4), the gradeq ring
A.(T) is generated by five modular forms. The first four generataes agebraically
independent and the square of the last generator is in theirsgilgenerated by the

first four.

r The yveights of The weights of References
the first four generators the last generato
Sp(2,Z2) 4,6,10,12 35 Igusa[10, 11]
ré(2) 2,4,4,6 19 Ibukiyama[7]
@ | 1334 14 Aok by ama
re),. @) 1,2,2,3 11 Hayashida—Ibukiyam46]

In this paper, we denote byl\i(l“) the subring of A.(I") generated by the first
four generators.

Today we know several methods to construct these genera@ne of the sim-
plest construction of the first four generators is by the Mdds®f Jacobi forms of
index 1. The author feels that the simplest constructionheflast generator is by the
Rankin—Cohen-Ibukiyama differential operator (cf. [335, Namely, four algebraically
independent modular formg; € A (") (j = 1, 2, 3, 4) induce a new modular form

kiFi koFo ksFs ksFy4
oFy d0F, 0F3 0F4
9t 9t ot dt
[Fi, F2, F3, Fa] :=det| aF; 9F, 9Fs 9F; | € Axrkorkerker3(T)
9z 9z 9z o0z
oF, o0F, 0F3 0F4

Jw w w ow
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and if we choose the first four generatorsFlgs we have the last generator.
In Section 4, we prove Theorem 1 and give the generating ifomatf dime Ax(T).

2.2. Vector valued case. Let s be a non-negative integel/ be a 6 + 1)-
dimensionalC-vector space ang: GL(2, C) — GL(V) be a rational representation. It
is well-known thatp is a rational irreducible representation if and onlypit= pxs :=
Syn? ®det. For the sake of simplicity, in this paper, we fix a coordinat&Syn® ® det
as follows: putV := C3*1 and py s(A) := (detA)¥pos(A), wherepgs(A) is defined by

o0 = 03y Y)e0s(A) (U v) = (X, )A).

For M € Sp(2,R) and a holomorphic functiorF : H, — CS*1, we write

(u®,u

(FI,M)(Z) := p(CZ + D) *F(M(Z)).

We sayF is a Siegel modular forms of weight with a character/ if F satisfies the
condition (M) F(Z) = (F|,M)(Z) for any M € T'. We remark that thid= is bounded
at each cusps by Koecher principle. We denoteAy(T", v) the space of all Siegel
modular forms of weighjy s with a charactery. Put Ay (T') := A s(T", 1). We remark
Axo(T) = A(T). It is easy to show that i§ is odd and if—E4 € T, then A s(T") =
{0}. Put A, s(T") := Dz Acs(l"). The spaceA, ¢(I') is a graded module oAL().

The aim of this paper is to determine the structure”qfa(I'). The structure of
A, 2(Sp(2,2)) was already determined by Satoh [12] and Ibukiyama [9]er€hare ten
generators, whose weights are

10=4+6, 16=6+10, 21=4+6+10+1,

14=4+10, 18=6+12, 23=4+6+12+1,

16=4+12, 22=10+12, 27=4+10+12+1 and
29=6+10+ 12+ 1.

To show this, they used the dimension formula of modular rin this paper we will
give this result by another way. By our way, we can determhe rmodule structure
of A () for I' = IP(2), I, (3) or Iy, (4).

Theorem 2. For eachl’ = Sp(ZZ),F(()Z)(Z),FéZJ)h(S) or I‘ézﬂ),m(4), the graded A(I")-

module A »(') is generated by ten modular forms.

r The weights of generators The weights of generators References
(type 1) (type 2)
sp(2,z) | 10,14, 16, 16, 18, 22 21, 23, 27, 29 ﬁ)ﬁﬁ;%iw]
ré () 6, 6, 8, 8, 10, 10 11, 13, 13, 15
rey. () 4,4,5,6,7,7 8,9,09 11 This paper
ry), @) 3,3,4,4,55 6,7,7,8
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All generators are constructed by differential operatathen N = 1, the gener-
ators of type 1 was constructed by Satoh [12] and the generafotype 2 was con-
structed by Ibukiyama [9]. For eacN = 2, 3, 4, we can construct all generators ac-
cording to the way by Satoh and Ibukiyama.

From Fj € A (") (j =1, 2), we have a new modular form

oF oF
kiFi—— — keFp——

T ot

oF oF

[Fln FZ] = k1F1—2 — kze—l S Ak1+k2,2(r)-

0z 0z

ok, oF

kKiFiI— — koFo——

1F1 2P

If we choose two distinct generators from the first four gates of A, o(I"), we get
generators of type 1. We remark that these generators of tyaee not independent.
There is a relation so called Jacobi identity:

kiFi[F2, Fa] + kaFo[F3, Fi] + ksFs[F1, F2] =0 (Fj € A (T)).

From Fj € A (") (j =1, 2, 3), we have a new modular form

9F, 0F; 0F, 0F3 oF10F3 0dF10F;

ot 0z 0z 0t ot 0z dz o0t

aF, oF oF, 0F dF, oF aF, 0F
[Fl, F, F3] =kiF] 2 972078 9r20%s —koFso] 2 oriorm3 om0
0t Jdw dw 0T

9F, 0F; 0F, 0F; oFL0F;  dF1 dF3

0Z dw dw 02 0Z dw dw 02

+kaFs3 2(—— - ——) € Ak1+k2+k3+l,2(r)-

If we choose three distinct generators from the first fouregators ofA, o(I"), we have
generators of type 2. There is a relation

kiFi[Fo, F3, Fa] + koFo[Fs, Fa, F1] 4 kaF3[F4, F1, Fo] + kaFa[F1, F2, F3] =0
(Fj S Akj (r)).

In Section 5, we prove Theorem 2 and give the generating inmetf dime Ag 2(T).
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3. Generalized Witt operators

3.1. Witt modular forms. From now on, we assume thEtsatisfies a condition

I =y, Ty,
where
0100
1000
=10 00 1
0010

For a while, we assumg ¢ T'. In this case, lel” be a subgroup of Sp(Z) generated
by I and yo and lety be a character of defined byy(M) = 1 for anyM e I' and
¥(y0) = —1. Then we have a decomposition

A = A(T) & AT, )

by

A(D) 5 F = (F +;|k7/0) N (F _5|kVO).

Becausey € I, if we admit modular forms with character, we may assume thest
lation formula with respect tgq always holds. Namely, we investigat (") and
AT, ¥) separately, instead of investigating(I') directly.

For M’ = ("é‘ 3) € SL(2,R) = Sp(1,R), let

a 0 b o 1 0 0O
~ [0 100 ~ o aonb
0 0 01 0 c 0d

For I' C Sp(2,Z), we define a subgroup of SL(Z) by
I":={M e€SL(2,Z) | (M) e I'}.
For v, that is a character of', we define a character a’ by
Y(M) := ¥ (yu(M)).

Becausey; Ly1(M)yo = y2(M), if (";‘ g) e T, we haveys(M’) € T and /(M) =
¥ (y2(M")).
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We considerH; x H; to be a subset off, by
0
LIH1XH19(‘5,0))I—>(T )GHZ
0 w

and let
G :={M € Sp(2,R) | M(H; x H;) = H; x H;}

be the isotropy group off; x H;. By direct calculation, we can show th& is gen-
erated byyy, and y1(M’), where M’ runs over SL(2R). Therefore, if F € Ag(T),
then*F is invariant not only with respect tpg but also with respect tM’ € T for
each variable.

For a holomorphic functionf : H; x H; — C andk, | € Z, we say f is a Witt
modular form of weight K, 1) with respect tolI” and v if f satisfies the following
two conditions:

(1) For any fixedwo € Hj, the function f(z, wo) on t € Hy belongs toA«(T, ¥').
(2) For any fixedrg € Hjy, the function f (79, @) on w € H; belongs toA (T, ¥).
We denote by W, (I, ¥') the space of all Witt modular forms of weighk, () with
respect tol'” and v’. By Witt [13, Satz A], we have

Wi (T, ¥') = AT, ') @c AT, ¥').
We say f € Wy (I, ') is symmetric or skew-symmetric if (z, w) = f(w, t) or
f(r, w) = —f(w, ), respectively. We denote the space of all symmetric or skew
symmetric forms by W"(I", ") or WK, "), respectively. It is easy to show that
Wik(T, ¥') = WR(I, ') @ W, o).
3.2. Differential operators. For a complex domairX, we denote by Hol{,C%)

the set of all holomorphic functions frorfK to CS. Forr € Np := {0, 1, 2,...}, define
a differential operatoD, : Hol(H,, C%) — Hol(H; x Hj, C%) by

o= (5 ) (5 o)

Acs(T, ;1) :={F € As(T, ¥) | Dy(F) =0 for anyt <r}.

and put

The generalized Witt operatdD, induces an exact sequence

0= Aws(T, Y1 + 1) = Acs(T, ¥i1) —> Hol(H; x Hy, C%)
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and we have a dimension formula

dime Axs(T, ) = Y dime Dy (Acs(T, 3 1)).

r=0

From the next section, we will calculate an upper bound of thmension of
D: (Axs(I", ¥;1)) and hence we will have an upper bound of the dimensioAQ{I", )
for each foregoing". Therefore, if we can construct sufficiently many modulamfs,
we can show this upper bound is the true dimensiod\gi(I", ).

Before the separate calculation, here we show one proposilihe translation for-
mulas ofy;(M’) and y»(M’) induces that the image of abo is in the space of Witt
modular forms. Whers = 0 ands = 2, we have the following proposition.

Proposition 3. There exist exact sequences as follows
(1) When s=0,
(1a) If (=1)¢(v0) = 1,

Dy

0— AL, Y51 4+ 1) = AL, 1) — WR(I, ¥).

(1b) If (—1)¢(y0) = -1,
0= AL, U1 + 1) = AT, ¥i1) = WS ),
(2) When s= 2,
(2a) If (=1)*¢(y0) =1,
0 Aol i1 +1) = Aol i) = Wieprziear (I, ) € WET, (I, ).

(2b) If (1) (v0) = ~1,

D, )
0— AT, i1 +1) > AT, i 1) — Wi pour (T, ¥) & Wﬁ'f}"il([‘ Y.

We omit the proof. However, here we assumé-—E;) € I' and remark some com-
ments about the above proposition. Wher= 0, if (—1)"" ¥ (y2(—E»)) = —1, then
WRT(I, ') = {0}. Hence, for example, ik is even,yy = 1 andy, € T, we can
sharpen the above exact sequence to

Dar
0 — Al 2r +2) — A 2r) = W5 (1),

where we denote®(T";r) := A(T, L;r). Whens = 2, the image ofD, is a vector
valued function, strictly. But, by, the first entry equals to the third entry up to the
sign. Therefore, in the above proposition, we denote theg@maf D, by the direct
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sum of two spaces. Moreover, for examplekiis even,r is odd,¥ =1 andy, € T,
then ‘fr‘(F’) = {0}, that means the second entry of the imageDpfis zero. Hence
the image ofD, is determined only from the first entry and we can denote

Do
0— Aol 2r + 1) — Aol 2r) —> Wior 2kp2r (I7).

4. Proof of Theorem 1

4.1. CaseN = 1. First, we consider the simplest case, that is, welset 1,
' =Sp(2,Z), I'" = SL(2,Z). In this case, the structure theorem is well known as lgusa’
theorem. WherN = 1, because, (—E;) € T', Proposition 3 induces the following prop-
osition immediately.

Proposition 4. There exist exact sequences as follows
(1) If k is even A(T") = A(T; 0) (by definition) and

0= AT 2r +2) > AT 2r) =5 WM (1),

(2) If kis odd Ak(l') = A(T; 1) and

Do
0 — AT 2r +3) — A 2r + 1) =5 WEkey ().

To study the imageD, (Ax(L";r)) more precisely, we will investigate Fourier co-
efficients of modular forms. Fof € A(I""), put the Fourier coefficients of by

f() = Y arna"

nez

and let
A(T;r):={f € A(I") |as(n) =0 for n <r}.

Let
Wi (T3 1) == A(T'; 1) ®c AI(T';1)

be a subspace of WI'') and let
WM 1) i= Wiek(T'5 1) 0 WR™(IT)

and
WS 1) := Wik (T': 1) N WEKSHIY).

For F € A(I"), put the Fourier coefficients df by

F(2)= ) an, I, mq"¢'p™

n,l,mezZ
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Because

(D (F))(x, @) := Y (Z(znﬂl)fa(n, l m))q“pm.

nmeZ \lezZ

if FeA(:r), foranyneZ, meZ andt <r,

> I'a(n,1,m) =0.

leZ

Let
100 0 1 x 0 0
| X L0 0 b |01 00
Y1001 x|" ™ =loo0o 1 o
000 1 0 0 —x 1

Lemma 5. The Fourier coefficients of F satisfy the following propesti
(1) If nm—12<0,n <0 or m< 0, then gn,|, m) =0.
(2) a(n, =1, m) = (=1)<a(n, I, m).
(3) a(m, I, n) = (—=1)a(n, I, m).
(@) a(n + xI + x?m, | +2xm, m) = a(n, |, m) for any xe Z. Thereforgif |I| > |m|,
then there exist nl’ € Z such that h< n and gn’,1I’, m) = a(n, |, m).
(5) a(n,! +2xn,m+ xl 4+ x2n) = a(n,|, m) for any xe Z. Thereforeif ||| > |n|, then
there exist M1’ € Z such that m< m and 4n,l’, m") = a(n, [, m).
(6) If k is odd then gn, 0,m) =0 and &n, |, n) =0.

Proof. (1) is well-known as the Koecher principle. On the a&on F|yM = F,
by settingM = y1(—E3), 10, v3(X) and y4(x), we have (2), (3), (4) and (5). From (2)
and (3), we have (6). ]

From this lemma, we have the next lemma, that is easy but theokeur proof.

Lemma 6. The Fourier coefficients of F has the following properties
(1) If k is even F € A(T'; 2r) and min{n, m} < r, then gn, |, m) = 0 for any I.
(2) If kis odd F € A(T; 2r + 1) and min{n, m} < r + 2, then &n, I, m) = 0O for
any |.

Proof. We will give a proof by induction on. First, we show (1). When = 0,
the assertion is trivial. Therefore we assume (1) holds fand prove it also holds for
r+ 1. Put

2a(n, 1, m) (if | # 0),

b(n, I, m) := {a(n, o,m) (if | =0).
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Becausea(m, I, n) = a(n, I, m), it is sufficient to show thab(r, |, m) = 0. Because
F e A(T; 2(r + 1)), foranyme Z andt € {0, 1,...,r}, we have

2./fm
> 1%b(r, 1, m) =0.

1=0

Whenm =r, from Lemma 5 (5) and the assumption of the induction, we have

> 1b(r,1,r) =0

1=0

fort €{0,1,...,r}. Hence, by the Vandermonde formula, we hé¢e |,r) = 0. For
generalm, we can showb(r, |, m) = 0 by induction onm.

Next, we consider (2). When = 0, from Lemma 5 (5), we hava(l, O,m) =
—a(1,0,m) anda(1,1,m) = a(1,—1,m) = —a(1,1,m), hencea(1,0,m) = a(1,1,m) = 0.
Then the assertion holds becawsé,|,m) = a(1,l —2,m—1+1). Therefore we assume
(2) holds forr and prove it also holds far+1. In this case, pub(n,I,m) :=la(n,l,m).
When F € A(T"; 2r + 1), for anyn,me Z andt € {0, 1,...,r — 1}, we have

2,/Am
> 1%b(n,1,m) = 0.
=1
From Lemma 5 (5) (6), we can show (2) by analogous proceduid)to O

By this lemma, we see the image Of is contained in a smaller space and im-
mediately we have the following proposition and corollary.

Proposition 7. There exist exact sequences as follows
(1) If k is even Ac(T") = Ak(T'; 0) (by definitior) and

0— AT:2r +2) — A(T: 2r) Dz W (I ).

(2) If k is odd A(I') = Ac(I'; 1) and

0= Al 2r +3) = Al 2r + 1) 25 Wekew  (1; 1 4+ 2).

Corollary 8. We have an upper bound for the dimension @fIA.
(1) If k is even dime A(I") < 372, dime Wl (I 1).

(2) If k is odd dime Ag(T) < Y50 dime WK (I; 1 + 2).
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To calculate the right-hand sides of this corollary, we déscthe structure of Witt
modular forms. It is classically well known tha,(I"") is generated by two alge-
braically independent modular forneg and e;, whereey, e5 are the Eisenstein series
of weights 4 and 6. Ramanujan’s delta function

ex(7)° — (1)’

A(r) = n(e)** = 1728

is a unique cusp form of weight 12. It is also well known ta{I"";r) = A" A 15 (I7).
Therefore, the bigraded ring of Witt modular forr@g, ., Wi, (T") is generated by four
algebraically independent forngs(t), es(1), es(w), es(w). Especially, we have

P W) = Clea(r)es(w), es(t)es(w), ea(r)’es(@)” + es(r) ()],

keZ
P W 1) = (A(D)A@)) (@ vviy’“(r’))
keZ keZ

and
P WI: 1) = (es(r) es(w)? — es(r)’es()?) (@ wWR(r; r)) :
keZ keZ

Therefore we have

Sym s, k _
LW = e

X12r

and
x12(+1)

skewy /. k
EZ: WX = T A= — o)

Hence, ifk is even, we have

X12r —2r

2 2 (dime W (M0 = D 4 aa —eya — <)

keZ r=0

1
T @ xH(I = x8)(L— x0)(1— x12)’

If k is odd, we have

00 ) . o0 x 120 +3)-(2r +1)
dime W5/ (T 1 + 2))x =
Z Z( C k+2r+1( +2)) ; (1 —x%(1 — x8)(1 — x12)

keZ r=0

X35
T (X)L =X)L - xI)1 - xT)’
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Consequently, we have an upper bound of the dimensioAyQf):

i k 1+ x%
é;wmmAADﬂ = MO0 O x)’

where < means that the dimension #§(I") is not greater than the coefficient ®f on
the formal power series development of the right-hand siamely, if we construct
algebraically independent modular forms of weight 4, 6,114, and if we construct a
modular form of weight 35, we finish the proof of Theorem 1 fdr= 1. Indeed,
Igusa [10, 11] constructed these modular forms from thetectfans. We denote nor-
malized generators b¥4, Eg, Ao, A1z and Azs. We remark

Ese Ay(T:0), Do(Es) = es(r)es(w), Es e As(T:0),  Do(Es) = es(r)es(w),
Ago € Ao(T;2), Da(A10) = A(T)A(w), Agz € Ap(T;0), Do(A12) = A(r)A(w)

and
Ass € Ags(T: 1), Di(Aszs) = (es(r)3es(w)? — e5(7)*€a(w)*)(A(T) Aw))%

This meansD,. and Dy 1 in Proposition 7 are surjective. Thereforg,, Eg, A1p and
Aj, are algebraically independent.

4.2. CaseN = 2. Second, we consider the cabe= 2. Namely, we sel’ :=
r@) andr’ = rP(2).

WhenN = 2, the obstruction on our way is that there are more than osjg. cthere-
fore, we should observe the behavior of a modular form at easp at the same time.

Let

1(02 -E;

My = — and M= —(2 71
T2\ 28, O, 1T p\2 o)

For F € A(T';r) and f € A(I), it is easy to show thaE [ M1 € A(T";r) and f [ M] €
A(T). For f € A(T), put the Fourier coefficients of by

fr) = arma"

nez
and
(fkMD(x) = D br(n)g".
nez
We define

A(T;r):={f € A(I") | as(n) = 0, bs(n) =0 for n <}
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and apply the way in the previous subsectionft@and F|(M;. Because Lemma 5 and
Lemma 6 hold not only for= but also forF|cM;, we have the following proposition
and corollary in a similar way in the previous section

Proposition 9. There exist exact sequences as follows
(1) If k is even A((I") = A(T"; 0) (by definitior) and

0 — Al 2r +2) — Al 2r) =2 W, ().

(2) If k is odd Ag() = A(I; 1) and

D
0 — AT 2r +3) — AT 2r +1) =5 Wkew (1 + 2).

Corollary 10. We have an upper bound for the dimension @{IA.
(1) If k is even dimg A(I') < 372 dime W5 (T ).
(2) If kis odd dime A(I') < 372, dime WEEY  (I;1 + 2).

It is well known that A (T; 1) = (n(7)®n(21)8)" Ac_g (I) and thatA,(I) is gen-
erated by two algebraically independent modular forms ofglme2 and 4. Hence, ik
is even, we have

XBr —2r

YD (dime Wb (M m))x* = ; (1—x2)(1— xH(1— x4

keZ r=0

1
T AT — X)L —xE)’

If k is odd, we have

X8(r +2)+4—(2r +1)

D 2 (dime WESSr (s T+ 2))x = ; (1= — x5 (1 —x%)

keZ r=0

X19
T (=)@ XA — XA —x8)’

Consequently, we have an upper bound of the dimensioA,(f):

. k ~ 1+ Xlg
gzz(dlmc A(I))x* =< (1—x2)(1—xH(1—x¥H(1 - X6)'

Namely, if we construct algebraically independent modédams of weight 2,4,4,6 and
if we construct a modular forms of weight 19, we finish the rob Theorem 1 for
N = 2. Indeed, Ibukiyama [7] constructed these modular formsnftheta functions.
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4.3. CaseN = 3. Third, we consider the casd = 3. Namely, we sef” :=

re,.@), ' =1 (3), [ :=rP@), I' =1@), v ==y andy’ = y{V. Let

When N = 3, the obstruction on our way ig ¢ I'. Therefore, we decompose
AT) = A(T) @ AT, ¥)
and apply our process ty(I') and A(T", ¥). If k is even, thenA(I") = A (") and

Wi(I) = Wi (). If k is odd, thenA () = AT, ¥') and W(I") = Wi(I”, ¥). In
a similar way in the previous section, we have the followimgpwsition.

Proposition 11. There exist exact sequences as follows
(1) If k is even
(1a) A(T") = A(T; 0) (by definition and

0~ AT 21 +2) > AT 2r) =5 WG ().
(1b) AT, ¥) = A(T, ¥: 1) and

0 Al ¥ 21 +3) > AT, 1 2r + 1) =25 WS (151 +2),

(2) If k is odd
(2a) A(T) = A(T; 1) and

0— AR 2r +3) > Al 2r +1) =25 WEkey (i1 + 2).
(2b) AT, ¥) = A(T, ¥; 0) (by definition) and
D2r

0= A, Y12 +2) — AT, y: 2r) =2 W (s ).

Because dig A(I") = dime A(I") + dime Ax(T, ¥), we have the following corol-
lary immediately.

Corollary 12. We have an upper bound

o0 o0
dime Ag(l) < ) dime W (1) + ) dime WSS, (s 1 + 2).
r=0 r=0
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It is well known that A,(T''; 1) = (n(7)®7(37)%)" A_e (I'") and thatA.(I") is gen-
erated by two algebraically independent modular forms ofghtel and 3. Hence,
we have

X6r —2r

2 D (dime WiZE, (I r))x* = ;, 1001

keZ r=0

1
T 10— )I 31— x%)

and

X6(r +2)+3—(2r+1)

2, 2 (dime Wil oUr + 20 =2 g a0

keZ r=0

X14

T 0@ LX)

Consequently, we have an upper bound of the dimensioA,(f):

1+ x4
(1—x)1—x3)(A—-x3)(1—x4’

> (dime Ag(M)x* <

keZ

Namely, if we construct algebraically independent modidams of weight 1,3,3,4 and
if we construct a modular forms of weight 14, we finish the prob Theorem 1 for
N = 3. Indeed, Ibukiyama [7] constructed these modular forrsftheta functions.

4.4, CaseN = 4. Finally, we consider the casd = 4. Namely, we sefl :=
ry.@), r'=r, @), M =r@), " =1P@), v :=y?, v :=y{? and decompose

A = A(T) ® AT, ¥).

Let
1/ 0, -E , _1(0 -1
Ml'_§(4E2 O, ) Ml'_§(4 0)’
([ E O , (10
MZ'_(ZEZ Ez) and M2.—(2 1).

When N = 4, the obstruction on our way i&|xM, ¢ A«(T'), even whenF €
A(T"). However,yp € M;1I'M, and we can apply the way in the previous section
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not only to F, F|xM; but also toF|(M,. Here, for f € A(I""), we put the Fourier
coefficients of f by

f() =Y arn",

nez
(FMp)(T) = > br(n)q",
nez
(FhMp)(x) = cr(n)g"?
nez

and redefine
AT;r):={f € A(I") |as(n) =0, bs(n) =0, cs(n) =0 for n <r}.

Then, in a similar way in the previous section, we have thdéofohg proposition
and corollary.

Proposition 13. There exist exact sequences as follows
(1) If k is even
(1a) A(") = A(I"; 0) (by definitior) and

0— A 2r +2) > A(F:2r) 2 WG, (1),
(1b) AT, ¥) = AT, ¥; 1) and
0— AT, ¥:2r +3)— A(T, y:2r +1) Dzt Wﬁf§¥+1(l"/: r+2).

(2) If k is odd
(2a) Al(I') = A(T; 1) and

I T Dar +1 skew /
0— Al 2r +3) > Al 2r +1) =5 Wekel (I:1 + 2).
(2b) A(T, ¥) = AT, ¥: 0) (by definition) and
D2r

0— AT, ¥:2r +2) = A(T, y:2r) = W ().

Corollary 14. We have an upper bound

oo o0
dime Ax(I") < ) dime W5, (1) + >~ dime WS, (Is 1 + 2).
r=0 r=0
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It is well known that Ag(I";r) = (n(z)*n(27)?n(41)*)" Ac_s (I7) and thatA. () is
generated by two algebraically independent modular forimeeight 1 and 2. Hence,
we have

X5r —2r

2 2 (dime Wiz, (T r)x = X:; 10091 )

keZ r=0

1
T 0@ —)A—x)A—3)

and

X5(r +2)+2—(2r+1)

2, 2 (dime Wil oUr + 20 =2 5 =

keZ r=0

Xll

T 0TI

Consequently, we have an upper bound of the dimensioA,(f):

1+ x1
(1—=x)1—x3)(1-x3)(1-x3)

> (dime Ag(M)x* <

keZ

We can show this upper bound coincides with the true dimanbkijoconstructing gen-
erators. Indeed, Hayashida and lbukiyama [6] construdtedet generators from theta
functions.

5. Proof of Theorem 2

Our proof of Theorem 2 is almost similar to the proof of Theoré. But, because
each Fourier coefficient is not a scalar but a vector, we newall snodification.

5.1. CaseN = 1. First, we give a lemma corresponding to Lemma 5. Foe
A 2(T"), put the Fourier coefficients df by

F(z)= ) a(n,|,maqg"'p"

n,l,mez

ai(n, 1, m)
a(n,l,m = (az(n, [, m)).

az(n, I, m)

and denote

Lemma 15. The Fourier coefficients of F satisfy the following equasion
(1) If nm—12<0,n <0 or m< O, then gn, |, m) =0.
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1 00
2) a(n, -1, m) = (—1)"(0 -1 O)a(n, [, m).
0 0 1

001
(3) a(m,1,n) = (—1)"(0 1 O)a(n,l,m).
100
1x x°
4) a(n+xl+x°m, I +2xmm)= {0 1 2 |a(n, |, m) for any xe Z.
00 1
1 00
(5) a(n, | + 2xn, m+ x| + x2n) = (Zx 1 o)a(n,l,m) for any x € Z.

) x2 x 1
(6a) If k is even then we have

a(n, 0,m) =0,
ai(n, 1, n) = ag(n, I, n),
ai(n, n, m) = ay(n, n, m),

az(n, m, m) = ag(n, m, m).

(6b) If k is odd then we have

ai(n, 0,m) =0, az(n, 0,m) = 0O,

ai(n, I, n) = —ag(n,1,n), ax(n,1,n)=0,

ai(n, n, m) =0, ax(n, n, m) = 2ag(n, n, m),
ag(n, m, m) =0, ax(n, m, m) = 2a;(n, m, m).

Proof. This lemma is proved in the same manner as Lemma 5. Xaonm@e, we
can showay(n, n, m) = ayx(n, n, M) on (6a) by substituting = n andx = —1 on (2)
and (5). []

Lemma 16. The Fourier coefficients of F has the following properties
(1a) Suppose k is even and & A o(T; 2r).

If min{fn—1,m} <r, then a(n,I, m) =0.

If min{n, m} <r + 1, then g&(n,1, m) =0.

If min{n, m—1} <r, then &(n,I, m) =0.
(1b) Suppose k is even and & A »(T"; 2r + 1).

If min{n, m} <r + 1, then &n, |, m) =0.
(2a) Suppose k is odd and & A o(T; 2r).

If minfn—1,m} <r 4+ 1, then a(n,l, m) = 0.

If min{n, m} <r + 1, then &(n, I, m) =0.

If min{n,m—1} <r 4 1, then g(n,[, m) = 0.
(2b) Suppose k is odd and € A »(; 2r + 1).

If minfn—1,m} <r 4+ 1, then a(n,l, m) = 0.
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If min{n, m} <r + 1, then &(n, I, m) =0.
If min{n,m—1} <r + 1, then &(n,l, m) =0.

Proof. This lemma is proved in the same manner as Lemma 6. O

Let
Wi (T':1, 8) 1= A((T: 1) ®c A(T'; )
be a subspace of W(I'"). We have the following proposition immediately.
Proposition 17. A (") = A« 2(; 0) (by definition and there exist exact se-

quences as follows
(1) If k is even

Dy ,
0— AT 2r +1) — AcoT; 2r) = Wigarpo k2 (751 4+ 1,1),

and
Dar 1 Sym /
0— AT 2r +2) = AT 2r +1) —— W o (051 + 1),
(2) If k is odd
0= Aca(T: 2r + 1) — Aol 2r) 22 WY (Mo + 1),
and

Dar 41

0— A2l 2r +2) > AT 2r + 1) — Wigorgakrzr+1(T5 1 + 2,1 + 1),
Whens = 2, we need one more lemma.

Lemma 18. When k= 10( + 1), we have B 11(Ax2(T; 2r 4+ 1)) = 0, although

dime Wl (i1 +1) = 1.

Proof. Setk = 10( + 1). From previous proposition, it is easy to show that

Dz +1(A2(T: 2r + 1)) C C(A(D)A(w)) h,  dime Aca(T: 2r + 1) < 1,
Do 41(Aksa2T: 2r + 1)) C Ces(t)es(@)(AR)A(w)) T, dime Aan(T:2r +1) <1

and

Dar+1(Acre,2(T: 2r + 1)) C Ceg(t)es(@)(A(T)A(w)) ™, dime Acye 2T 2r +1) < 1.
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Because
Do([E4, A10]) =0, Da([Es, A1q]) = 4es(r)es(w)A(7) A(w),
Do([Es, A10]) =0 and Da([Es, A1o]) = 4es(r)es(w)A(r) A(w),
we have
Acta,2(T; 2r + 1) = CAY[Eas, A1g],
Dar 11(A%Eay Asgl) = 42 + 1)!! () es(@)(A(r) A(w))
and
Aci62(l; 2r +1) = CAY[Es, Ag),
Dar +1(A%[ Es, Ascl) = 6(2 + 1)!! es(r)es(@)(A(r)A(w)) .

Assume the existence df € Ay »(I"; 2r + 1) such thatDy 4 1(F) = (A(r) A(w)) 2.
Then we have

42 + 1)1 EsF = AY[Ea, Aqq),
6(2 + 1) EgF = A’ [Es, A1q]

and
6Es A [Ea, A1g] —4E4A [Es, A1g] = 0.

By Jacobi identity, it meansHy, Eg] = 0. It is a contradiction. Thus we have
Dar+1(Ax2(I: 2r + 1)) = 0. 0

Corollary 19. We have an upper bound as follaws
(1a) If k is even and k£ 0 (mod 10),

o0 o0
dime Ac2o(T") < Z dime Wit ar 2k (051 +1,1) + Z dime W%, (T + 1).
r=0 r=0
(1b) If k =0 (mod 10),
[e.¢] o0
dime Ago(T) < D dime Wicar oz (T:1 +1,1) + > dime W5 (751 + 1) — 1.
r=0 r=0
(2) If k is odd

00 00
dimc Ak,Z(F) < Z dImC Wk+2,+3,k+2r+1(I"; r—+2,r + l) + Z dlmc Wifg}’+l(rl; r+ 1)
r=0 r=0



646 H. AokI
Proof. It is a easy consequence of Proposition 17 and Lemma 18 [l

Because did Wi or 2k+2r (I'; 1 +1,1) = dime Wi —10k-10- (I''; O, 0), we need
to calculate the dimension of Wiok(I'’; 0, 0). Namely, we need to calculate the co-
efficients 10k in

L = ki,
(1—x%HA—-x5(1-yH(1 - yd) = Z CI XY .

k,|ENO

Because
1
(1= xH(1—x%)(1 -y (1 -y°)

B 1 1
_(u—xﬂa—yﬁ)x(a—x%a—yﬁ)

_(---+x2°+x16+x12+x8+x4+1+y4+y8+y12+y16+y2°+---)

b x30 x4 I8 12 4 w6 ) By 12 g I8y 24y (B0
X
1— x6y® '
we have
Z Ck-10x X TH0Y"
kENo

et X2oyso + X8y18 + y10 + X6y16 + X18y28 + .-
(1 —x4y#)(1 — x5y®)

Ly x20y30 | xBy/18 y10 xByl6 4 x18y28 4 ..
T (LX) - xBY0) (L xAYH)(L—xBYO) (1 xAyH)(1 — xByP)
_ X8y18 N y10
(1—x%y")(1 - xBy®)(1—x2y2) = (1—x*y*)(1— x°y9)
X6y16

XA XYL~ X2y

Hence, ifk is even, we have an upper bound

> (dime A a(1))x"
ke2z,
Xl6 + X18 XlO
= (1—x*(1—x5)(1 — x19(1—x*?) * (1—x*)(1—x8)(1— x19
%10 10

T EI O L—x3) (1 x1)
(1= xH)(1—x°)(1 —x19)(1—x?) '
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We can show this upper bound coincides with the true dimenkioconstructing gen-
erators by differential operators (p.4). Becau3g and Dy .1 in Proposition 17 are
surjective except whetkk = 10(¢ + 1), Jacobi identity is the only relation between
these generators.

If k is odd, we have

> (dime Aa(T)X

ke2z+1
27 4+ x29 x21
< +
T (A-xH1-x8)(1-x01—-x?)  (1—xH(1—-x5)(1—x0)
23

X
T Ao AHE - — XA x)
(X21 + X23 + X27 + X29) _ X33
T (1= x4 (1 — x8)(1— xWO)(1— x13)’

We can show this upper bound coincides with the true dimankioconstructing gen-
erators by differential operators (p.5).

5.2. CaseN =2,3,4. Now we have already studied all the technique to prove
our theorem. By similar calculation, we have an upper boufdhe dimension of
modular forms and we can show that it coincides with the tingedsion by construct-
ing generators by differential operators.

When N = 2, we have the following proposition.

Proposition 20. The space fx(I") = Ax2(T"; 0) has the following properties
(1) If k is even there are exact sequences

Dar )
0— Aa(T52r +1) — Aol 2r) —> Wiior ok (I 7 +1,71)

and

D2r+l

0— AT 2r +2) > AT 2r + 1) —— WRo (T r +1).

(2) If k is odd there are exact sequences
D ,
0— Aol 2r + 1) — Aol 2r) —> WKW (s 1 + 1)

and

D2r+1

0— Aa(T:2r +2) = Aa(T; 2r + 1) —— Wi sakrar+a(I51r + 2,1 + 1).
(3) When k= 6(r + 1), we have B 1(Ax2(T"; 2r 4+ 1)) = 0, although

dime W', (i1 +1) = 1.
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Hence, ifk is even, we have an upper bound

> (dime A o(T)x"

ke2Z

_ X6 1 x8 NG

T (1= x9)(1 = xH (L - x4)(1—x5) * (1—x2)(1—x4)(1—x5)
x8 x8

T A1 -1 —x8)  (1—x
(2x0 4 2x® 4+ 2x19) — (x10 4 2x12 4 x1) + x1©
a (1—x2)(1 — x4)(1 — x4)(1 — x5)

If k is odd, we have

> (dime Ao(T)X

ke2Z+1
X13 _,’_ X15 X13
=TI AL X)L —x0) T T— DA x)(AL—x9)
Xll

R G [ [ [
_ (Xll + 2Xl3 + X15) _ X17
T (=X)L - xH(1—x¥(1—x8)

When N = 3 or N = 4, we have the following proposition.

Proposition 21. We decompose
Aca(T) = AT 0) @ A(T, ¥; 0).

Each decomposed space has the following properties
(1a) If k is even there are exact sequences

N - Dy ,
0— Ao(T2r +1) = Aol 2r) == Wisar ks (U, ¥31 +1,71)

and
0— Aol 2r +2) — Aa(l 2r +1) 225 W (1, y/ir + 1),

(1b) If k is even there are exact sequences
0= Azl Y20 + 1) > Aol ¥:2r) 25 WS, (I, 91 + 1)
and

- - Dar / /
0— Ao, Y1 2r +2) — AT, 3 2r + 1) —5 Wi arrakrzr (T, W51 + 2,1 + 1),
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(2a) If k is odd there are exact sequences

0= Aol 2r +1) > Aol 2r) 22 WS (1, /i1 + 1)
and

2r+1

_ - D
0— Aa(l:2r +2) > AT 2r + 1) — Wiorgakrar+2(T, ¥'ir +2,1 +1).

(2b) If k is odd there are exact sequences

~ ~ Do
0— Aol ¥:2r + 1) = Aol ¥: 2r) = Wiror yokrar (I, W51 +1,71)

and

Dor+1

0— Aca(T, 3 2r +2) > Aa(l, ¥5 2r + 1) —— WD (I, ¢/s1 + 1).

(3) When k= 4 + 1) (N = 3) or when k= 3(r + 1) (N = 4), we have

Do 11(Ax2(T; 2r + 1)) = 0, althoughdime W5, (I;1 + 1) = 1.

Hence, whenN = 3, from (1a) (2b) and (3), we have

> (dime AaM)XE + Y (dime A, ¥))xK

ke2z ke2Z+1
x4 4 x8 x4
= =00 I=F)1—x) | A== )1 =x9
x4 x4
T A0 —xb  (1—xd)
(2 4 x5 4 X8+ 2X7T) — (X7 + 2xB 4 x10) 4 xM
- (1—x)(1—x3)(1 — x3)(1 — x4)

and from (1b) and (2a), we have

Y (dime Aca(E)X* + )~ (dime AT, ¥))x¢

ke2Z+1 ke2Z
x9 4 xi1 x9
= T )A— A —x8)  T- %A x)(I—x)
X8
B T e T ) T s
B (x8 4 2x% 4 xt1) — x*2
T A= x)1—-x3)1—x3)(1—x%)’

The first case corresponds to the generators of type 1 andshedse corresponds to
the generators of type 2.
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When N = 4, from (1a) (2b) and (3), we have

3 (dime AaE)X<+ Y (dime Al ¥)xK

ke2z ke2z+1
_ x3 + x4 N x3
TA-x)1-x3)1-x3)(1-x3)  (A-x)(1—x3)(1-x3)
x3 x3
R YC e e Q) Sl e
(2x3 4+ 2x* 4 2x5) — (x5 4+ 2x5 4+ x7) + x8
(1—x)(1—x2)(1—x3)(1—x3

and from (1b) and (2a), we have

Y (dime Aca(T)XK + )~ (dime A (T, ¥))x¢

ke2z+1 ke2Z

_ x” 4 x8 X7

T (1=x)(1—x23)(1—x2)(1—x53) + (1—x)(1—x3)(1—x3)
6

X
T 0a—aa-aa-x)
B (x8 4+ 2x7 4 x8) — x°
T (1-x)1-x)1-x2)(1L—-x3)’

The first case corresponds to the generators of type 1 andshedse corresponds to
the generators of type 2.
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