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Abstract
In this paper, we show that the space of vector valued Siegel modular forms of

00(N) � Sp(2,Z) with respect to the symmetric tensor of degree 2 has a simple
unified structure forN D 2, 3, 4. Each structure is similar to the structure of the full
modular group.

1. Introduction

On the structure theorem of Siegel modular forms of degree 2,Igusa [10, 11] de-
termined the structure of Siegel modular forms with respectto the full modular group
Sp(2,Z). There are five generators of weight 4, 6, 10, 12 and 35. The first four gener-
ators are algebraically independent and the square of the last generator is in the sub-
ring generated by first four. Recently, Aoki and Ibukiyama [3] indicated that the rings
of Siegel modular forms with small levels have similar structures. That is, on the ring
of Siegel modular forms of degree 2 with respect to the congruent subgroup of level
N D 1, 2, 3, 4 (for N D 3, 4, taking Neven-type case with character), there are five
generators, among which four generators are algebraicallyindependent and the square
of the other generator is in the subring generated by first four.

On the structure of vector valued Siegel modular forms of degree 2 with respect to
the symmetric tensor of degree 2, Satoh [12] and Ibukiyama [9] determined the struc-
ture with respect to the full modular group. There are ten generators with some rela-
tions. In this paper, we determine the structures of vector valued Siegel modular forms
with small levels. Their structures are similar to the structure with respect to the full
modular group.

2. Main theorem

In this section, we state two main theorems. The first one is onthe structure of
complex valued Siegel modular forms and the second one is on the structure of vector
valued Siegel modular forms. Today we have already known several kinds of proofs of
the first one. For example, In Aoki [1], we proved the first one by using the restriction
maps to Jacobi forms. In this paper we give another new proof of the first one, that
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is available for the second one. The idea of our new proof is anapplication of the
restriction map to the diagonal component, that is called Witt operator in the paper
by Ibukiyama [7]. This idea was given by van der Geer [4] and bythe author [2]
independently but almost simultaneously.

2.1. Complex valued case. For a positive integerg, we denote the Siegel upper
half plane of degreeg by

Hg WD {Z D tZ 2 Mg(C) j Im Z > 0}.

The symplectic group

Sp(g, R) WD

�

M D

�

A B
C D

�

2 M2g(R) tM JgM D Jg WD

�

Og �Eg

Eg Og

��

acts onHg transitively by

Hg 3 Z 7! MhZi WD (AZC B)(C ZC D)�1
2 Hg.

For M 2 Sp(g, R), k 2 Z and a holomorphic functionF W Hg ! C, we write

(F jk M)(Z) WD det(C ZC D)�k F(MhZi).

Put

Sp(g, Z) WD Sp(g, R) \M2g(Z).

Let 0 be a finite index subgroup of Sp(g, Z) and let W 0 ! C

� be a character. We
denote by 1 the constant character.

For a holomorphic functionF W Hg! C and k 2 Z, we sayF is a Siegel modular
form of weight k with a character if F satisfies the following two conditions:
(M1)  (M)F(Z) D (F jk M)(Z) for any M 2 0.
(M2) F is bounded for each cusps.
We remark that, ifg � 2, the condition (M2) is induced from the condition (M1) by
Koecher principle. We denote byAk(0,  ) the space of all Siegel modular forms of
weight k with a character . Put Ak(0) WD Ak(0, 1) and A

�

(0) WD
L

k2Z Ak(0). The
spaceA

�

(0) is a graded ring.
Put

0

(g)
0 (N) WD

�

M D

�

A B
C D

�

2 Sp(g, Z) C � Og (mod N)

�

for any natural numberN 2 N WD {1, 2, 3, : : : }. We denote by (g)
3 the character
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defined by (g)
3 (M) D (�3=det(D)) and by (g)

4 the character defined by (g)
4 (M) D

(�1=det(D)). We put

0

(g)
0, N

(N) WD {M 2 0(g)
0 (N) j  (g)

N (M) D 1}

for N D 3, 4.
In this paper, our interest is the caseg D 2 and N D 1, 2, 3, 4. From now on, we

denote the coordinate ofH2 by

Z D

�

� z
z !

�

2 H2

and setq WD exp(2�
p

�1� ), � WD exp(2�
p

�1z) and p WD exp(2�
p

�1!). In foregoing
cases, the structure ofA

�

(0) is already known.

Theorem 1. For each0 D Sp(2,Z), 0(2)
0 (2),0(2)

0, 3
(3) or 0(2)

0, 4
(4), the graded ring

A
�

(0) is generated by five modular forms. The first four generators are algebraically
independent and the square of the last generator is in the subring generated by the
first four.

0

The weights of
the first four generators

The weights of
the last generator

References

Sp(2,Z) 4, 6, 10, 12 35 Igusa [10, 11]

0

(2)
0 (2) 2, 4, 4, 6 19 Ibukiyama[7]

0

(2)
0, 3

(3) 1, 3, 3, 4 14
Ibukiyama[7]
Aoki–Ibukiyama[3]

0

(2)
0, 4

(4) 1, 2, 2, 3 11 Hayashida–Ibukiyama[6]

In this paper, we denote byA\
�

(0) the subring of A
�

(0) generated by the first
four generators.

Today we know several methods to construct these generators. One of the sim-
plest construction of the first four generators is by the Maasslift of Jacobi forms of
index 1. The author feels that the simplest construction of the last generator is by the
Rankin–Cohen–Ibukiyama differential operator (cf. [3, 5,8]). Namely, four algebraically
independent modular formsF j 2 Ak j (0) ( j D 1, 2, 3, 4) induce a new modular form

[F1, F2, F3, F4] WD det

0

B

B

B

B

B

B

B

B

B

�

k1F1 k2F2 k3F3 k4F4

�F1

��

�F2

��

�F3

��

�F4

��

�F1

�z

�F2

�z

�F3

�z

�F4

�z
�F1

�!

�F2

�!

�F3

�!

�F4

�!

1

C

C

C

C

C

C

C

C

C

A

2 Ak1Ck2Ck3Ck4C3(0)
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and if we choose the first four generators asF j , we have the last generator.
In Section 4, we prove Theorem 1 and give the generating function of dim

C

Ak(0).

2.2. Vector valued case. Let s be a non-negative integer,V be a (s C 1)-
dimensionalC-vector space and� W GL(2,C)! GL(V) be a rational representation. It
is well-known that� is a rational irreducible representation if and only if� D �k,s WD

Syms

detk. For the sake of simplicity, in this paper, we fix a coordinateof Syms


detk

as follows: putV WD C

sC1 and�k,s(A) WD (det A)k
�0,s(A), where�0,s(A) is defined by

(us, us�1
v, : : : , vs) D (xs, xs�1y, : : : , ys)�0,s(A) ((u, v) D (x, y)A).

For M 2 Sp(2,R) and a holomorphic functionF W H2! C

sC1, we write

(F j
�

M)(Z) WD �(C ZC D)�1F(MhZi).

We sayF is a Siegel modular forms of weight� with a character if F satisfies the
condition (M)F(Z) D (F j

�

M)(Z) for any M 2 0. We remark that thisF is bounded
at each cusps by Koecher principle. We denote byAk,s(0,  ) the space of all Siegel
modular forms of weight�k,s with a character . Put Ak,s(0) WD Ak,s(0,1). We remark
Ak,0(0) D Ak(0). It is easy to show that ifs is odd and if�E4 2 0, then Ak,s(0) D

{0}. Put A
�,s(0) WD

L

k2Z Ak,s(0). The spaceA
�,s(0) is a graded module ofA\

�

(0).
The aim of this paper is to determine the structure ofA

�,2(0). The structure of
A
�,2(Sp(2,Z)) was already determined by Satoh [12] and Ibukiyama [9]. There are ten

generators, whose weights are

10D 4C 6, 16D 6C 10, 21D 4C 6C 10C 1,
14D 4C 10, 18D 6C 12, 23D 4C 6C 12C 1,
16D 4C 12, 22D 10C 12, 27D 4C 10C 12C 1 and

29D 6C 10C 12C 1.

To show this, they used the dimension formula of modular forms. In this paper we will
give this result by another way. By our way, we can determine the module structure
of A

�,2(0) for 0 D 0(2)
0 (2), 0(2)

0, 3
(3) or 0(2)

0, 4
(4).

Theorem 2. For each0 D Sp(2,Z),0(2)
0 (2),0(2)

0, 3
(3) or 0(2)

0, 4
(4), the graded A\

�

(0)-
module A

�,2(0) is generated by ten modular forms.

0

The weights of generators
(type 1)

The weights of generators
(type 2)

References

Sp(2,Z) 10, 14, 16, 16, 18, 22 21, 23, 27, 29
Satoh[12]
Ibukiyama[9]

0

(2)
0 (2) 6, 6, 8, 8, 10, 10 11, 13, 13, 15

0

(2)
0, 3

(3) 4, 4, 5, 6, 7, 7 8, 9, 9, 11 This paper

0

(2)
0, 4

(4) 3, 3, 4, 4, 5, 5 6, 7, 7, 8
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All generators are constructed by differential operators.When N D 1, the gener-
ators of type 1 was constructed by Satoh [12] and the generators of type 2 was con-
structed by Ibukiyama [9]. For eachN D 2, 3, 4, we can construct all generators ac-
cording to the way by Satoh and Ibukiyama.

From F j 2 Ak j (0) ( j D 1, 2), we have a new modular form

[F1, F2] WD

0

B

B

B

B

B

B

�

k1F1
�F2

��

� k2F2
�F1

��

k1F1
�F2

�z
� k2F2

�F1

�z

k1F1
�F2

�!

� k2F2
�F1

�!

1

C

C

C

C

C

C

A

2 Ak1Ck2,2(0).

If we choose two distinct generators from the first four generators of A
�,0(0), we get

generators of type 1. We remark that these generators of type1 are not independent.
There is a relation so called Jacobi identity:

k1F1[F2, F3] C k2F2[F3, F1] C k3F3[F1, F2] D 0 (F j 2 Ak j (0)).

From F j 2 Ak j (0) ( j D 1, 2, 3), we have a new modular form

[F1, F2, F3] WD k1 F1

0

B

B

B

B

B

B

�

�F2

��

�F3

�z
�

�F2

�z

�F3

��

2

�

�F2

��

�F3

�!

�

�F2

�!

�F3

��

�

�F2

�z

�F3

�!

�

�F2

�!

�F3

�z

1

C

C

C

C

C

C

A

� k2F2

0

B

B

B

B

B

B

�

�F1

��

�F3

�z
�

�F1

�z

�F3

��

2

�

�F1

��

�F3

�!

�

�F1

�!

�F3

��

�

�F1

�z

�F3

�!

�

�F1

�!

�F3

�z

1

C

C

C

C

C

C

A

C k3 F3

0

B

B

B

B

B

B

�

�F1

��

�F2

�z
�

�F1

�z

�F2

��

2

�

�F1

��

�F2

�!

�

�F1

�!

�F2

��

�

�F1

�z

�F2

�!

�

�F1

�!

�F2

�z

1

C

C

C

C

C

C

A

2 Ak1Ck2Ck3C1,2(0).

If we choose three distinct generators from the first four generators ofA
�,0(0), we have

generators of type 2. There is a relation

k1F1[F2, F3, F4] C k2F2[F3, F4, F1] C k3F3[F4, F1, F2] C k4F4[F1, F2, F3] D 0

(F j 2 Ak j (0)).

In Section 5, we prove Theorem 2 and give the generating function of dim
C

Ak,2(0).



630 H. AOKI

3. Generalized Witt operators

3.1. Witt modular forms. From now on, we assume that0 satisfies a condition

0 D 


�1
0 0
0,

where


0 WD

0

B

B

�

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

1

C

C

A

.

For a while, we assume
0 � 0. In this case, letQ0 be a subgroup of Sp(2,Z) generated
by 0 and 
0 and let be a character ofQ0 defined by (M) D 1 for any M 2 0 and
 (
0) D �1. Then we have a decomposition

Ak(0) D Ak( Q0)� Ak( Q0,  )

by

Ak(0) 3 F D

�

F C F jk
0

2

�

C

�

F � F jk
0

2

�

.

Because
0 2 Q0, if we admit modular forms with character, we may assume the trans-
lation formula with respect to
0 always holds. Namely, we investigateAk( Q0) and
Ak( Q0,  ) separately, instead of investigatingAk(0) directly.

For M 0

D

�

a b
c d

�

2 SL(2,R) D Sp(1,R), let


1(M 0) WD

0

B

B

�

a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

1

C

C

A

, 
2(M 0) WD

0

B

B

�

1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d

1

C

C

A

.

For 0 � Sp(2,Z), we define a subgroup of SL(2,Z) by

0

0

WD {M 0

2 SL(2,Z) j 
1(M 0) 2 0}.

For  , that is a character of0, we define a character of00 by

 

0(M 0) WD  (
1(M 0)).

Because
 �1
0 
1(M 0)
0 D 
2(M 0), if

�

a b
c d

�

2 0

0, we have
2(M 0) 2 0 and  0(M 0) D

 (
2(M 0)).
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We considerH1 �H1 to be a subset ofH2 by

� W H1 �H1 3 (� , !) 7!

�

� 0
0 !

�

2 H2

and let

G WD {M 2 Sp(2,R) j MhH1 �H1i D H1 �H1}

be the isotropy group ofH1 �H1. By direct calculation, we can show thatG is gen-
erated by
0 and 
1(M 0), where M 0 runs over SL(2,R). Therefore, if F 2 Ak(0),
then ��F is invariant not only with respect to
0 but also with respect toM 0

2 0

0 for
each variable.

For a holomorphic functionf W H1 � H1 ! C and k, l 2 Z, we say f is a Witt
modular form of weight (k, l ) with respect to00 and  0 if f satisfies the following
two conditions:
(1) For any fixed!0 2 H1, the function f (� , !0) on � 2 H1 belongs toAk(00,  0).
(2) For any fixed�0 2 H1, the function f (�0, !) on ! 2 H1 belongs toAl (00,  0).
We denote by Wk,l (00,  0) the space of all Witt modular forms of weight (k, l ) with
respect to00 and 0. By Witt [13, Satz A], we have

Wk,l (0
0,  0) D Ak(00,  0)


C

Al (0
0,  0).

We say f 2 Wk,k(00,  0) is symmetric or skew-symmetric iff (� , !) D f (!, � ) or
f (� , !) D � f (!, � ), respectively. We denote the space of all symmetric or skew-
symmetric forms by Wsym

k (00, 0) or Wskew
k (00, 0), respectively. It is easy to show that

Wk,k(00,  0) DWsym
k (00,  0)�Wskew

k (00,  0).

3.2. Differential operators. For a complex domainX, we denote by Hol(X,Cs)
the set of all holomorphic functions fromX to Cs. For r 2 N0 WD {0, 1, 2,: : : }, define
a differential operatorDr W Hol(H2, Cs)! Hol(H1 �H1, Cs) by

(Dr (F))(� , !) WD

�

�

r F

�zr

��

� 0
0 !

�

,

and put

Ak,s(0,  I r ) WD {F 2 Ak,s(0,  ) j Dt (F) D 0 for any t < r }.

The generalized Witt operatorDr induces an exact sequence

0! Ak,s(0,  I r C 1)! Ak,s(0,  I r )
Dr
�! Hol(H1 �H1, Cs)
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and we have a dimension formula

dim
C

Ak,s(0,  ) D
1

X

rD0

dim
C

Dr (Ak,s(0,  I r )).

From the next section, we will calculate an upper bound of thedimension of
Dr (Ak,s(0, Ir )) and hence we will have an upper bound of the dimension ofAk,s(0, )
for each foregoing0. Therefore, if we can construct sufficiently many modular forms,
we can show this upper bound is the true dimension ofAk,s(0,  ).

Before the separate calculation, here we show one proposition. The translation for-
mulas of
1(M 0) and
2(M 0) induces that the image of aboveDr is in the space of Witt
modular forms. WhensD 0 andsD 2, we have the following proposition.

Proposition 3. There exist exact sequences as follows:
(1) When sD 0,

(1a) If (�1)k (
0) D 1,

0! Ak(0,  I r C 1)! Ak(0,  I r )
Dr
�!Wsym

kCr (00,  0).

(1b) If (�1)k (
0) D �1,

0! Ak(0,  I r C 1)! Ak(0,  I r )
Dr
�!Wskew

kCr (00,  0).

(2) When sD 2,
(2a) If (�1)k (
0) D 1,

0! Ak,2(0,  I r C 1)! Ak,2(0,  I r )
Dr
�!WkCrC2,kCr (0

0,  0)�Wsym
kCrC1(00,  0).

(2b) If (�1)k (
0) D �1,

0! Ak,2(0,  I r C 1)! Ak,2(0,  I r )
Dr
�!WkCrC2,kCr (0

0,  0)�Wskew
kCrC1(00,  0).

We omit the proof. However, here we assume
1(�E2) 2 0 and remark some com-
ments about the above proposition. Whens D 0, if (�1)kCr

 (
1(�E2)) D �1, then
Wsym

kCr (0
0,  0) D {0}. Hence, for example, ifk is even, D 1 and 
0 2 0, we can

sharpen the above exact sequence to

0! Ak(0I 2r C 2)! Ak(0I 2r )
D2r
��!Wsym

kC2r (0
0),

where we denoteAk(0I r ) WD Ak(0, 1I r ). When s D 2, the image ofDr is a vector
valued function, strictly. But, by
0, the first entry equals to the third entry up to the
sign. Therefore, in the above proposition, we denote the image of Dr by the direct



ON VECTOR VALUED SIEGEL MODULAR FORMS 633

sum of two spaces. Moreover, for example, ifk is even,r is odd, D 1 and
0 2 0,
then Wsym

kCr (00) D {0}, that means the second entry of the image ofDr is zero. Hence
the image ofDr is determined only from the first entry and we can denote

0! Ak,2(0I 2r C 1)! Ak,2(0I 2r )
D2r
��!WkC2rC2,kC2r (0

0).

4. Proof of Theorem 1

4.1. CaseN D 1. First, we consider the simplest case, that is, we setN D 1,
0 D Sp(2,Z), 00 D SL(2,Z). In this case, the structure theorem is well known as Igusa’s
theorem. WhenN D 1, because
1(�E2) 2 0, Proposition 3 induces the following prop-
osition immediately.

Proposition 4. There exist exact sequences as follows:
(1) If k is even, Ak(0) D Ak(0I 0) (by definition) and

0! Ak(0I 2r C 2)! Ak(0I 2r )
D2r
��!Wsym

kC2r (0
0).

(2) If k is odd, Ak(0) D Ak(0I 1) and

0! Ak(0I 2r C 3)! Ak(0I 2r C 1)
D2rC1
���!Wskew

kC2rC1(00).

To study the imageDr (Ak(0I r )) more precisely, we will investigate Fourier co-
efficients of modular forms. Forf 2 Ak(00), put the Fourier coefficients off by

f (� ) D
X

n2Z

a f (n)qn.

and let

Ak(00I r ) WD { f 2 Ak(00) j a f (n) D 0 for n < r }.

Let

Wk,l (0
0

I r ) WD Ak(00I r )

C

Al (0
0

I r )

be a subspace of Wk(00) and let

Wsym
k (00I r ) WDWk,k(00I r ) \Wsym

k (00)

and

Wskew
k (00I r ) WDWk,k(00I r ) \Wskew

k (00).

For F 2 Ak(0), put the Fourier coefficients ofF by

F(Z) D
X

n,l ,m2Z

a(n, l , m)qn
�

l pm.
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Because

(Dr (F))(� , !) WD
X

n,m2Z

 

X

l2Z

(2�
p

�1l )r a(n, l , m)

!

qn pm,

if F 2 Ak(0I r ), for any n 2 Z, m 2 Z and t < r ,

X

l2Z

l ta(n, l , m) D 0.

Let


3(x) WD

0

B

B

�

1 0 0 0
x 1 0 0
0 0 1 �x
0 0 0 1

1

C

C

A

, 
4(x) WD

0

B

B

�

1 x 0 0
0 1 0 0
0 0 1 0
0 0 �x 1

1

C

C

A

.

Lemma 5. The Fourier coefficients of F satisfy the following properties:
(1) If 4nm� l 2

< 0, n < 0 or m< 0, then a(n, l , m) D 0.
(2) a(n, �l , m) D (�1)ka(n, l , m).
(3) a(m, l , n) D (�1)ka(n, l , m).
(4) a(nC xl C x2m, l C 2xm, m) D a(n, l , m) for any x2 Z. Therefore, if jl j > jmj,
then there exist n0, l 0 2 Z such that n0 < n and a(n0, l 0, m) D a(n, l , m).
(5) a(n, l C2xn, mC xlC x2n) D a(n, l , m) for any x2 Z. Therefore, if jl j > jnj, then
there exist m0, l 0 2 Z such that m0 < m and a(n, l 0, m0) D a(n, l , m).
(6) If k is odd, then a(n, 0, m) D 0 and a(n, l , n) D 0.

Proof. (1) is well-known as the Koecher principle. On the equation F jk M D F ,
by settingM D 
1(�E2), 
0, 
3(x) and 
4(x), we have (2), (3), (4) and (5). From (2)
and (3), we have (6).

From this lemma, we have the next lemma, that is easy but the key of our proof.

Lemma 6. The Fourier coefficients of F has the following properties:
(1) If k is even, F 2 Ak(0I 2r ) and min{n, m} < r , then a(n, l , m) D 0 for any l.
(2) If k is odd, F 2 Ak(0I 2r C 1) and min{n, m} < r C 2, then a(n, l , m) D 0 for
any l.

Proof. We will give a proof by induction onr . First, we show (1). Whenr D 0,
the assertion is trivial. Therefore we assume (1) holds forr and prove it also holds for
r C 1. Put

b(n, l , m) WD

�

2a(n, l , m) (if l ¤ 0),
a(n, 0, m) (if l D 0).
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Becausea(m, l , n) D a(n, l , m), it is sufficient to show thatb(r, l , m) D 0. Because
F 2 Ak(0I 2(r C 1)), for any m 2 Z and t 2 {0, 1, : : : , r }, we have

2
p

rm
X

lD0

l 2tb(r, l , m) D 0.

When mD r , from Lemma 5 (5) and the assumption of the induction, we have

r
X

lD0

l 2tb(r, l , r ) D 0

for t 2 {0, 1, : : : , r }. Hence, by the Vandermonde formula, we haveb(r, l , r ) D 0. For
generalm, we can showb(r, l , m) D 0 by induction onm.

Next, we consider (2). Whenr D 0, from Lemma 5 (5), we havea(1, 0, m) D
�a(1,0,m) anda(1,1,m)D a(1,�1,m)D �a(1,1,m), hencea(1,0,m)D a(1,1,m)D 0.
Then the assertion holds becausea(1,l ,m)D a(1,l �2,m� lC1). Therefore we assume
(2) holds forr and prove it also holds forrC1. In this case, putb(n,l ,m) WD la(n,l ,m).
When F 2 Ak(0I 2r C 1), for any n, m 2 Z and t 2 {0, 1, : : : , r � 1}, we have

2
p

nm
X

lD1

l 2tb(n, l , m) D 0.

From Lemma 5 (5) (6), we can show (2) by analogous procedure to(1).

By this lemma, we see the image ofDr is contained in a smaller space and im-
mediately we have the following proposition and corollary.

Proposition 7. There exist exact sequences as follows:
(1) If k is even, Ak(0) D Ak(0I 0) (by definition) and

0! Ak(0I 2r C 2)! Ak(0I 2r )
D2r
��!Wsym

kC2r (00I r ).

(2) If k is odd, Ak(0) D Ak(0I 1) and

0! Ak(0I 2r C 3)! Ak(0I 2r C 1)
D2rC1
���!Wskew

kC2rC1(00I r C 2).

Corollary 8. We have an upper bound for the dimension of Ak(0).
(1) If k is even, dim

C

Ak(0) �
P

1

rD0 dim
C

Wsym
kC2r (00I r ).

(2) If k is odd, dim
C

Ak(0) �
P

1

rD0 dim
C

Wskew
kC2rC1(00I r C 2).
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To calculate the right-hand sides of this corollary, we discuss the structure of Witt
modular forms. It is classically well known thatA

�

(00) is generated by two alge-
braically independent modular formse4 and e6, wheree4, e6 are the Eisenstein series
of weights 4 and 6. Ramanujan’s delta function

1(� ) D �(� )24
D

e4(� )3
� e6(� )2

1728

is a unique cusp form of weight 12. It is also well known thatAk(00Ir )D 1r Ak�12r (00).
Therefore, the bigraded ring of Witt modular forms

L

k,l2ZWk,l (00) is generated by four
algebraically independent formse4(� ), e6(� ), e4(!), e6(!). Especially, we have

M

k2Z

Wsym
k (00) D C[e4(� )e4(!), e6(� )e6(!), e4(� )3e6(!)2

C e6(� )2e4(!)3],

M

k2Z

Wsym
k (00I r ) D (1(� )1(!))r

 

M

k2Z

Wsym
k (00)

!

and
M

k2Z

Wskew
k (00I r ) D (e4(� )3e6(!)2

� e6(� )2e4(!)3)

 

M

k2Z

Wsym
k (00I r )

!

.

Therefore we have

X

k2Z

Wsym
k (00I r )xk

D

x12r

(1� x4)(1� x6)(1� x12)

and
X

k2Z

Wskew
k (00I r )xk

D

x12(rC1)

(1� x4)(1� x6)(1� x12)
.

Hence, if k is even, we have

X

k2Z

1

X

rD0

(dim
C

Wsym
kC2r (00I r ))xk

D

1

X

rD0

x12r�2r

(1� x4)(1� x6)(1� x12)

D

1

(1� x4)(1� x6)(1� x10)(1� x12)
.

If k is odd, we have

X

k2Z

1

X

rD0

(dim
C

Wskew
kC2rC1(00I r C 2))xk

D

1

X

rD0

x12(rC3)�(2rC1)

(1� x4)(1� x6)(1� x12)

D

x35

(1� x4)(1� x6)(1� x10)(1� x12)
.
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Consequently, we have an upper bound of the dimension ofAk(0):

X

k2Z

(dim
C

Ak(0))xk
�

1C x35

(1� x4)(1� x6)(1� x10)(1� x12)
,

where� means that the dimension ofAk(0) is not greater than the coefficient ofxk on
the formal power series development of the right-hand side.Namely, if we construct
algebraically independent modular forms of weight 4, 6, 10,12, and if we construct a
modular form of weight 35, we finish the proof of Theorem 1 forN D 1. Indeed,
Igusa [10, 11] constructed these modular forms from theta functions. We denote nor-
malized generators byE4, E6, 110, 112 and135. We remark

E4 2 A4(0I 0), D0(E4) D e4(� )e4(!), E6 2 A6(0I 0), D0(E6) D e4(� )e6(!),

110 2 A10(0I 2), D2(110) D 1(� )1(!), 112 2 A12(0I 0), D0(112) D 1(� )1(!)

and

135 2 A35(0I 1), D1(135) D (e4(� )3e6(!)2
� e6(� )2e4(!)3)(1(� )1(!))2.

This meansD2r and D2rC1 in Proposition 7 are surjective. Therefore,E4, E6,110 and
112 are algebraically independent.

4.2. CaseN D 2. Second, we consider the caseN D 2. Namely, we set0 WD
0

(2)
0 (2) and00 D 0(1)

0 (2).
WhenN D 2, the obstruction on our way is that there are more than one cusp. There-

fore, we should observe the behavior of a modular form at eachcusp at the same time.
Let

M1 WD
1
p

2

�

O2 �E2

2E2 O2

�

and M 0

1 WD
1
p

2

�

0 �1
2 0

�

.

For F 2 Ak(0Ir ) and f 2 Ak(00), it is easy to show thatF jk M1 2 Ak(0Ir ) and f jk M 0

1 2

Ak(00). For f 2 Ak(00), put the Fourier coefficients off by

f (� ) D
X

n2Z

a f (n)qn

and

( f jk M 0

1)(� ) D
X

n2Z

b f (n)qn.

We define

Ak(00I r ) WD { f 2 Ak(00) j a f (n) D 0, b f (n) D 0 for n < r }
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and apply the way in the previous subsection toF and F jk M1. Because Lemma 5 and
Lemma 6 hold not only forF but also for F jk M1, we have the following proposition
and corollary in a similar way in the previous section

Proposition 9. There exist exact sequences as follows:
(1) If k is even, Ak(0) D Ak(0I 0) (by definition) and

0! Ak(0I 2r C 2)! Ak(0I 2r )
D2r
��!Wsym

kC2r (0
0

I r ).

(2) If k is odd, Ak(0) D Ak(0I 1) and

0! Ak(0I 2r C 3)! Ak(0I 2r C 1)
D2rC1
���!Wskew

kC2rC1(00I r C 2).

Corollary 10. We have an upper bound for the dimension of Ak(0).
(1) If k is even, dim

C

Ak(0) �
P

1

rD0 dim
C

Wsym
kC2r (0

0

I r ).

(2) If k is odd, dim
C

Ak(0) �
P

1

rD0 dim
C

Wskew
kC2rC1(00I r C 2).

It is well known that Ak(00I r ) D (�(� )8
�(2� )8)r Ak�8r (00) and thatA

�

(00) is gen-
erated by two algebraically independent modular forms of weight 2 and 4. Hence, ifk
is even, we have

X

k2Z

1

X

rD0

(dim
C

Wsym
kC2r (0

0

I r ))xk
D

1

X

rD0

x8r�2r

(1� x2)(1� x4)(1� x4)

D

1

(1� x2)(1� x4)(1� x4)(1� x6)
.

If k is odd, we have

X

k2Z

1

X

rD0

(dim
C

Wskew
kC2rC1(00I r C 2))xk

D

1

X

rD0

x8(rC2)C4�(2rC1)

(1� x2)(1� x4)(1� x4)

D

x19

(1� x2)(1� x4)(1� x4)(1� x6)
.

Consequently, we have an upper bound of the dimension ofAk(0):

X

k2Z

(dim
C

Ak(0))xk
�

1C x19

(1� x2)(1� x4)(1� x4)(1� x6)
.

Namely, if we construct algebraically independent modularforms of weight 2,4,4,6 and
if we construct a modular forms of weight 19, we finish the proof of Theorem 1 for
N D 2. Indeed, Ibukiyama [7] constructed these modular forms from theta functions.
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4.3. CaseN D 3. Third, we consider the caseN D 3. Namely, we set0 WD
0

(2)
0, 3

(3), 00 D 0(1)
0, 3

(3), Q0 WD 0(2)
0 (3), Q00 D 0(1)

0 (3),  WD  (2)
3 and 0

WD  

(1)
3 . Let

M1 WD
1
p

3

�

O2 �E2

3E2 O2

�

and M 0

1 WD
1
p

3

�

0 �1
3 0

�

.

When N D 3, the obstruction on our way is
0 � 0. Therefore, we decompose

Ak(0) D Ak( Q0)� Ak( Q0,  )

and apply our process toAk( Q0) and Ak( Q0,  ). If k is even, thenAk( Q00) D Ak(00) and
Wk( Q00) DWk(00). If k is odd, thenAk( Q00) D Ak(00,  0) and Wk( Q00) DWk(00,  0). In
a similar way in the previous section, we have the following proposition.

Proposition 11. There exist exact sequences as follows:
(1) If k is even,

(1a) Ak( Q0) D Ak( Q0I 0) (by definition) and

0! Ak( Q0I 2r C 2)! Ak( Q0I 2r )
D2r
��!Wsym

kC2r (00I r ).

(1b) Ak( Q0,  ) D Ak( Q0,  I 1) and

0! Ak( Q0,  I 2r C 3)! Ak( Q0,  I 2r C 1)
D2rC1
���!Wskew

kC2rC1(00I r C 2).

(2) If k is odd,
(2a) Ak( Q0) D Ak( Q0I 1) and

0! Ak( Q0I 2r C 3)! Ak( Q0I 2r C 1)
D2rC1
���!Wskew

kC2rC1(00I r C 2).

(2b) Ak( Q0,  ) D Ak( Q0,  I 0) (by definition) and

0! Ak( Q0,  I 2r C 2)! Ak( Q0,  I 2r )
D2r
��!Wsym

kC2r (00I r ).

Because dim
C

Ak(0) D dim
C

Ak( Q0)Cdim
C

Ak( Q0, ), we have the following corol-
lary immediately.

Corollary 12. We have an upper bound

dim
C

Ak(0) �
1

X

rD0

dim
C

Wsym
kC2r (0

0

I r )C
1

X

rD0

dim
C

Wskew
kC2rC1(00I r C 2).
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It is well known that Ak(00I r ) D (�(� )6
�(3� )6)r Ak�6r (00) and thatA

�

(00) is gen-
erated by two algebraically independent modular forms of weight 1 and 3. Hence,
we have

X

k2Z

1

X

rD0

(dim
C

Wsym
kC2r (0

0

I r ))xk
D

1

X

rD0

x6r�2r

(1� x)(1� x3)(1� x3)

D

1

(1� x)(1� x3)(1� x3)(1� x4)

and

X

k2Z

1

X

rD0

(dim
C

Wskew
kC2rC1(00I r C 2))xk

D

1

X

rD0

x6(rC2)C3�(2rC1)

(1� x)(1� x3)(1� x3)

D

x14

(1� x)(1� x3)(1� x3)(1� x4)
.

Consequently, we have an upper bound of the dimension ofAk(0):

X

k2Z

(dim
C

Ak(0))xk
�

1C x14

(1� x)(1� x3)(1� x3)(1� x4)
.

Namely, if we construct algebraically independent modularforms of weight 1,3,3,4 and
if we construct a modular forms of weight 14, we finish the proof of Theorem 1 for
N D 3. Indeed, Ibukiyama [7] constructed these modular forms from theta functions.

4.4. CaseN D 4. Finally, we consider the caseN D 4. Namely, we set0 WD
0

(2)
0, 4

(4), 00D0(1)
0, 4

(4), Q0 WD0(2)
0 (4), Q00D0(1)

0 (4),  WD (2)
4 ,  0

WD 

(1)
4 and decompose

Ak(0) D Ak( Q0)� Ak( Q0,  ).

Let

M1 WD
1

2

�

O2 �E2

4E2 O2

�

, M 0

1 WD
1

2

�

0 �1
4 0

�

,

M2 WD

�

E2 O2

2E2 E2

�

and M 0

2 WD

�

1 0
2 1

�

.

When N D 4, the obstruction on our way isF jk M2 � Ak(0), even whenF 2
Ak(0). However, 
0 2 M�1

2 0M2 and we can apply the way in the previous section
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not only to F, F jk M1 but also to F jk M2. Here, for f 2 Ak(00), we put the Fourier
coefficients of f by

f (� ) D
X

n2Z

a f (n)qn,

( f jk M 0

1)(� ) D
X

n2Z

b f (n)qn,

( f jk M 0

2)(� ) D
X

n2Z

c f (n)qn=2

and redefine

Ak(00I r ) WD { f 2 Ak(00) j a f (n) D 0, b f (n) D 0, c f (n) D 0 for n < r }.

Then, in a similar way in the previous section, we have the following proposition
and corollary.

Proposition 13. There exist exact sequences as follows:
(1) If k is even,

(1a) Ak( Q0) D Ak( Q0I 0) (by definition) and

0! Ak( Q0I 2r C 2)! Ak( Q0I 2r )
D2r
��!Wsym

kC2r (00I r ).

(1b) Ak( Q0,  ) D Ak( Q0,  I 1) and

0! Ak( Q0,  I 2r C 3)! Ak( Q0,  I 2r C 1)
D2rC1
���!Wskew

kC2rC1(00I r C 2).

(2) If k is odd,
(2a) Ak( Q0) D Ak( Q0I 1) and

0! Ak( Q0I 2r C 3)! Ak( Q0I 2r C 1)
D2rC1
���!Wskew

kC2rC1(00I r C 2).

(2b) Ak( Q0,  ) D Ak( Q0,  I 0) (by definition) and

0! Ak( Q0,  I 2r C 2)! Ak( Q0,  I 2r )
D2r
��!Wsym

kC2r (00I r ).

Corollary 14. We have an upper bound

dim
C

Ak(0) �
1

X

rD0

dim
C

Wsym
kC2r (0

0

I r )C
1

X

rD0

dim
C

Wskew
kC2rC1(00I r C 2).
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It is well known thatAk(00I r ) D (�(� )4
�(2� )2

�(4� )4)r Ak�5r (00) and thatA
�

(00) is
generated by two algebraically independent modular forms of weight 1 and 2. Hence,
we have

X

k2Z

1

X

rD0

(dim
C

Wsym
kC2r (0

0

I r ))xk
D

1

X

rD0

x5r�2r

(1� x)(1� x2)(1� x2)

D

1

(1� x)(1� x2)(1� x2)(1� x3)

and

X

k2Z

1

X

rD0

(dim
C

Wskew
kC2rC1(00I r C 2))xk

D

1

X

rD0

x5(rC2)C2�(2rC1)

(1� x)(1� x2)(1� x2)

D

x11

(1� x)(1� x2)(1� x2)(1� x3)
.

Consequently, we have an upper bound of the dimension ofAk(0):

X

k2Z

(dim
C

Ak(0))xk
�

1C x11

(1� x)(1� x2)(1� x2)(1� x3)
.

We can show this upper bound coincides with the true dimension by constructing gen-
erators. Indeed, Hayashida and Ibukiyama [6] constructed these generators from theta
functions.

5. Proof of Theorem 2

Our proof of Theorem 2 is almost similar to the proof of Theorem 1. But, because
each Fourier coefficient is not a scalar but a vector, we need small modification.

5.1. CaseN D 1. First, we give a lemma corresponding to Lemma 5. ForF 2
Ak,2(0), put the Fourier coefficients ofF by

F(Z) D
X

n,l ,m2Z

a(n, l , m)qn
�

l pm

and denote

a(n, l , m) D

0

�

a1(n, l , m)
a2(n, l , m)
a3(n, l , m)

1

A.

Lemma 15. The Fourier coefficients of F satisfy the following equations:
(1) If 4nm� l 2

< 0, n < 0 or m< 0, then a(n, l , m) D 0.
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(2) a(n, �l , m) D (�1)k
� 1 0 0

0 �1 0
0 0 1

�

a(n, l , m).

(3) a(m, l , n) D (�1)k
� 0 0 1

0 1 0
1 0 0

�

a(n, l , m).

(4) a(nC xl C x2m, l C 2xm, m) D

 

1 x x2

0 1 2x
0 0 1

!

a(n, l , m) for any x2 Z.

(5) a(n, l C 2xn, mC xl C x2n) D

� 1 0 0
2x 1 0
x2 x 1

�

a(n, l , m) for any x2 Z.

(6a) If k is even, then we have

a2(n, 0, m) D 0,

a1(n, l , n) D a3(n, l , n),

a1(n, n, m) D a2(n, n, m),

a2(n, m, m) D a3(n, m, m).

(6b) If k is odd, then we have

a1(n, 0, m) D 0, a3(n, 0, m) D 0,

a1(n, l , n) D �a3(n, l , n), a2(n, l , n) D 0,

a1(n, n, m) D 0, a2(n, n, m) D 2a3(n, n, m),

a3(n, m, m) D 0, a2(n, m, m) D 2a1(n, m, m).

Proof. This lemma is proved in the same manner as Lemma 5. For example, we
can showa1(n, n, m) D a2(n, n, m) on (6a) by substitutingl D n and x D �1 on (2)
and (5).

Lemma 16. The Fourier coefficients of F has the following properties:
(1a) Suppose k is even and F2 Ak,2(0I 2r ).

If min{n� 1, m} < r , then a1(n, l , m) D 0.
If min{n, m} < r C 1, then a2(n, l , m) D 0.
If min{n, m� 1} < r , then a3(n, l , m) D 0.

(1b) Suppose k is even and F2 Ak,2(0I 2r C 1).
If min{n, m} < r C 1, then a(n, l , m) D 0.

(2a) Suppose k is odd and F2 Ak,2(0I 2r ).
If min{n� 1, m} < r C 1, then a1(n, l , m) D 0.
If min{n, m} < r C 1, then a2(n, l , m) D 0.
If min{n, m� 1} < r C 1, then a3(n, l , m) D 0.

(2b) Suppose k is odd and F2 Ak,2(0I 2r C 1).
If min{n� 1, m} < r C 1, then a1(n, l , m) D 0.
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If min{n, m} < r C 1, then a2(n, l , m) D 0.
If min{n, m� 1} < r C 1, then a3(n, l , m) D 0.

Proof. This lemma is proved in the same manner as Lemma 6.

Let

Wk,l (0
0

I r, s) WD Ak(00I r )

C

Al (0
0

I s)

be a subspace of Wk,l (00). We have the following proposition immediately.

Proposition 17. Ak,2(0) D Ak,2(0I 0) (by definition) and there exist exact se-
quences as follows:
(1) If k is even,

0! Ak,2(0I 2r C 1)! Ak,2(0I 2r )
D2r
��!WkC2rC2,kC2r (0

0

I r C 1, r ),

and

0! Ak,2(0I 2r C 2)! Ak,2(0I 2r C 1)
D2rC1
���!Wsym

kC2rC2(00I r C 1).

(2) If k is odd,

0! Ak,2(0I 2r C 1)! Ak,2(0I 2r )
D2r
��!Wskew

kC2rC1(00I r C 1),

and

0! Ak,2(0I 2r C 2)! Ak,2(0I 2r C 1)
D2rC1
���!WkC2rC3,kC2rC1(00I r C 2, r C 1).

When sD 2, we need one more lemma.

Lemma 18. When kD 10(r C 1), we have D2rC1(Ak,2(0I 2r C 1))D 0, although
dim

C

Wsym
kC2rC2(00I r C 1)D 1.

Proof. Setk D 10(r C 1). From previous proposition, it is easy to show that

D2rC1(Ak,2(0I 2r C 1))� C(1(� )1(!))rC1, dim
C

Ak,2(0I 2r C 1)� 1,

D2rC1(AkC4,2(0I 2r C 1))� Ce4(� )e4(!)(1(� )1(!))rC1, dim
C

AkC4,2(0I 2r C 1)� 1

and

D2rC1(AkC6,2(0I 2r C 1))� Ce6(� )e6(!)(1(� )1(!))rC1, dim
C

AkC6,2(0I 2r C 1)� 1.
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Because

D0([E4, 110]) D 0, D1([E4, 110]) D 4e4(� )e4(!)1(� )1(!),

D0([E6, 110]) D 0 and D1([E6, 110]) D 4e6(� )e6(!)1(� )1(!),

we have

AkC4,2(0I 2r C 1)D C1

r
10[E4, 110],

D2rC1(1r
10[E4, 110]) D 4(2r C 1)!! e4(� )e4(!)(1(� )1(!))rC1

and

AkC6,2(0I 2r C 1)D C1

r
10[E6, 110],

D2rC1(1r
10[E6, 110]) D 6(2r C 1)!! e6(� )e6(!)(1(� )1(!))rC1.

Assume the existence ofF 2 Ak,2(0I 2r C 1) such thatD2rC1(F) D (1(� )1(!))rC1.
Then we have

4(2r C 1)!! E4F D 1r
10[E4, 110],

6(2r C 1)!! E6F D 1r
10[E6, 110]

and

6E61
r
10[E4, 110] � 4E41

r
10[E6, 110] D 0.

By Jacobi identity, it means [E4, E6] D 0. It is a contradiction. Thus we have
D2rC1(Ak,2(0I 2r C 1))D 0.

Corollary 19. We have an upper bound as follows:
(1a) If k is even and k6� 0 (mod 10),

dim
C

Ak,2(0) �
1

X

rD0

dim
C

WkC2rC2,kC2r (0
0

I r C 1, r )C
1

X

rD0

dim
C

Wsym
kC2rC2(00I r C 1).

(1b) If k � 0 (mod 10),

dim
C

Ak,2(0) �
1

X

rD0

dim
C

WkC2rC2,kC2r (0
0

I r C 1, r )C
1

X

rD0

dim
C

Wsym
kC2rC2(00I r C 1)� 1.

(2) If k is odd,

dim
C

Ak,2(0) �
1

X

rD0

dim
C

WkC2rC3,kC2rC1(0
0

I r C2,r C1)C
1

X

rD0

dim
C

Wskew
kC2rC1(00I r C1).
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Proof. It is a easy consequence of Proposition 17 and Lemma 18.

Because dim
C

WkC2rC2,kC2r (00I r C 1, r ) D dim
C

Wk�10r�10,k�10r (00I 0, 0), we need
to calculate the dimension of Wk�10,k(00I 0, 0). Namely, we need to calculate the co-
efficientsck�10,k in

1

(1� x4)(1� x6)(1� y4)(1� y6)
D

X

k,l2N0

ck,l x
k yl .

Because

1

(1� x4)(1� x6)(1� y4)(1� y6)

D

�

1

(1� x4)(1� y4)

�

�

�

1

(1� x6)(1� y6)

�

D

�

� � � C x20
C x16

C x12
C x8

C x4
C 1C y4

C y8
C y12

C y16
C y20

C � � �

1� x4y4

�

�

�

� � � C x30
C x24

C x18
C x12

C x6
C 1C y6

C y12
C y18

C y24
C y30

C � � �

1� x6y6

�

,

we have
X

k2N0

ck�10,k xk�10yk

D

� � � C x20y30
C x8y18

C y10
C x6y16

C x18y28
C � � �

(1� x4y4)(1� x6y6)

D

� � � C x20y30
C x8y18

(1� x4y4)(1� x6y6)
C

y10

(1� x4y4)(1� x6y6)
C

x6y16
C x18y28

C � � �

(1� x4y4)(1� x6y6)

D

x8y18

(1� x4y4)(1� x6y6)(1� x12y12)
C

y10

(1� x4y4)(1� x6y6)

C

x6y16

(1� x4y4)(1� x6y6)(1� x12y12)
.

Hence, if k is even, we have an upper bound
X

k22Z

(dim
C

Ak,2(0))xk

�

x16
C x18

(1� x4)(1� x6)(1� x10)(1� x12)
C

x10

(1� x4)(1� x6)(1� x10)

C

x10

(1� x4)(1� x6)(1� x10)(1� x12)
�

x10

(1� x10)

D

(x10
C x14

C 2x16
C x18

C x22) � (x20
C x22

C x26
C x28)C x32

(1� x4)(1� x6)(1� x10)(1� x12)
.



ON VECTOR VALUED SIEGEL MODULAR FORMS 647

We can show this upper bound coincides with the true dimension by constructing gen-
erators by differential operators (p. 4). BecauseD2r and D2rC1 in Proposition 17 are
surjective except whenk D 10(r C 1), Jacobi identity is the only relation between
these generators.

If k is odd, we have
X

k22ZC1

(dim
C

Ak,2(0))xk

�

x27
C x29

(1� x4)(1� x6)(1� x10)(1� x12)
C

x21

(1� x4)(1� x6)(1� x10)

C

x23

(1� x4)(1� x6)(1� x10)(1� x12)

D

(x21
C x23

C x27
C x29) � x33

(1� x4)(1� x6)(1� x10)(1� x12)
.

We can show this upper bound coincides with the true dimension by constructing gen-
erators by differential operators (p. 5).

5.2. CaseN D 2, 3, 4. Now we have already studied all the technique to prove
our theorem. By similar calculation, we have an upper bound of the dimension of
modular forms and we can show that it coincides with the true dimension by construct-
ing generators by differential operators.

When N D 2, we have the following proposition.

Proposition 20. The space Ak,2(0) D Ak,2(0I 0) has the following properties:
(1) If k is even, there are exact sequences

0! Ak,2(0I 2r C 1)! Ak,2(0I 2r )
D2r
��!WkC2rC2,kC2r (0

0

I r C 1, r )

and

0! Ak,2(0I 2r C 2)! Ak,2(0I 2r C 1)
D2rC1
���!Wsym

kC2rC2(00I r C 1).

(2) If k is odd, there are exact sequences

0! Ak,2(0I 2r C 1)! Ak,2(0I 2r )
D2r
��!Wskew

kC2rC1(00I r C 1)

and

0! Ak,2(0I 2r C 2)! Ak,2(0I 2r C 1)
D2rC1
���!WkC2rC3,kC2rC1(0

0

I r C 2, r C 1).

(3) When kD 6(r C 1), we have D2rC1(Ak,2(0I 2r C 1))D 0, although

dim
C

Wsym
kC2rC2(00I r C 1)D 1.
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Hence, if k is even, we have an upper bound
X

k22Z

(dim
C

Ak,2(0))xk

�

x6
C x8

(1� x2)(1� x4)(1� x4)(1� x6)
C

x6

(1� x2)(1� x4)(1� x6)

C

x6

(1� x2)(1� x4)(1� x4)(1� x6)
�

x6

(1� x6)

D

(2x6
C 2x8

C 2x10) � (x10
C 2x12

C x14)C x16

(1� x2)(1� x4)(1� x4)(1� x6)
.

If k is odd, we have
X

k22ZC1

(dim
C

Ak,2(0))xk

�

x13
C x15

(1� x2)(1� x4)(1� x4)(1� x6)
C

x13

(1� x2)(1� x4)(1� x6)

C

x11

(1� x2)(1� x4)(1� x4)(1� x6)

D

(x11
C 2x13

C x15) � x17

(1� x2)(1� x4)(1� x4)(1� x6)
.

When N D 3 or N D 4, we have the following proposition.

Proposition 21. We decompose

Ak,2(0) D Ak,2( Q0I 0)� Ak( Q0,  I 0).

Each decomposed space has the following properties:
(1a) If k is even, there are exact sequences

0! Ak,2( Q0I 2r C 1)! Ak,2( Q0I 2r )
D2r
��!WkC2rC2,kC2r (0

0,  0

I r C 1, r )

and

0! Ak,2( Q0I 2r C 2)! Ak,2( Q0I 2r C 1)
D2rC1
���!Wsym

kC2rC2(00,  0

I r C 1).

(1b) If k is even, there are exact sequences

0! Ak,2( Q0,  I 2r C 1)! Ak,2( Q0,  I 2r )
D2r
��!Wskew

kC2rC1(00,  0

I r C 1)

and

0! Ak,2( Q0, I 2r C 2)! Ak,2( Q0, I 2r C 1)
D2rC1
���!WkC2rC3,kC2rC1(0

0, 0

I r C 2, r C 1).
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(2a) If k is odd, there are exact sequences

0! Ak,2( Q0I 2r C 1)! Ak,2( Q0I 2r )
D2r
��!Wskew

kC2rC1(00,  0

I r C 1)

and

0! Ak,2( Q0I 2r C 2)! Ak,2( Q0I 2r C 1)
D2rC1
���!WkC2rC3,kC2rC1(0

0,  0

I r C 2, r C 1).

(2b) If k is odd, there are exact sequences

0! Ak,2( Q0,  I 2r C 1)! Ak,2( Q0,  I 2r )
D2r
��!WkC2rC2,kC2r (0

0,  0

I r C 1, r )

and

0! Ak,2( Q0,  I 2r C 2)! Ak,2( Q0,  I 2r C 1)
D2rC1
���!Wsym

kC2rC2(00,  0

I r C 1).

(3) When kD 4(r C 1) (N D 3) or when k D 3(r C 1) (N D 4), we have
D2rC1(Ak,2( Q0I 2r C 1))D 0, althoughdim

C

Wsym
kC2rC2(00I r C 1)D 1.

Hence, whenN D 3, from (1a) (2b) and (3), we have
X

k22Z

(dim
C

Ak,2( Q0))xk
C

X

k22ZC1

(dim
C

Ak,2( Q0,  ))xk

�

x4
C x6

(1� x)(1� x3)(1� x3)(1� x4)
C

x4

(1� x)(1� x3)(1� x4)

C

x4

(1� x)(1� x3)(1� x3)(1� x4)
�

x4

(1� x4)

D

(2x4
C x5

C x6
C 2x7) � (x7

C 2x8
C x10)C x11

(1� x)(1� x3)(1� x3)(1� x4)

and from (1b) and (2a), we have
X

k22ZC1

(dim
C

Ak,2( Q0))xk
C

X

k22Z

(dim
C

Ak,2( Q0,  ))xk

�

x9
C x11

(1� x)(1� x3)(1� x3)(1� x4)
C

x9

(1� x)(1� x3)(1� x4)

C

x8

(1� x)(1� x3)(1� x3)(1� x4)

D

(x8
C 2x9

C x11) � x12

(1� x)(1� x3)(1� x3)(1� x4)
.

The first case corresponds to the generators of type 1 and the last case corresponds to
the generators of type 2.
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When N D 4, from (1a) (2b) and (3), we have
X

k22Z

(dim
C

Ak,2( Q0))xk
C

X

k22ZC1

(dim
C

Ak,2( Q0,  ))xk

�

x3
C x4

(1� x)(1� x2)(1� x2)(1� x3)
C

x3

(1� x)(1� x2)(1� x3)

C

x3

(1� x)(1� x2)(1� x2)(1� x3)
�

x3

(1� x3)

D

(2x3
C 2x4

C 2x5) � (x5
C 2x6

C x7)C x8

(1� x)(1� x2)(1� x2)(1� x3)

and from (1b) and (2a), we have
X

k22ZC1

(dim
C

Ak,2( Q0))xk
C

X

k22Z

(dim
C

Ak,2( Q0,  ))xk

�

x7
C x8

(1� x)(1� x2)(1� x2)(1� x3)
C

x7

(1� x)(1� x2)(1� x3)

C

x6

(1� x)(1� x2)(1� x2)(1� x3)

D

(x6
C 2x7

C x8) � x9

(1� x)(1� x2)(1� x2)(1� x3)
.

The first case corresponds to the generators of type 1 and the last case corresponds to
the generators of type 2.
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